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Introduction
Many membrane proteins are integrated into the endoplasmic 

reticulum (ER) membrane of eukaryotic cells and the plasma 

membrane of prokaryotic cells via an evolutionarily conserved 

machinery, the so-called translocon (Walter and Lingappa, 1986; 

Hartmann et al., 1994). The functional translocon of eukaryotes 

is composed of multiple copies of the Sec61 complex, which 

corresponds to the SecY complex of bacteria (Osborne et al., 

2005). The complex consists of three heterologous subunits: 

Sec61α, β, and γ in mammals; SecY, E, and G in Escherichia 
coli; and Sec61p, Sbh1p, and Sss1p in budding yeast. In addi-

tion to the core complex, there are several accessory factors. 

Translocating chain-associating membrane protein (TRAM) is 

responsible for stabilizing the integration intermediate of less 

hydrophobic transmembrane (TM) segments at the lateral exit 

site of the translocon (Do et al., 1996; Heinrich et al., 2000). 

The translocon-associated protein complex associates with the 

Sec61 complex (Morgan et al., 2002; Menetret et al., 2005) 

and is suggested to be involved in substrate-specifi c translocon 

function (Fons et al., 2003).

Polypeptide segments on the trans-side are translocated 

through the membrane, and TM segments are inserted into 

the membrane via the translocon (Alder and Johnson, 2004; 

Osborne et al., 2005). Polypeptide chains traverse the hydro-

philic environment of the translocon (Gilmore and Blobel, 1985). 

In mammalian ER, the size of the water environment is esti-

mated to be between 9 and 60 Å (Alder and Johnson, 2004). 

Four copies of the Sec61 complex associate to form a multimeric 

complex, which, in electron microscopy, is observed as a ring 

structure (Menetret et al., 2005). The multimeric form is induced 

by the ribosome, and the center of the ring was thought to be a 

pore for polypeptide chains (Hanein et al., 1996). A signifi cant 

portion of Sec61 complexes exists as monomers on rough ER 

membrane (Schaletzky and Rapoport, 2006). In bacterial mem-

branes, a dimeric form of the SecY complex is often observed 

(Manting et al., 2000; Mori et al., 2003). Recent cryo-electron 

microscopy observations of the SecY complex engaged with the 
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translating ribosome indicated that SecY forms a front-to-front 

dimer (Mitra et al., 2005), although the previously reported di-

mer organization of the bacterial SecY complex is back-to-back 

(Manting et al., 2000; Breyton et al., 2002; Mori et al., 2003). 

The crystal structure of the archaean SecY complex indicates 

that a single SecY subunit possesses 10 TM segments and can 

form a pore for polypeptide chain translocation (Van den Berg 

et al., 2004). SecY is pseudo-symmetrical and the TM1-5 and 

TM6-10 halves are connected by a loop between TM5 and TM6 

to form a clamshell-like structure. The mouth of the clamshell 

between TM2b and TM7 is thought to open laterally to the lipid 

environment. The central portion of the pore narrows, creat-

ing an hourglass shape, and possesses a pore ring structure and 

plug, which are responsible for maintaining the membrane seal 

(Li et al., 2007; Saparov et al., 2007). The signal acceptor site 

is thought to be formed by TM2b and TM7 near the exit site 

of the Sec61 complex. Cross-link experiments indicate that 

translocating polypeptide chains pass through the center of the 

SecY molecule (Cannon et al., 2005). Both the signal sequence 

and translocating polypeptide chain are contained within the 

same SecY molecule during SecA-dependent translocation 

(Osborne and Rapoport, 2007). Only one SecY subunit in the 

SecY dimer mediates translocation. SecY is demonstrated to 

be involved in integration and folding of multispanning mem-

brane proteins (Shimohata et al., 2007). The dynamic nature of 

the SecY/61 channels among the multimeric complexes during 

integration of the multispanning membrane protein has yet to 

be clarifi ed.

Hydrophobic segments (H-segments) of signal sequences 

emerging from the ribosome are recognized by the signal recog-

nition particle and the ribosome-nascent chain complex is tar-

geted to the translocon. The signal recognition particle receptor 

on the ER membrane induces transfer of the H-segment from 

the particle to the translocon. Either side of the H-segment can 

then be translocated through the translocon (Sakaguchi, 1997; 

Goder and Spiess, 2001). When the N-terminal fl anking region 

possesses fewer positive charges and the H-segment is relatively 

longer, the H-segment tends to form an Nlum/Ccyt orientation, in 

which the N-terminal domain (N-domain) is in the lumen and 

the C terminus is in the cytoplasm (type I signal-anchor, SA-I). 

In contrast, when the N-terminal fl anking segment possesses 

more positive charges and the C-terminal fl anking segment 

has fewer positive charges, the H-segment forms the opposite 

orientation (Ncyt/Clum; type II signal-anchor) (Sakaguchi et al., 

1992b). The Sec61 complex is essential for partitioning the TM 

segment of SA-I into the lipid environment (Heinrich et al., 

2000). The translocon mediates the insertion of multiple TM 

segments; hydrophobic TM segments are sequentially inserted 

from the N terminus to the C terminus into the translocon and 

released to the lipid phase (Sadlish et al., 2005). The translocon 

can support the insertion of less hydrophobic segments into the 

membrane depending on their context; weakly hydrophobic TM 

segments can be integrated into the lipid environment by inter-

acting with other TM segments (Ota et al., 2000; Heinrich and 

Rapoport, 2003), and even a hydrophilic TM segment can be 

forced to form a TM disposition by its downstream SA-I sequence 

(Ota et al., 1998).

In the SA-I sequence, ER-targeting and N-domain trans-

location proceed immediately after the H-segment emerges 

from the ribosome (Heinrich et al., 2000; Kida et al., 2000). 

