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Abstract

The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates
two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the
stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network
and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such
a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function
demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of
the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in
C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of
the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the
current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we
found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The
entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations
on dynamics of the network, but adaptable to environmental changes.
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Introduction

Caulobacter crescentus is a model organism used to study cell

cycle and differentiation in bacteria [1]. It is known that this

bacterium differentiates and divides asymmetrically generating

two phenotypes: the stalked (ST) and swarmer (SW) cell type [2],

[3]. Its cell cycle shares operational similarities with the cell cycle

in some eukaryotic organisms [4]. For study purposes, the cycle in

this bacterium is divided into three main stages: G1, S and G2/M

[5]. G1 is characterized by the differentiation of flagellated

swarmer cells to stalked cells. During this period, the bacterium

ejects the flagellum, retracts the pili, synthesizes the stalk and

holdfast structures, and initiates the replication of its DNA [6]. In

the next stage, S, also called the pre-divisional stage, the DNA is

completely replicated and the nucleoids are segregated [7]. This

early pre-divisional compartmentalization produces differentiated

cell poles [8]. In each of these micro-domains (as they are also

known) a cell fate will arise; however it is still an open question

how this biological process occurs. In the next stage, G2/M, the

bacterium divides asymmetrically and the DNA becomes fully

methylated [9]. As a result of these intricate processes, two cell

types that differ morphologically and biochemically are generated

[10]. The stalked cell presents stalk and holdfast structures that

confer it the ability to remain attached to solid surfaces, and is the

only one capable of replicating its own DNA [11]. A key regulator

identified in the control of the cell cycle of C. crescentus is CtrA

[12]. This transcription factor regulates approximately 100 genes,

most of them dedicated to developing flagella and pili and to

chemotaxis. CtrA binds to the oriC region of DNA, blocking the

access of DnaA, and thus preventing the initiation of DNA

replication [11]. The activities of CtrA and the regulators GcrA

and DnaA constitute an interlinked regulatory network that is cell

cycle-dependent and whose expression, at the mRNA and protein

levels, timely oscillate during the different phases of the cycle [12],

[13]. Other important molecular actors in this regulatory network

are the methyl-transferase CcrM and the small CtrA-inhibitory

protein SciP [14], [15]. An overview of the cell cycle in C.
crescentus is illustrated in Figure 1. Given the differentiation

phenotypes displayed by C. Crescentus and the nature of the

regulatory network orchestrating the molecular interactions

associated to this differentiation process, it is interesting to

investigate how the dynamics of such interactions can reproduce

the phenotypes observed in cell division and to what extend the

interconnection between regulators and other involved molecules

can account for (or reproduce) the appearance of the two

phenotypes in the bacterium. In particular, the questions that we

explore here are: Can the interconnection of the regulatory

network and a simple description of its dynamics produce robust

oscillatory behavior of the transcription factors during the stages of

PLOS ONE | www.plosone.org 1 November 2014 | Volume 9 | Issue 11 | e111116

http://creativecommons.org/licenses/by/4.0/
http://www.conacyt.gob.mx/
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0111116&domain=pdf


the cell cycle? How do network interactions generate the two

micro-domains and the two cell types in C. crescentus?
An understanding of the principles on how bacterial differen-

tiation occurs may have implications in other areas; for example,

research on the origin of multicellularity, in which the asymmetric

division of C. crescentus can give insight on basic differentiation

processes and cell fate generation. Some mathematical models

based on ordinary differential equations have been used to study

the oscillations of the regulators associated to the cell cycle [16],

[17], [18], revealing among other interesting facts the existence of

a biological switch as the underlying mechanism operating in the

asymmetric cellular division [19]. Nevertheless, the effect of the

coupling between the transcriptional and signaling networks

involved in the generation of the two cell types was not considered.

More specifically, they did not take into account the influence of

the proteolytic complex that degrades CtrA and the role of the

transcription factor SciP in the dynamics of the networks.

Of course, several tightly regulated reactions must occur in

order for the differentiation process to take place. For instance, the

transcription of the regulator CtrA and its target genes, which

highly depends on the concentration of phosphorylated CtrA.

