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Mini-Review

Phototransduction in Retinal Ganglion Cells
Peter B. Detwiler*

University of Washington, School of Medicine, Department of Physiology and Biophysics

The mammalian retina contains a small number of retinal ganglion cells that express melanopsin, a retinal 
based visual pigment, and generate a depolarizing response to light in the absence of rod and cone driven 
synaptic input; hence they are referred to as intrinsically photosensitive retinal ganglion cells (ipRGCs†). 
They have been shown to be comprised of a number of sub-types and to provide luminance information that 
participates primarily in a variety of non-imaging forming visual functions. Here I review what is currently 
known about the cascade of events that couple the photoisomerization of melanopsin to the opening of 
a non-selective cation channel. While these events conform in a general sense to the prevailing model 
for invertebrate phototransduction, in which visual pigment signals through a G protein of the Gq class 
and a phospholipase C cascade to open a TRPC type ion channel, none of the molecular elements in the 
melanopsin transduction process have been unequivocally identified. This has given rise to the possibility 
that the underlying mechanism responsible for intrinsic photosensitivity is not same in all ipRGC sub-
types and to the recognition that signal transduction in ipRGCs is more complex than originally thought.
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INTRODUCTION

In 2002, little more than a hundred years after Cajal’s 
first description of rod and cone visual receptors in the 
eye [1] a third class of photoreceptor cells were discov-
ered hiding in plain sight as ganglion cells on the oppo-
site side of the retina from the rods and cones [2,3]. They 
comprise a small subset of the ganglion cell population  
(< 1 percent in primates) that express melanopsin, a reti-
nal based photopigment, and generate a depolarizing light 
response with an increase in spike activity that persists in 
the absence of rod and cone driven synaptic input as well 
as after being removed from the retina by microdissection 
[2]. It is clear that these cells contain all the necessary 
molecular machinery to convert light into an electrical 
signal and are thus referred to as intrinsically photosen-
sitive retinal ganglion cells (ipRGCs). For the three most 

recent reviews see [4-6].

BIOLOGICAL FUNCTIONS OF iPRGCs

ipRGCs provide luminance information that plays 
a critical role in the pupillary light reflex, the synchro-
nization of behavioral rhythms with the circadian light-
dark cycle, sleep regulation and mood [7-12]. While 
these non-image-forming functions were initially thought 
to be mediated by a single (M1) cell type, ipRGCs are 
now know to be a diverse group that can be subdivided 
according to differences in morphology, physiology, and 
central projections into five subtypes (M1 through M5) 
in nocturnal rodents [13], three subtypes (M1, M2, and 
a novel 3rd type) in the tree shrew [14], an evolution-
ary intermediate between rodents and primates, and two 
subtypes (M1 and M2) in primates and humans [15,16]. 
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The increase in the assortment of ipRGC cell types has 
expanded their list of possible functions to include par-
ticipation in color vision [15,17] and spatial perception 
[18-20].

MECHANISMS OF LIGHT TRANSDUCTION 
IN iPRGCs

The central question of our discussion is: How do 
ipRGCs convert (transduce) light into an electrical sig-
nal? This process begins with a light-sensitive protein, 
melanopsin, a G protein coupled receptor first identified 
in frog dermal melanocytes [21], hence the name, and 
subsequently shown to be selectively expressed in a small 
number of mammalian retinal ganglion cells [22] with in-
trinsic photosensitivity [3]. Further studies showed that 
ipRGCs in melanopsin knock out mice are light insen-
sitive and cells that are normally insensitive to light are 
made light-sensitive by the heterologous expression of 
melanopsin [23-28].

The steps in the transduction cascade that follow the 
light activation of melanopsin are less well understood. 
They consist of a G protein stimulated effector enzyme 
that, via the generation an intracellular second messenger 
signal, opens a non-selective cation channel to give rise 
to a depolarizing light response.

The consensus—based in large part on the fact that 
melanopsin is more similar to invertebrate than vertebrate 
visual pigment [22] and by analogy to the phototransduc-
tion cascade in most invertebrates [29,30]—is that mela-
nopsin signals through a G protein of the Gq class and 
phospholipase C [25,26,28,31-33], as opposed to rods 
and cones, which use Gt (transducin) and phosphodies-
terase.

This does not, however, seem to be the whole story. 
Melanopsin is able to activate transducin in a heterolo-
gous expression system [34] and has been shown to be 
capable of signaling through a cascade that includes cy-
clic nucleotides but not PLC [24]. There are also conflict-
ing reports about which members of the Gq/11 gene family 
(Gq, G11, G14, and G15 ) are expressed in ipRGCs [32,35-
37] as well as disagreement about the effects of genetic 
inactivation of Gq/11 genes on their intrinsic photosensitiv-
ity [35,36] raising speculation about the possibility that 
ipRGCs are able to utilize a Gq/11-independent phototrans-
duction cascade [35].