Positive charges after the H-segment have a critical role in 

N-domain translocation (Kida et al., 2006). A long N-domain of 

more than 200 residues, including a fused dihydrofolate reduc-

tase domain, can be translocated through the translocon (Kida 

et al., 2005). Stabilization of the domain by a dihydrofolate 

reductase-specifi c ligand (methotrexate) arrests translocation and 

the release of the ligand induces the resumption of translocation 

(Kida et al., 2005). Translocation of the long N-domain does not 

require nucleotide triphosphate, whereas the ER-targeting pro-

cess has a strict requirement for GTP. The ER luminal hsp70, 

BiP, is also not required. The ribosome has a critical function in 

N-domain translocation, even after membrane targeting. Meth-

otrexate can inhibit translocation of the dihydrofolate reductase 

domain even in cultured cells (Ikeda et al., 2005).

In this paper, we report the development of a new cell-free 

system in which N-domain translocation can be arrested and 

then induced to resume. A streptavidin-binding peptide tag 

(SBP-tag) (Keefe et al., 2001) was fused to the N-domain. 

N-domain translocation was arrested by streptavidin (SAv) and 

resumed after biotin-induced release of SAv from the SBP-tag. 

We show that the arrest of N-domain translocation does not in-

fl uence subsequent insertions of polypeptide chains and that two 

translocating hydrophilic polypeptide segments in a single mol-

ecule can span the membrane in the translocation-competent 

state. Furthermore, the N-domain translocation intermediate can 

be maintained in a productive state, even after multiple down-

stream hydrophobic TM segments enter the translocon pore.

Results
Translocation of the SBP-tagged N-domain 
is arrested by SAv
To arrest N-domain translocation, a 38-residue SBP-tag was 

fused to the N terminus of mouse synaptotagmin II (SytII) 

(Fig. 1 A, S-I). The model protein construct consisted of a 38-

residue N-terminal SBP-tag, a 70-residue hydrophilic sequence 

(7-residue glycosylation probe sequence, 4 residues encoded 

by restriction enzyme sites, and a 59-residue SytII N-terminal 

domain; for details see Materials and methods), the 27-residue 

H-segment of the SA-I sequence, and the cytoplasmic domain of 

SytII (Fig. 1 A). The two glycosylation sites in the N-terminal 

hydrophilic domain were used as an indicator of translocation 

because glycosylation occurs only in the ER lumen. To produce 

defi ned translocation intermediates, we used truncated mRNAs 

for cell-free synthesis. Because they did not possess an in-frame 

termination codon, the synthesized nascent chain remained on 

the ribosome as a peptidyl tRNA to form the ribosome-nascent 

chain complex. When mRNA, truncated at Arg200 of SytII, was 

translated for 60 min, the S-I protein product was effi ciently 

diglycosylated in the presence of rough microsomal membrane 

(RM) (Fig. 1 B, lane 2). There was little of the monoglyco-

sylated form. Endoglycosidase H (EndoH) treatment caused a 

downward shift of the top band, confi rming that the top band 

is glycosylated (lane 3). When translated in the  presence of 
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SAv, glycosylation was suppressed (lane 5). In contrast, SAv 

did not affect glycosylation in the presence of biotin (lane 4), 

indicating that N-domain translocation was arrested by a spe-

cifi c interaction of SBP-tag with SAv. To examine whether the 

arrested translocation can be resumed, biotin was added after 

translation was performed in the presence of SAv and termi-

nated with cycloheximide (CHX). Upon addition of biotin, 

glycosylation effi ciently resumed (lane 6). In the absence of 

biotin, little glycosylation occurred, even after a 60-min chase 

(lane 7). These results indicate that N-domain translocation via 

the SA-I sequence was arrested by SAv and could be chased 

by biotin.

To insert the polypeptide chain further into the translocon, 

a 38-residue sequence was inserted as a spacer between the 

SBP-tag and SA-I sequence (Fig. 1 A, S-38-I). This 38-residue 

sequence was derived from the lumenal loop of human anion 

 exchanger 1, which is often used as a passenger sequence for trans-

location experiments (Sato et al., 2002; Kida et al., 2005). When 

translated in the presence of RM and SAv, the monoglycosylated 

form was predominantly observed (Fig. 1 C, lane 3). When the 

reaction was chased in the presence of biotin, both the nonglyco-

sylated and monoglycosylated forms were converted to the di-

glycosylated form (lane 4). When the former glycosylation site 

was silenced, the monoglycosylated intermediate form was not 

Figure 1. Two intermediates of N-domain translocation 
generated by SBP-tag trapping. (A) The SBP-tag (SBP) and 
the glycosylation sequence were fused to the N terminus 
of SytII (S-I). A 38-residue spacer sequence was inserted 
between the glycosylation probe sequence and SytII 
(S-38-I). Glycosylation sites are indicated by open circles. 
Truncated mRNAs encoding to Arg200 of SytII in the fusion 
proteins were used for in vitro translation. Numbers indi-
cate the amino acid residues within the indicated regions. 
The amino acid sequence of the SBP-tag is indicated. (B) The 
truncated mRNA for the S-I fusion protein was trans-
lated in the cell-free system in the absence (−) or presence 
(+) of RM, SAv, and biotin for 60 min, and then further in-
cubated for 15 min in the presence of CHX. Some aliquots 
translated in the presence of SAv were further incubated 
in the presence (+) or absence (−) of biotin for 60 min. 
Lane 4 shows the translation products in the presence of 
SAv and biotin (SAv +/B). An aliquot was treated with 
EndoH (EndoH + lane). Filled circles indicate the nongly-
cosylated form. Single and double open circles indicate 
monoglycosylated and diglycosylated forms, respectively. 
Diglycosylation effi ciencies (%) are indicated. (C) The fu-
sion proteins were synthesized in the presence of RM and 
SAv. After CHX treatment, N-domain translocation was 
chased for the indicated time in the presence of biotin. 
Diglycosylation effi ciencies (%) are indicated in the panel. 
(D) N-domain translocations of S-I and S-38-I proteins 
were arrested at different stages by SAv. Neither glycosyl-
ation site of S-I was glycosylated, whereas the second site 
of S-38-I was glycosylated. In both cases, N-domain trans-
location resumed during the biotin chase. In the S-38-I 
intermediate, the SA-I sequence and the preceding hydro-
philic segment spanned the membrane (advanced stage). 
Insertion of the S-I protein was arrested at an earlier 
stage than S-38-I protein (earlier stage). Open and fi lled 
circles indicate the glycosylated and nonglycosylated 
potential sites, respectively.