These reactions are influenced not only by the presence or absence

of enzymes, but also by the rate at which the reactions can happen.

What we intend to explore here, however, is the coherence

between the dynamics and multi-stability displayed by a discrete

logical model of a minimal network controlling asymmetric cell

division and the observed phenotypes in the bacterial cell.

The justification for using this kind of modeling approach lies in

its utility to explore or study questions of biological relevance at

the network level. The process by which a model in general is

constructed relies on assumptions and approximations. These may

be for mathematical convenience (so that ‘simple’ models can be

applied), but also because the modeling process puts a high value

on simplicity, attempting to extract essential features of a system by

working with the smallest possible number of concepts. According

to this perspective, our model is supported by confronting

experimental observations with the interpretations of attractor

states obtained from simulations, as will be described later.

Towards our goal, we reviewed the relevant literature to gather

all the known regulatory elements participating on the cell cycle

and division processes of bacterium C. crescentus. We recon-

structed the regulatory network and described the dynamics of the

resulting network using a discrete formulation based on a

generalization of the Boolean formalism for gene networks [20].

The choice of this formalism stems from the fact that we are

interested on studying how the interactions and a simple

dynamical description of changes of state in the regulatory

network can generate the observed asymmetrical cell division.

These models have been used to study multi-stability in the

dynamics of large gene networks and the corresponding genera-

tion of cell fates or multiple phenotypes. Kauffman [21] and others

[22], [23], [24] have successfully applied such models in real

biological networks. Examples include the phage lambda, whose

network dynamics has two steady states that correspond to lysis

and lysogeny [22]; the regulatory network for flower development

in Arabidopsis thaliana that has 10 stable states that correspond to

its cellular fates [23]; the differentiation model of lymphocytes Th

cells which display two phenotypes, each corresponding to

attractors (dynamically stable patterns of expression) in the

dynamical model [24].

Data and Methods

1. Data acquisition
Regulatory pairwise interactions in the studied regulatory

network were gathered from original literature (references to their

PUBMED ID are cited in Table S1, sheet 1 in File S1). We

performed a literature search and selected those reports that had

information about gene regulation and its conditions in the cell

cycle and asymmetric division of C. crescentus. We were careful in

verifying that each regulatory interaction had direct experimental

evidence. We also looked for information on the kind of regulation

(positive or negative) for each interaction. When a protein

promotes the transcription of a gene or activates another protein,

it was considered a positive interaction. On the contrary, if a

protein acts as a repressor, it was considered a negative

interaction. In some cases, the regulators act dually (i.e., they act

as both activators and repressors). The regulatory interactions

include processes such as transcriptional regulation, methylation,

phosphorylation/dephosphorylation, proteolysis and multi-protein

complex assemble. The complete list of regulatory interactions

gathered in this study is available as supporting information (Table

S1, sheet 1 in File S1).

2. Reconstruction of the regulatory network (for cell cycle
and cell fate in C. crescentus)

A directed graph G1 was drawn from the pairwise regulatory

interactions obtained from the literature (see Figure 2). All the

biological processes and proteins involved were included. The

Figure 1. Schematic diagram for the cell cycle in C. crescentus. I)
Cell cycle stages: The swarmer cell differentiates into the stalked cell in
stage G1 (DNA replication initiates mainly due to DnaA) when the
stalked cell pre-divides and the chromosomes segregates to each pole
(stage S mediated by the action of GcrA). In stage G2/M, CtrA promotes
asymmetric cell division and the generation of the two phenotypes
(along with SciP, it co-regulates many genes and CcrM full methylates
the DNA). II) Regulatory network constituted by the regulators DnaA,
GcrA, CtrA, CcrM and Scip, which interact among each other.
doi:10.1371/journal.pone.0111116.g001
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graph was drawn using Cytoscape [25]. In this abstract structure,

the vertices or nodes represent genes or proteins and edges their

regulatory interactions. Green edges indicate positive interactions,

red edges stand for negative ones, and blue edges represent dual

regulatory interactions. The graph contains all the proteins

associated to the main transcription factors controlling the

processes of DNA-replication and cell division, as well as

additional cellular processes linked to the cell cycle, such as polar

morphogenesis. Many of these proteins are involved in the

development of the stalk or flagellum. The whole network G1 is

composed of 153 vertices (V1 = 153) and 212 edges (E1 = 212),

supporting information (Table S1, sheet 1 in File S1).