The evidence that phospholipase C (PLC) is the effec-
tor enzyme in the transduction cascade is also rather slim. 
It is based on two observations made in a single study 
[32]; ipRGCs express PLCβ4 (the PLC isozyme that is a 
key participant in invertebrate phototransduction) and the 
light response of cultured ipRGCs is blocked by U73122, 
a PLC antagonist that is not, however, particularly se-
lective, in that it has effects on numerous other cellular 

proteins including phospholipase D and Ca-ATPase, as 
well as Ca2+ and K+ channels [38].

The second messenger that is generated by the ef-
fector enzyme to mediated downstream excitation in the 
melanopsin transduction cascade is not known. Light 
responses have been reported to be present in excised 
patches of ipRGC membrane. While this was considered 
evidence that rules out a soluble cytoplasmic messenger 
[32], that is not necessarily the case. Electrical responses 
resulting from light-evoked changes in cGMP, a diffusible 
cytoplasmic messenger, have been shown to persist in 
excised patches from rod outer segment membrane [39]. 
With respect to this issue it also noteworthy that photo-
currents in ipRGC decline during whole cell recording 
but not during perforated patch recording, suggesting the 
loss of cytoplasmic components by whole cell dialysis 
[40]. Attempts to identify the second messenger, whether 
it be diffusible or membrane delimited have failed. The 
exogenous application of likely candidates produced by 
PLC activity, IP3, and diacylglycerol (DAG), had no ef-
fect on phototransduction in ipRGCs [32], nor did deple-
tion of intracellular Ca stores [41,42].

The last step in the melanopsin transduction cascade 
is a non-selective ion channel that opens and produces a 
depolarizing potential change. The leading candidate for 
this job is a member of transient receptor potential (TRP) 
channel family, especially the TRPC subfamily, which 
are thought to be the phototransduction channels in Dro-
sophila that are activated via a G protein-coupled phos-
pholipase C (PLCβ4) cascade [29]. The evidence sup-
porting their participation in the melanopsin transduction 
process include the elimination of the photoresponse by 
TRP-channel blockers and the presence of TRPC channel 
protein and/or mRNA in ipRGCs [32,41-43]. While light 
evoked responses persist in the absence of functional ex-
pression of either homomeric TRPC3, TRPC6, or TRPC7 
[44], there are, however, subtle changes in the response 
consistent with the suggestion the transduction channels 
in ipRGCs are heteromultimeric assemblies formed by 
different combinations of subunits drawn from the TRPC 
subfamily.

OUTLOOK

It is clear that our understanding of the melanopsin 
driven transduction process is incomplete. While the pre-
vailing view is that it somehow fits the common template 
for invertebrate phototransduction in which light-acti-
vated visual pigment excites a Gq type G protein causing 
in turn the opening of TRP ion channels via a signaling 
pathway that involves PLC, none of the steps in this se-
quence of events are understood in detail nor unequivo-
cally supported by experiment. Whatever the molecular 
elements in the transduction cascade maybe they appear 



Detwiler: Phototransduction in retinal ganglion cells 51

to pre-exist in non-ipRGC retinal ganglion cells as shown 
by finding that viral vector mediated expression of mela-
nopsin rendered conventional ganglion cells intrinsically 
photosensitive [45].

The diversity of ipRGC cell types as well as a high 
degree of cell-to-cell heterogeneity in the biophysical 
properties of a single (M1) ipRGC cell class [46] raises 
the possibility that the transduction process underlying 
intrinsic photosensitivity is not the same in all ipRGCs. In 
support of this point of view a recent study (Jiang, Z, et al. 
Invest Ophthalmol Vis Sci 2017; 58(8): ARVO Abstract 
4127) reports that light evoked responses in the presence 
of synaptic blockers persist in M2 and M4 type ipRGCs 
in mice lacking genes for the expression of PLCβ4, as 
well as TRPC1,3,4,5,6, and 7. Photoresponses in wild-
type M2 and M4 ipRGCs were eliminated by ZD7288, 
a HCN-channel blocker, but not by Ruthenium Red, a 
wide-spectrum TRPC-channel antagonist. Both M2 and 
M4 cell types express HCN channels and the voltage de-
pendence of the photocurrents they generate are consis-
tent with hyperpolarization-activated current (Ih). Finally, 
photo-release of cage cyclic nucleotide produced an in-
ward current that had properties similar to those of the 
intrinsic photocurrent suggesting that cyclic nucleotides 
as well as HCN channels participate in the intrinsic pho-
tosensitivity of M2 and M4 ipRGCs.

While these results are described in a meeting ab-
stract and consequently await confirmation and further 
exposition they nevertheless breathe new life into the 
melanopsin saga by introducing a serious alternative to 
the invertebrate transduction model that has, with limited 
success, dominated the search for the source of ganglion 
cell intrinsic photosensitivity since its discovery in 2002. 
In any case, with or without this new chapter in the story, 
it is clear that the answer to “How do They Work” is more 
complex than originally imagined.
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