JCB • VOLUME 179 • NUMBER 7 • 2007 1444

affected (unpublished data), indicating that the fi rst glycosyla-

tion site of the intermediate was still on the cytoplasmic side and 

the latter glycosylation site was in the lumen (Fig. 1 D). The 38-

residue spacer resulted in the hydrophilic sequence forming a 

TM disposition (Fig. 1 D). Collectively, these fi ndings indicate 

that we created two different intermediates of N-domain translo-

cation: in one intermediate, the SA-I sequence and hydrophilic 

segment spanned the membrane (termed “advanced stage”); 

whereas in the other intermediate, the SA-I sequence was at an 

earlier stage of translocation (termed “earlier stage”) (Fig. 1 D).

N-domain translocation resumes even in 
the presence of a second translocating 
segment
We then examined whether insertion of a downstream polypep-

tide chain is infl uenced by the N-domain translocation interme-

diates. The TM3 segment of human Na+/H+ exchanger isoform 6, 

which mediates membrane insertion of its following portion 

(Miyazaki et al., 2001), was positioned as the second insertion 

sequence (Fig. 2 A, II). A third glycosylation site and a prolactin 

sequence were fused as a reporter. When the S-I-II protein was 

synthesized in the presence of RM, the triglycosylated form was 

mainly observed (Fig. 2 B, lane 2). EndoH treatment confi rmed 

glycosylation of the top bands (lane 3). When synthesized in the 

presence of SAv, triglycosylation was suppressed and the mono-

glycosylated form was observed as the main product (lane 4). 

When chased in the presence of biotin, the triglycosylated form 

became the major product (lane 5). In the absence of biotin, 60-min 

incubation induced little glycosylation (lane 6).

To confi rm the identity of the glycosylated sites, the second 

glycosylation site was silenced by a single point mutation (Fig. 2 A, 

S-I-II(2G)). The diglycosylated form was observed as the ma-

jor product instead of the triglycosylated form (lanes 8 and 11), 

whereas the monoglycosylated form observed in the presence of 

Figure 2. Earlier intermediate does not infl uence the next 
insertion. (A) The SA-I sequence in the S-I protein was followed 
by the second H-segment (II) of the TM3 in human Na+/H+ 
exchanger isoform 6, the glycosylation probe sequence (third 
open circle), and a hydrophilic sequence from bovine prolac-
tin (PL) (S-I-II). The numbers of residues within the indicated 
regions are shown. In the S-I-II(2G) protein, the second glyco-
sylation site was silenced. (B) The truncated RNA was trans-
lated and N-domain translocation was chased as described in 
Fig. 1. Filled circles indicate nonglycosylated forms. Single, 
double, and triple open circles indicate mono-, di-, and trigly-
cosylated forms, respectively. The diglycosylation effi ciencies of 
S-I-II(2G) are indicated in the panel. (C) While the N-domain 
translocation was in the earlier stage, the second H-segment 
(II) and the following hydrophilic sequence spanned the mem-
brane. The N-domain translocation was chased despite the 
presence of the downstream translocating polypeptide chain.
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SAv was not affected (lane 10). Only the third glycosylation site 

was thus glycosylated in the presence of SAv (Fig. 2 C).

Collectively, when N-domain translocation was arrested 

by SAv, the third glycosylation site after the second H-segment 

was translocated into the lumenal side of the RM. In this situa-

tion, the SA-I sequence should occupy the signal recognition 

site of the Sec61 complex, while the second H-segment could 

be inserted and mediate the following translocation. It should be 

noted that the N-domain polypeptide chain could move across 

the membrane, even when the second translocating hydrophilic 

segment spanned the membrane.

Two translocating segments can span 
the membrane
To form the advanced intermediate stage of the S-I-II protein, 

the 38-residue spacer sequence was inserted between the SBP-

tag and SA-I sequences (Fig. 3 A, S-38-I-II). When synthesized 

in the absence of SAv, the triglycosylated form was observed 

depending on the RM (Fig. 3 B, lane 2). When translated in the 

presence of SAv, the diglycosylated form was mainly observed 

(lane 3), indicating that the second and third positions of the 

main product were in the lumen and only the N-terminal posi-

tion was on the cytoplasmic side (Fig. 3 C). The glycosylation of 

the N-terminal site was chased by the post-translational addition 

of biotin (Fig. 3 B, lane 4). This fi nding demonstrates that the 

N-domain of the S-38-I-II protein was in the advanced intermedi-

ate stage (Fig. 3 C). As shown in the next section, the C-terminus 

of this intermediate was in the ribosome. The two hydrophilic 

segments were simultaneously in the TM disposition (Fig. 3 C). 

The former translocating segment did not interfere with the in-

sertion of the second polypeptide chain and the second segment 

did not affect the resumption of N-domain translocation.

To examine the effect of an H-segment in the C-terminal 

chain on the translocation intermediate stage, 15 amino acid 

residues in the second translocating segment were exchanged with 

15 leucine residues (Fig. 3 A, 15L constructs). The 15-leucine 

sequence was followed by 50 residues, so that the segment should 

exit the ribosome and enter the translocon. Even in the presence 

Figure 3. Two translocating hydrophilic segments 
span the membrane. (A) The SBP-tag of S-I-II was sepa-
rated from SA-I by a 38-residue spacer (S-38-I-II). As a 
third H-segment, 15 residues in the indicated region 
were replaced with 15 leucine residues (S-I-II-15L). 
Because the 15-leucine segment is 50 residues away 
from the truncation site, it should be in the translocon. 
(B) Translation and the translocation chase were per-
formed as described in Figs. 1 and 2. (C) In the pres-
ence of SAv, two hydrophilic segments of S-38-I-II 
protein spanned the membrane and the two glycosyl-
ation sites, other than the N-terminal site, were glyco-
sylated (open circles). Insertion of the hydrophobic 
15-leucine segment did not interfere with the resump-
tion of N-domain translocation.
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of the 15-leucine segment, essentially the same results were 

obtained as with S-I-II and S-38-I-II (Fig. 3 B, lanes 5–12). 