2.1. Reduction of the network to core regulators. We

simplify the topology and the number of interactions in G1 by

removing non-regulatory nodes, i.e., those that do not regulate

another node (green nodes in Figure 2). This criterion was chosen

because non-regulatory nodes seem irrelevant for the network

dynamics [26]. In this manner, we obtained the core network G2

(see Figure 3.I and Figure 4.I). This is marked by thick edges on

Figure 2. To further simplify the analysis of the network, G2 was

divided into two subnetworks: G2a and G2b, whose nodes operate

in different processes and time scales. G2a is formed by

transcriptional regulation and methylation processes (Figure 3.I)

and G2b is constituted by a phospho-proteolytic pathway (see

Figure 4.I). With regard to time-scales, these can be estimated on

the order of ,1–3 min for G2b and ,1–100 ms for G2b [27]. The

cross-interactions among elements of the subnetworks were treated

in such a way that two well-separated subnetworks were obtained.

Since the common node to these subnetworks was CtrA, it was

designated as CtrAa and CtrAb in each subnetwork.

The reduced network G2 has the minimum number of known

elements that control the differentiation processes in the bacteri-

um. All the proteins and genes constituting this network are listed

in Table 1. The network G2 has thirteen nodes (V2 = 13) and

twenty seven edges (E2 = 27), see supporting information (Table

S2, sheet 2 in File S1).

2.2. Functional description of the transcriptional

subnetwork G2a. As mentioned above, G2 is made up of two

coupled subnetworks, both linked by the vertex CtrA. In G2a, the

regulator CtrA has dual transcriptional self-regulation (see

figure 3.I). Its transcription is inhibited when the methyl-transfer-

ase, CcrM, methylates its promoter [28]. Another repressor of

CtrA is SciP, which binds to CtrA and prevents it from binding to

promoters, including the own promoter of CtrA [29]. The

transcription factor GcrA promotes its own expression through a

positive feedback loop [30], [31]. While CtrA inhibits the

transcription of GcrA [30], DnaA promotes its expression [32].

The replication initiation protein DnaA is in turn subjected to

Figure 2. Regulatory network for the control of the cell cycle in C. crescentus (graph G1). Nodes represent genes/proteins and edges their
regulatory interactions. These may be positives (green edges), negatives (red edges) or dual (blue edges). Purple nodes represent transcription
factors; the blue node represents the methyl-transferase; the orange nodes correspond to kinases or phosphatases; and the gray node to the CtrA
proteolytic complex. Larger nodes and thicker edges represent the core network that is modeled in this work (graphic G2).
doi:10.1371/journal.pone.0111116.g002
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other kinds of regulation; for example, when CcrM methylates the

promoter of the gene dnaA, CtrA binds this region and promotes

its transcription [33]. When the concentration of DnaA increases,

this protein binds to its own regulatory region and represses its

transcription [34]. Additionally, CtrA promotes the transcription

of the gene ccrM [9]. The transcription of CtrA can only occur

after the generation of the hemi-methylated state of the DNA (this

state happens after the replication process when one strand in the

double helix remains methylated and the other do not become

methylated). When the concentration of CcrM increases, the

protein methylates the second DNA strand, blocking the

transcription of CtrA [35]. CtrA promotes the transcription of

SciP and DnaA prevents it [15].