When synthesized in the absence of SAv, the triglycosylated 

form was mainly observed (lanes 6 and 10). In the presence of 

SAv, N-domain translocation was suppressed and the mono-

glycosylated form of S-I-II-15L (lane 7) and the diglycosylated 

form of S-38-I-II-15L (lane 11) were the main products. Trigly-

cosylation was observed after a 60-min chase in the presence of 

biotin (lanes 8 and 12), indicating that N-domain translocation 

was chased in both cases. The third H-segment (15L) did not the 

affect resumption of N-domain translocation (Fig. 3 C).

Productivity of translocation intermediates
To ascertain the fate of the C-terminal segment, a fourth glyco-

sylation site was created 40 residues from the truncation site 

(Fig. 4 A). This glycosylation site should be accessible only 

when the C-terminal segment is released from the ribosome and 

translocated through the membrane. In the presence of CHX, 

the diglycosylated form was converted to the triglycosylated form 

by biotin (Fig. 4 B, lane 2). In contrast, when treated with puro-

mycin (Puro), there was a signifi cant increase in the triglycosyl-

ated form before the biotin chase (Fig. 4 B, compare lanes 1 and 3). 

After a 60-min biotin chase, the intermediate forms were con-

verted to the tetraglycosylated form (lane 4). The fourth glyco-

sylation site became accessible to the glycosylation enzyme 

in the presence of Puro (Fig. 4 B). When the 15-leucine seg-

ment was present, tetraglycosylation was suppressed (Fig. 4 B, 

compare lanes 4 and 8), indicating that the 15-leucine segment 

stopped translocation of the C-terminal chain. The C terminus of 

the S-38-I-II protein was trapped in the ribosome and C-terminal 

translocation can be chased as effi ciently as N-terminal trans-

location. The resumption of N-domain translocation was also 

not affected by C-terminal release from the ribosome.

In contrast to the results with the advanced intermediate 

of the S-38-I-II protein, the resumption of N-domain transloca-

tion in an earlier stage of the S-I-II protein was signifi cantly 

affected by Puro treatment (Fig. 4 C, compare lanes 2 and 4). 

Even in the earlier intermediate stage, the SA-I and N-terminal 

domain remain actively engaged with the translocon, depending 

on the ribosome, during the translocation arrest. The differential 

infl uence of Puro indicates that SA-I sequences in the earlier 

and advanced stages are in different states.

Using the S-38-I-II(4G) model protein, we confirmed 

membrane topology of the two TM segments. The loop between 

Figure 4. Productivity of the translocation inter-
mediates. (A) The fourth glycosylation site 
was generated 40 residues away from the 
C-terminal truncation site of (4G) constructs. 
(B) After translation was performed for 60 min, 
the reaction was terminated by CHX or Puro 
and further incubated for 10 min. A biotin 
chase was then performed in the presence 
of CHX or Puro for 60 min. Translocations of 
both the N-domain and C-terminal segments 
resumed after release from the ribosome. The 
tetraglycosylated form was observed (four 
open circles) after Puro treatment. The third 
H-segment (15L) interrupts the translocation of 
the C-terminal segment, so that the fourth site 
is not accessible to the glycosylation enzyme. 
(C) S-I-II and S-38-I-II proteins were synthesized in 
the presence of SAv, and the N-domain trans-
location was chased in the presence of CHX 
or Puro. Triglycosylation effi ciency (%) after the 
chase reaction is indicated. The translocation 
chase of the N-domain of the S-I-II protein was 
infl uenced by Puro treatment, whereas that of 
the S-38-I-II protein was not.
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two TM segments is on the cytoplasmic side and accessible to 

the externally added proteinase K (Fig. S1, available at http://

www.jcb.org/cgi/content/full/jcb.200707050/DC1).

Each translocating hydrophilic segment 
fl anks Sec61𝛂
To probe proteins adjacent to the translocating polypeptides, we 

performed chemical cross-linking experiments. Two cysteine 

residues were created in either the fi rst or second translocat-

ing hydrophilic segment using a Cys-less mutant (see Materials 

and methods) (Fig. 5, A and B). The Cys mutants were syn-

thesized in the presence of RM and SAv, and the cross-linking 

reaction was performed with a homobifunctional cross-linker 

BMH, whose spacer is 16.1 Å. Cross-linked products were 

subjected to immunoprecipitation with anti-Sec61α antibody 

(Fig. 5 C). A Cys-residue at positions-1, -2, -3, -4, -7, or -8 gave a 

signifi cant cross-linked band of 90 kD that was immunoreac-

tive with anti-Sec61α antibody. Given that the probe is �50 kD 

(Fig. 5 C, asterisk), the size of the cross-linking partner is 

consistent with that of Sec61α. The negligible and weak cross-

linking of Cys-residues at positions-5 and -6 indicate the position 

specifi city of the cross-linking reaction. The immunoreactive 

cross-linked products were not observed when incubated in 

the absence of a cross-linker (Fig. 5 C, lanes 26 and 28). 

Essentially the same results were obtained using other cross-

linkers with shorter spacers, bismaleimidoethane (BMOE; 8.0 Å), 

1,4-bismaleimidobutane (BMB; 10.9 Å), and N,N-(methylene-

4-1-phenylene)bismaleimide [BM(PEO)2; 14.7 Å] (Fig. S2). 

The immunoreactive band of the position-4 Cys mutant was 

not observed with unrelated antibodies, anti-Sec63 and anti-SAv 

(Fig. S2, available at http://www.jcb.org/cgi/content/full/jcb

.200707050/DC1). These results indicate that both translocating 

Figure 5. Two translocating polypeptides fl ank Sec61𝛂. 
(A and B) For site-specifi c chemical cross-linking, 
two Cys residues were created by point mutations at 
the indicated positions (numbered) using a Cys-less 
mutant of S-38-I-II. (C) The Cys mutants were synthe-
sized in the presence of RM and SAv, and then sub-
jected to chemical cross-linking using homobifunctional 
cross-linkers, BMH (+ lanes), whose cross-linking dis-
tances are 16.1 Å. Proteins cross-linked with the Sec61α 
were immunoprecipitated (IP Sec61α + lanes). Down-
ward arrowheads indicate the products cross-linked 
with Sec61α. Asterisk indicates free probe products. 
Relative cross-linking effi ciency was calculated by the 
formula: (immunoprecipitated band) × 100/(transla-
tion product). The effi ciencies were normalized with that 
of position 3 and indicated in the panel. (D) Effects of 
Puro treatment and biotin chase on the cross-linking 
reactions were examined with positions-3 and -7 Cys 
mutants. After CHX, Puro, and/or biotin treatment, a 
cross-linking reaction was performed with BMOE. 
Immunoprecipitated bands were quantitated and nor-
malized values were indicated in the panel.
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hydrophilic chains flanked the Sec61 channel. It is likely 

that the nascent chain existed within Sec61 pore. The polypep-

tide might be outside the small Sec61 pore and still adjacent 

to Sec61 subunit. We performed the same cross-linking experi-

ment using the construct in which Cys-residues were included 

in both translocating hydrophilic segments and found a faint but 

signifi cant super-shifted band in addition to the band cross-linked 

with one Sec61α (Fig. S3, available at http://www.jcb.org/cgi/

content/full/jcb.200707050/DC1), suggesting that two Sec61α 

can be cross-linked with the single nascent polypeptide chain. 

The exact nature of the super-shifted molecule, however, remains 

to be examined.

We then examined the effect of biotin or Puro treatments on 

the environment of the integration intermediates. Cross-linking 

in the position-3 Cys mutant was little affected by Puro, but 

was abolished by biotin (Fig. 5 D, lanes 9 and 12). Cross-linking 

with the position-7 Cys residues in the presence of Puro was 

more diminished than that with position-3 (Fig. 5 D, lanes 

9 and 21). However, the residual cross-linking of position-7 in the 

presence of Puro was further decreased after biotin treatment 

(lane 24). On the other hand, position-7 cross-linking was not 

affected by biotin chase in the presence of CHX (unpublished 

data). These results indicate that cross-linking with Sec61α re-

fl ects the productive and specifi c intermediate and that the up-

stream translocating segment in the advanced intermediate stage 

continued to fl ank the Sec61 channel even after Puro treatment. 

The residual cross-linking of position-7 after Puro treatment in 

the absence of biotin might suggest that upstream translocating 

chain affects the downstream translocation.

Multiple TM insertions do not affect 
N-domain translocation
To examine the effect of the insertion of multiple H-segments 

on N-domain translocation, the TM segments (TM2–TM7) of 

Figure 6. Insertion of six TM segments did not compete with N-domain translocation. (A) Six TM segments of rhodopsin were fused after the SA-I (S-I-Rhod). 
The endogenous glycosylation site in SytII was silenced. In the G-loop constructions, the glycosylation sequence (G-loop) was inserted either between TM2 
and TM3 or TM4 and TM5 of rhodopsin. (B) The mRNAs truncated at the C-terminal residue (Ala348) of rhodopsin were translated in the presence of RM 
and SAv. The biotin chase was then performed. (C) Effect of Puro on the N-domain translocation resumption. Puro was used to terminate translation instead 
of CHX and then the biotin chase was performed. The glycosylated and nonglycosylated forms were quantitated and the glycosylation effi ciencies were 
calculated. The experiments were performed more than three times, and the average and standard deviations are indicated in the fi gure. (D) Schematic of 
translocation intermediates. The arrest of N-domain translocation did not affect insertion of the following TM segments and insertion of six TM segments did 
not infl uence the resumption of N-domain translocation.
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bovine rhodopsin were attached downstream of the SA-I se-

quence (Fig. 6 A). When synthesized in the presence of RM, the 

N-terminal site was glycosylated (Fig. 6 B, lane 2). The glyco-

sylation was arrested in the presence of SAv, but resumed after 

the biotin chase (lanes 3 and 4). To confi rm multiple insertions 

of the following TM segments, a glycosylation loop sequence 

was inserted into the lumenal loop between either TM2 and 

TM3 or TM4 and TM5 (Fig. 6 A). In both cases, the products 

were diglycosylated in the presence of RM (Fig. 6 B, lanes 6 

and 10). When translated in the presence of SAv, the monogly-

cosylated forms were the major products (lanes 7 and 11). These 

were converted to the diglycosylated forms after the biotin 

chase (lanes 8 and 12). For unknown reasons, the diglycosyl-

ated form of these constructs was occasionally smeared or split 

(e.g., lanes 6, 8, and 12).

When the intermediate was treated with Puro instead of 

CHX, glycosylation after the chase reaction was signifi cantly 

affected (Fig. 6 C), indicating that the ribosome is actively in-

volved in maintaining the productive state of the earlier inter-

mediate of N-domain translocation, even after the insertion of 

six successive TM segments. The insertion of multiple H-seg-

ments did not affect the resumption of arrested N-domain trans-

location. An insertion intermediate of the N-terminal SA-I 

sequence did not affect the insertion of the following multiple 

TM segments.

Discussion
Translocation of the SBP-tagged N-domain via the SA-I se-

quence was arrested by SAv but then resumed after biotin treat-

ment. We constructed two different N-domain translocation 

intermediates (Fig. 1 D). In the earlier stage, in which the SBP-

tag was proximal to the SA-I sequence, neither of the two gly-

cosylation sites in the N-domain was glycosylated. In the 

advanced stage, in which the N-terminal SBP-tag was separated 

from the SA-I sequence by the 38-residue spacer, the hydro-

philic and hydrophobic segments spanned the membrane and 

the second site was glycosylated. In both intermediates, the two 

glycosylation sites in the N-domain were eventually glycosyl-

ated after chasing with biotin.