2.3. Functional description of the phospho-proteolytic

signaling subnetwork G2b. In the case of subnetwork G2b (see

figure 4.I), CtrA activates the transcription of the sensory response

regulator DivK [30]. Once produced, DivK is unphosphorylated

and thus cannot sequester DivL, which binds to CckA and

promotes the auto-phosphorylation of this kinase. When DivK

becomes phosphorylated, either by the action of kinase DivJ or

PleC (which can also act as a phosphatase) [36], it can bind to

DivL and inhibit its activity [37]; as a consequence, CckA cannot

auto-phosphorylate. In the phosphorylated state, CckA can

phosphorylate the kinase ChpT [12]. However, when CckA is

unphosphorylated, it can also act as a phosphatase dephosphor-

ylating ChpT [38]. In the phosphorylated state, ChpT transfers a

phosphate group to CtrA and activates it. Depending on the state

of phosphorylation, ChpT can act as a kinase or a phosphatase of

CpdR [39]. When CpdR is unphosphorylated, it mediates the

formation of the proteolytic complex ClpXP, composed of the

proteases ClpX and ClpP. These proteases together with the

protein RcdA degrade CtrA [40], [41], [42].

3. Logical formalism for modeling the core network
As mentioned before, the central idea is to study how the

interconnections and a simple description of the system dynamics,

embodied in the reactions of the subnetworks, can account for the

Figure 3. Cell cycle events and their correspondence with the
steady states of the core regulatory G2a. The morphological
changes for each cell type are illustrated through the cell cycle. I) Shows
the regulatory network G2a that controls the cell cycle; II) Illustrates the
state transitions and how all the states of the nodes reach a cyclic
attractor. Subsections letters represent the states of the nodes in the
two cell types (a, b, c, d for the attractor of the swarmer cell cycle and e,
f, g, h for the attractor of the stalked cell cycle).
doi:10.1371/journal.pone.0111116.g003

Figure 4. Cell fate emergence and differentiation processes. I)
Phospho-proteolytic network G2b, which mediates cell fate and
differentiation process. II) Transition state graphs show how all the
states reach one of the two point attractors. III) Differentiation process
switching from swarmer cell to stalked cell. a) This promoted by a
change in the state of the kinase PleC by DivJ, b) In the model can be
seen the switching effect form one attractor to the other. Subsections
letters represent the states of the nodes in the two point attractors (i for
the stable state of the micro-domain that will form the swarmer cell and
j for the stable state of the micro-domain for the stalked cell).
doi:10.1371/journal.pone.0111116.g004
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phenotypes observed in the bacterium being studied. To simulate

the dynamics of the network, we used a discrete-logic multi-valued

formalism, which is a generalization of the Boolean logic

framework [43]. We choose this mathematical formulation due

to its adequacy to describe additional node states (e.g., phosphor-

ylation of CtrA) than those allowed by simple Boolean logic, which

can only account for the presence or absence of regulators. In this

formalism, the states of the nodes in a network can assume discrete

numerical values; for example: 0, 1, …, n, depending on the states

of other nodes, and this dependence is described by a regulatory

function that maps, at each time step, the inputs (the states) from a

set of nodes to the output of a particular node. Specifically, vertices

in G2a take on two values, 0 and 1, which correspond to the cases

of inactivity or activity, absence or presence of molecules, etc. In

G2b, numerical values 0, 1 and 2 are used to represent the states of

vertices corresponding to absence, presence and phosphorylation,

respectively. The logical rules were defined using the operators

OR, AND and NOT [20] (see Tables S3 to S16 in File S1). For

example, in the case of dnaA whose transcription requires

methylation by CcrM before being activated by the regulator

CtrA, the assigned logical function is (CtrA) AND (CcrM). In

another case, when GcrA inhibits the transcription of dnaA, a

corresponding NOT function over the logical value of GcrA was

used. For self-repression of dnaA, again a NOT function (DnaA)

was assigned [33], [34]. Based on these criteria, we defined the

following logical function for the value of DnaA in the next time

step: DnaAt+1 = (CtrAa
t AND CcrMt) AND (NOT GcrAt) AND

(NOT DnaAt).

The dynamics of the studied subnetworks is described by an

array of n discrete variables [s1(t), s2(t),… sn(t)], where the

variable si(t) represent the state of a particular node i at time t,
which depends on the state of the k inputs (depicted by edges)

Table 1. Components (nodes) of the core regulatory network for cell cycle and cell fate (G2).