Using these intermediates, we demonstrated that two 

hydrophilic translocating segments of the single membrane 

protein can simultaneously span the membrane. Even when the 

N-domain translocation was arrested, the second H-segment 

initiated membrane insertion of the downstream hydrophilic 

segment. In the earlier intermediate of N-domain translocation, 

the SA-I sequence orients in the membrane after the biotin 

chase, while both the second H-segment and the downstream 

segment span the membrane (Fig. 2). In the advanced inter-

mediate, two H-segments and two translocating hydrophilic seg-

ments span the membrane (Fig. 3). The two intermediates refl ect 

different stages of signal function. Release of the ribosome sig-

nifi cantly affected the translocation chase of the earlier inter-

mediate, whereas it had little effect on the chase of the advanced 

intermediate (Fig. 4). At the earlier intermediate stage, mainte-

nance of the active engagement of SA-I and the N-terminal 

domain with the translocon during translocation arrest was 

dependent on the ribosome. On the other hand, the upstream 

translocating chain in the advanced stage was still in an active 

state in the translocon, even after Puro treatment. This post-

translational movement of polypeptide chain in a ribosome 

independent manner is reminiscent of the ribosome-independent 

reorientation of TM segments observed with some membrane 

proteins (Lu et al., 2000).

The SA-I sequence emerging from the ribosome is ini-

tially recognized by SRP, transferred from SRP to the signal 

pocket of Sec61α on the ER, forms the TM helix, and is then 

released to the lipid environment (Heinrich et al., 2000; Kida 

et al., 2000). Insertion of the TM segment into the Sec61 complex 

and interactions with lipids might provide the driving force for 

N-terminal translocation (Heinrich et al., 2000; Kida et al., 

2005). A signal pocket exists between TM2b and TM7, which 

are located at the lateral exit side of Sec61α (Van den Berg 

et al., 2004; Osborne et al., 2005). The Sec61 complex is involved 

in cotranslational sequential insertion of TM segments of multi-

spanning membrane proteins; TM segments interact with the 

Sec61α subunit in an ordered and sequential manner (Sadlish 

et al., 2005). The TM segment fl anking the initial site of trans-

lo con is replaced by the next TM segment and moves to the sec-

ond site. The hydrophobic TM segments readily move from the 

pore to the lipid phase (Osborne et al., 2005). Although overall 

integration of the H-segment of the SA-I sequence into lipid re-

quires the Sec61 complex, once inserted in the Sec61 pore, the 

H-segment readily exits to the lipid phase (Heinrich et al., 

2000). The weakly hydrophobic segment stays longer fl anking 

the Sec61 complex and TRAM. The translocon provides the en-

vironment for TM segments to interact with each other. In some 

cases, less-hydrophobic segments are inserted into the translo-

con and then exit the translocon depending on their interaction 

with other TM segments (Ota et al., 2000; Ott and Lingappa, 

2002; Heinrich and Rapoport, 2003). In the stop transfer con-

text, ongoing translocation of polypeptide through Sec61 pore 

is stopped by hydrophobic TM segment, which is cotranslation-

ally and stepwise exit from the pore to the lipid phase via TRAM 

protein (Do et al., 1996). The cotranslational integration process 

is an ordered and regulated multistep process. Based on these 

lines of evidence of the cotranslational integration of membrane 

proteins, it is reasonable to assume that the SA-I and N-domains 

of the model constructs used in this study are inserted into the 

Sec61 pore and that the second hydrophobic insertion signal and 

the downstream hydrophilic chain are also inserted via the Sec61 

pore. SAv arrested the sequential process of translocation of the 

SBP-tagged N-domain. The SA-I sequence in the earlier inter-

mediate was targeted to the translocon and was likely on the way 

to being inserted into the Sec61 pore. The hydrophilic poly-

peptide chain spanning the membrane in the advanced stage 

should be in the Sec61 pore. Even under these conditions, the 

second H-segment mediated the following translocation.

The preexisting translocating segment did not compete 

with the downstream stop-transfer process. In the case of S-38-

I-II-15L (Fig. 3), the 15-leucine segment is recognized by the 

translocon as a third TM segment, which stops the translocation 

of the downstream portions of the molecule. The stop-transfer 

process is mediated via hydrophobic interaction with lipid 
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(Hessa et al., 2005). It is highly likely that the second H-segment 

and the 15-leucine segment interact with lipids. The upstream 

insertion intermediate that should be at the exit site toward 

the lipid environment did not affect the interaction between 

the downstream H-segments and lipids. In the case of S-I-Rhod 

(Fig. 6), six TM segments of the rhodopsin were inserted into the 

translocon pore, maintaining the productive states of the fi rst 

SA-I sequence. The rhodopsin TM segments are likely to be 

stepwise released from the Sec61 pore depending on the nature 

of the TM segments. Some of them might still be adjacent to 

the Sec61 molecule as observed with aquaporin 4 (Sadlish 

et al., 2005), or to TRAM protein as observed with type-I 

membrane protein (Do et al., 1996). It should be noted that the 

translocating N-domain does not jam multiple insertion of TM 

segments, and vice versa. Whereas the last H-segment (TM7) 

of rhodopsin is just under the ribosome and the N-terminal SA-I 

should be farthest from the ribosome exit site, the N-domain 

insertion intermediate is maintained depending on the ribosome. 

The translocon possesses extreme fl exibility.

How are the two translocating hydrophilic segments ac-

commodated in the membrane? A hypothetical large pore com-

posed of multimeric Sec61 complexes might account for the 

intermediates observed in this study. There is, however, no hy-

drophilic surface around the archaean Sec61 complex in a rest-

ing state (Van den Berg et al., 2004). Amino acid residues at the 

narrow ring of E. coli SecY are cross-linked with the translocat-

ing polypeptide (Cannon et al., 2005). Both TM2b and TM7, 

located at the mouth of the Sec61α clamshell, are cross-linked 

with the signal peptide (Plath et al., 1998). These observations 

support the idea that a single Sec61α molecule provides the 

translocation pore. Although the precise location of the trans-

locating chains remains to be determined, we propose the follow-

ing working hypotheses. The simplest interpretation of the 

un expected intermediates is that there are two Sec61 pores ac-

tively inserting the single membrane protein. The fi rst Sec61 

pore maintains the productive intermediate of N-domain trans-

location and the second Sec61 complex accommodates the sec-

ond translocating segment (Fig. 7 A). In this model, one Sec61 

complex is involved in the sequential insertion of multiple TM 

segments and release into the membrane, maintaining the pro-

ductive state of the N-domain translocation intermediate. An al-

ternative hypothesis is that the hydrophilic environment of the 

pore is enlarged via an unknown mechanism (Fig. 7 B). TRAM 

and translocon-associated protein complex might cause such 

an enlargement of the pore during multispanning insertion. 

Both translocating segments might be accommodated in the same 

Sec61 pore; or the two segments alternate being in the channel 

and some other factors stabilize the polypeptide chain outside 

of the Sec61 pore. As recently demonstrated, large hydrophilic 

segments of a C-terminally anchored protein can be trans-

located through protein-free lipid vesicles (Brambillasca et al., 

2006). We cannot exclude a possibility that the one of the two 

hydrophilic segments spanning membrane might largely be in 

the lipid bilayer despite the large energetic cost. The two-pore 

model assumes the existence of two signal pockets and two 

translocation pores. There is no drastic conformational change 

of the Sec61 pore. This would, furthermore, explain the inser-

tion of a complex multispanning protein that possesses weakly 

hydrophobic TM segments; even if they occupy a translocon 

pore, the second translocon pore participates in other TM inser-

tion and TM segments are allowed to be folded into mature con-

formation stable in membrane lipid.

Materials and methods
Constructs
In the following DNA manipulation procedures, the desired DNA frag-
ments were obtained by chemical synthesis or polymerase chain reaction. 
The DNA fragments were designed to possess the appropriate restriction 
enzyme sites at both ends; these are described in parentheses. The DNA 
fragments were ligated into plasmid vectors that had been digested with 
the indicated restriction enzymes. At each junction, six bases of the restric-
tion enzyme site encoded two codons. These amino acid residues were 
taken into account when numbering the residues indicated in the fi gures. 
For the S-I protein (Fig. 1), DNA fragments encoding the SBP-tag, M D E K T T-
G W R G G H V V E G L A G E L E Q L R A R L E H H P Q G Q R E P  (Wilson et al., 2001; 
Terpe, 2003) (Met1-Pro38; HindIII–EcoRI), glycosylation probe sequence 
(KLNSTAT, MfeI–EcoRI), and mouse SytII (Arg2-Lys422; EcoRI–XbaI) were 
inserted between the HindIII and XbaI sites of pRc/CMV to obtain pSBP-
Syt-full. The SA-I sequence of SytII is K60I P L P P W A L I A M A V V A G L L L L T C C F C I C K 88. 
For the S-38-I protein (Fig. 1), a 38-residue spacer sequence from human 
anion exchanger 1 (Thr627-Trp662; MfeI–EcoRI) was inserted between the 
glycosylation probe sequence and SytII. An endogenous glycosylation site 
in the 38-residue spacer sequence was silenced by a point mutation (Ser-
644Ala). The sequence was T627Y T Q K L S V P D G F K V S N S A A R G W V I H P L G L R-
S E F P I W 662EF (the last two residues were derived from the restriction 
enzyme site). To make truncated mRNAs, an Afl II site was generated imme-
diately after the Arg200 of SytII in pSBP-SytII-full by site-directed mutagenesis 
(Kida et al., 2000). For the S-I-II protein (Fig. 2), DNA fragments encoding 
the SBP-SytII fusion (from Met1 of SBP to Thr160 of SytII; HindIII–NheI), TM3, 
and the fl anking regions of human Na+/H+ exchanger isoform 6 (R97F L H E-
T G L A M I Y G L L V G L V L R Y G I H V P S D V N N V 129, SpeI–NheI), the glycosylation 
probe sequence (KLNSTAT; NheI–EcoRI), and bovine prolactin (Thr31-
Cys229; EcoRI–ApaI) were ligated into pRc/CMV (HindIII–ApaI). For the 
S-I-II(2G) protein, the endogenous glycosylation site in SytII was silenced by a 
point mutation (Thr34Ala). For the S-38-I-II protein (Fig. 3), the 38-spacer 
of anion exchanger 1 was inserted between the glycosylation probe se-
quence and SytII of the S-I-II protein. For S-I-II-15L and S-38-I-II-15L (Fig. 3), 

Figure 7. Working models of possible arrangements of 
two translocating hydrophilic segments in the translocon. 
Vertical views of the translocon pore from the cytoplasmic 
side are shown. (A) Two Sec61 pores cooperate to ac-
commodate polypeptide chains. Translocating polypep-
tide chains (a and b) are in different Sec61 pores. The 
two insertion signals (I and II) are recognized by different 
sites and the translocating chains do not compete with 
each other. Although the front-to-front dimer model is rep-
resented in the fi gure, the back-to-back confi guration is 
equally possible. (B) A single Sec61 pore accommodates 
two polypeptide chains (a and b). The hydrophilic envi-
ronment is enlarged.
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the Gln42-Ser56 segment of the prolactin sequences in the S-I-II and S-38-I-II 
proteins was substituted by 15-leucine residues using site-directed muta-
genesis. For (4G) constructs (Fig. 4), the Glu65-Asp71 segment of prolactin 
in the S-38-I-II and S-38-I-II-15L proteins was substituted with the glycosyla-
tion probe sequence (KLNSTAT) using site-directed mutagenesis. For Cys 
mutants (Fig. 5), a Cys-less mutant of the SBP-38-I-II protein was used. In this 
mutant, the following seven Cys residues of SytII (Cys82, Cys83, Cys85, 
Cys87, Cys90, Cys91, and Cys92) and three Cys residues of prolactin (Cys34, 
Cys41, and Cys88) were replaced by Ala residues. In addition, the follow-
ing residues were replaced with Cys: L632 and V634 (position-1), A644 and 
A645 (position-2), Leu653 and Leu655 (position-3) of human anion exchanger 1 
in the 38-spacer; Ile4 and Phe5 (position-4), A14 and A16 (position-5), and 
A20 and M22 (position-6) of SytII; Leu48 and Phe49 of prolactin (position 7); 
and Val53 and Met54 of prolactin (position 8). For the rhodopsin fusion pro-
tein (Fig. 6), DNA fragments encoding the SBP-SytII fusion (from Met1 of 
SBP to Thr160 of SytII; HindIII–NheI) and the TM2-TM7 of bovine rhodopsin 
(Arg69-Ala348; NheI–XbaI) were subcloned between the HindIII and XbaI 
sites of pRc/CMV. For the truncated RNA, the Afl II site was inserted be-
tween the C-terminal residue, Ala348, and the stop codon. To insert the gly-
cosylation sequence into the lumenal loops of rhodopsin, codons for the 
Phe103-Val104 region between TM2 and TM3 and the Gly188-Ile189 region 
between TM4 and TM5 were exchanged with the six bases of the PmaCI 
site. The glycosylation loop segment of human anion exchanger 1 (T627Y T Q-
K L S V P D G F K V S N S S A R G W V I H P L G L R S E F P I W 662; ScaI–ScaI; referred to 
as the G-loop) was inserted into the PmaCI site. All the mutants were 
screened by restriction enzyme mapping and confi rmed by DNA sequencing. 
The sequences of the oligonucleotides used and construction details are 
available from the authors.