Protein/complex Action in the cell cycle Interactions in the G2 References PMID

CtrA Master transcriptional regulator of the cell
cycle. When it blocks oriC DNA region, the
replication is inhibited. It promotes the
asymmetric division and exists in high
concentrations in the swarmer cell. Controls
the transcription of genes for the stalk, pili,
flagellum morphogenesis and chemotaxis
(more than 100 regulated genes are known
to date)

Transcription factor of GcrA (2), DnaA (+),
CcrM (+), SciP(+) and its own promoter (+)

12445780

GcrA Cell cycle transcriptional regulator. It regulates
the transcription of genes for polar
morphogenesis and DNA replication

Transcription factor of DnaA (2) and CtrA (+) 15087506

DnaA DNA replication initiator protein. It regulates
the transcription of genes for DNA replication
and cytokinesis

Transcription factor of GcrA (+), SciP (2) and
its own promoter (2)

16395331

CcrM Adenine-specific methyl-transferase. It
methylates genes which control the cell
cycle

Methyl-transferase of the promoter of dnaA (+),
ctrA (2) and its own promoter (2)

20472802

SciP Small CtrA inhibitory protein. Through
protein-protein interaction, it inhibits CtrA.
It transcriptionally regulates genes (co-regulated
with CtrA) for stalk, pili, flagellum morphogenesis
and chemotaxis

Transcription factor of CtrA (2) and CcrM (2) 20472802

DivK Cell division regulatory kinase. Through
protein-protein interactions, it inhibits DivL
when phosphorylated. In the unphosphorylated
state, it promotes the binding of DivL to CcKA

Phosphorylates DivJ, dephosphorylate PleC and
interacts with DivL (dual action)

7664732

DivJ Sensory histidine kinase. Implicated in polar
morphogenesis and in differentiation (by a not
well understood process)

Phosphorylates DivK 20472802

PleC Sensory transduction histidine kinase. Implicated
in polar morphogenesis and differentiation
(by a not well known process)

Dephosphorylates DIvK and DivJ 20472802

DivL Tyrosine kinase. Promotes the
auto-phosphorylation of CckA

Binds to CckA and promotes the auto phosphorylation
of CckA

16547034

CckA Cell-cycle histidine kinase. Phosphorylates
and dephosphorylates ChpT

Phosphorylates/dephosphorylates ChpT 10199407

ChpT Histidine phosphotransferase. Phosphorylates
CtrA

Phosphorylates CtrA and
phosphoprylates/dephosphorylates CpdR

20472802

CpdR Two-component receiver protein. It inhibits
the formation of the proteolytic complex

Promotes/inhibits the formation of the proteolytic
complex ClpXP

20472802

ClpXP-RcdA ATP-dependent protease complex and CtrA
presenter protein. The assembled complex
degrades CtrA

When this complex is formed, it degrades
CtrA through RcdA (CtrA coupling protein)

16829582, 19747489

doi:10.1371/journal.pone.0111116.t001
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coming from other nodes [si1(t), si2(t),…, sik(t)]. The evolution of

the dynamics for each node in the system can be represented by

the following equation: si(t+1) = fi (si1(t), si2(t),…, sik(t)); where fi

is an appropriately chosen function that specifies a value for every

possible combination of inputs to the node (refer to sheet 3, Tables

S3 to S16 in File S1).

We employed GINsim [44] to simulate the dynamics of G2a and

G2b. A synchronous strategy was used for updating the network

states. All possible values that the vector [s1(t), s2(t),… sn(t)] can

assume define the state space of the network dynamics. A useful

tool to depict the trajectories in state space followed by the

network over time, starting from initial states (at time t = 0), is a

transition state graph. This graph allows to portray particular

states called attractors, which are dynamically stable patterns that

the system tends to reach regardless the initial states. Attractors

can mainly be divided in two classes: fixed point attractors, which

do not have successive states, and limit cycle attractors whose

states repeat after a period of time resulting in a cyclic pattern of

states [45].