In vitro transcription, translation, enzyme treatment, and cross-linking
For the truncated mRNAs shown in Fig. 1, plasmids were linearized by Afl II 
at Arg200 of SytII. For the truncated mRNAs shown in Figs. 2–5, plasmids 
were linearized by BspHI at His106 of prolactin. For truncation of the rho-
dopsin fusion constructs shown in Fig. 6, the plasmids were linearized by 
Afl II at Ala348 of rhodopsin. The templates were transcribed with T7 RNA 
polymerase (Takara), as previously described (Sakaguchi et al., 1992a). 
The obtained mRNAs were translated in a reticulocyte lysate cell-free sys-
tem for 1 h at 25°C in either the absence or presence of RM. Preparation 
of RM (Walter and Blobel, 1983) and rabbit reticulocyte lysate (Jackson 
and Hunt, 1983) was performed as previously described. RM was ex-
tracted with EDTA and treated with Staphylococcus aureus nuclease (Roche 
Chemical) as described previously (Walter and Blobel, 1983). The transla-
tion reaction contained 100 mM potassium acetate (KOAc), 1.0 mM mag-
nesium acetate (Mg(OAc)2), 32% reticulocyte lysate, and 15.5 kBq/μl 
EXPRESS protein-labeling mix (PerkinElmer). Where indicated, 0.2 mg/ml 
SAv (Wako) was included in the translation reaction. For the translocation 
chase in the presence of biotin (Sigma-Aldrich), translation was terminated 
by incubation in the presence of 2 mM CHX (Sigma-Aldrich) or Puro 
(Sigma-Aldrich) for 10 min at 25°C, and then further incubated at 25°C for 
1 h in the presence of 50 μM biotin. Aliquots of the translation mixture 
were treated with EndoH (New England Biolabs, Inc.) at 37°C for 1 h un-
der denaturing conditions in accordance with the manufacturer’s instructions. 
In the experiments illustrated in Fig. 1, the reactions were terminated with 
5% trichloroacetic acid and protein precipitates were solubilized with 
SDS-PAGE sample buffer. In the experiments illustrated in Figs. 2, 3, 4, and 6, 
reaction mixtures translated in the presence of RM were diluted with a 10-fold 
volume of high salt buffer (0.5 M KOAc, 2.5 mM Mg(OAc)2, 30 mM Hepes, 
pH 7.4) and centrifuged at 100,000 g for 10 min at 4°C and the membrane 
precipitates were subjected to SDS-PAGE. Radiolabeled proteins ana-
lyzed by SDS-PAGE were visualized on a BioImage analyzer BAS-1800 
(Fuji Film). Quantifi cation was performed using Image Gauge software 
(v4.0; Fuji Film).

For chemical cross-linking, Cys mutants were synthesized in the pres-
ence of RM and SAv. Aliquots were incubated at 25°C for 60 min with 
CHX, Puro, and/or biotin (Fig. 5 C). The mixtures were then diluted with 
a fourfold volume of physiologic salt buffer (PSB; 30 mM Hepes/KOH, 
pH 7.4, 120 mM KOAc, 2 mM Mg(OAc)2, 0.5 mM CHX, 0.2 mg/ml SAv) 
and centrifuged at 100,000 g for 10 min. Membrane pellets were re-
suspended with PSB and treated with 2 mM BMH, BMOE, BMB, BM(PEO)2 
(Thermo Fisher Scientifi c), or dimethyl sulfoxide only (where indicated as 
minus-cross-linker) on ice for 60 min. Cross-linking reactions were quenched 
with 10 mM DTT for 15 min. For immunoprecipitation, the reaction mix-
tures were solubilized with 1% SDS for 5 min at 95°C and then diluted with 
more than 10-fold volume of immunoprecipitation buffer (1% Triton X-100, 
50 mM Tris/HCl, pH 7.5, 150 mM NaCl, 2 mM PMSF). After insoluble 

materials were removed by centrifugation, the solutions were incubated for 
30 min with protein A–Sepharose (GE Healthcare) alone to remove mate-
rials nonspecifi cally bound to the resin. The unbound fractions were incu-
bated for 2 h with anti-Sec61α antiserum, anti-Sec63 antibody (raised 
against 15 amino acid residues [M R I A K A Y A A L T D E E S ] in the J-domain of 
Sec63), or anti-SAv antibody (Abcam), and further for 1 h with protein A–
Sepharose. The resin was washed once with 1 ml of immunoprecipitation 
buffer and then extracted with sample buffer for SDS-PAGE.

Online supplemental material
Fig. S1 shows that the loop between the two TM segments of S-38-I-II(4G) 
is on the cytoplasmic side of the membrane and accessible to the exter-
nally added proteinase K. Fig. S2 indicates essentially the same results 
using other cross-linkers with shorter spacers as Fig. 5 C. Fig. S3 indi-
cates that the model proteins including Cys residues in both translocating
hydrophilic segments gave a faint but signifi cant super-shifted band. 
Online supplemental material is available at http://www.jcb.org/cgi/
content/full/jcb.200707050/DC1.
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