Apart from simulating dynamic states, we also performed

perturbations to the vertices of subnetworks G2a and G2b, one at

the time, by deleting genes (denoted as D) or by fixing a vertex to a

specific value (resembling constitutive gene expression or over-

expression) denoted as (+), and analyzed how the dynamics of the

subnetworks changed under these scenarios (refer to File S1 for

more details).

4. Dynamical regime of the networks
In general, the global behavior of networks can be classified into

three regimes: chaotic, ordered, and critical [46]. In networks

operating in the ordered regime, two randomly selected initial

states, S1(0) and S2(0), that are separated from one another by a

small Hamming distance, h(t) = |S1(t) - S2(t)|, will follow trajec-

tories that rapidly converge on average, i.e., h(t) will approach zero

as time tends to infinity. Both trajectories S1(t) and S2(t) will

eventually settle down in an attractor, either a fixed point or limit

cycle with a small length compared to the number of nodes in the

network. In this sense, the network exhibits very stable dynamic

behavior.

In the chaotic regime, the two randomly chosen initial states will

produce trajectories that on average will deviate from each other

over time and either end with high probability in two different

attractors, or appear to ramble in state space. Networks in the

chaotic regime do not produce stable behavior, as they quickly

propagate perturbations in initial states. The critical regime lies on

the limit between that of the ordered and the chaotic regime and

confers to the network the ability to be robust to perturbations, but

sensitive enough to state adaptations.

A common method for studying the propagation of perturba-

tions in gene networks is based on the Derrida map [47]. In this

approach, the degree of sensitivity to perturbations in the network

is quantified by the slope m of a curve M(h(t)) that plots the

evolution of the average Hamming distance over a large number

of randomly picked initial states at each time step. The Derrida

map provides a measure of the size of the perturbation at two

consecutive time steps: h(t+1) = M(h(t)). The dynamical regime at

which the network operates can be determined by computing the

derivative m = dM(h)/dh at h = 0. As can be intuitively expected by

observing the properties of M: when m,1, perturbations are

absorbed (ordered regime); when m.1, perturbations are exacer-

bated (chaotic regime); and when m = 1, the network is partially

sensitive to perturbations (critical regime). A Derrida map was

generated for the network G2, and the change in its dynamical

regime due to some perturbations (elimination of one node at a

time) was also analyzed.

Results

Dynamics of the swarmer cell cycle
An overview of the cell cycle dynamics and the associated

cellular events are shown in Figure 3.II. The transition state

graphs and the attractor landscape resulting from the simulations

of the network dynamics are also illustrated.

We found that all initial configurations of the transition state

graph reach stable steady states. For G2a, the evolution of the

states ends in a periodic attractor with four states (see Figure 3.II

and Table S17 in File S1;). This cyclic attractor has correspon-

dence with experimental evidence and simulates the oscillatory

behavior of proteins CtrA, GcrA and DnaA during the cell cycle.

In particular, using DNA microarrays of predicted open reading

frames of the genome and a CtrA mutant (DctrA401ts), oscillations

of the regulators at the level of mRNA have been observed

throughout the cell cycle [35]. Similarly, by temporal protein

immunopurification with specific antibodies (anti-CtrA and anti-

GcrA), [47] observed the corresponding changes in protein

concentrations during the stages of the cell cycle in C. crescentus.
We set up the initial state of the vertices in the cyclic attractor so

that DnaA and SciP are active (Figure 3.II.a). In this state, DnaA

is at high concentrations and could initiate the replication of DNA

[48]. SciP represses the transcription of the genes involved in

chemotaxis and development of pili and flagella [15], [27]. At this

stage, the ejection of flagella occurs, and the synthesis of the

holdfast and stalk structures starts; finally, the differentiation from

the swarmer to the stalked cell begins.

In the next state, within the cyclic attractor, only GcrA is

expressed (Figure 3.II.b). This protein promotes the expression of

genes associated to the replication of DNA. In this state, the

replication of DNA initiated by DnaA continues its elongation,

and the chromosome begins to segregate to each of the cell poles.

In the subsequent state, CtrA, which promotes the expression of

genes for cell division, is the only protein that is active

(Figure 3.II.c). The processes of DNA replication and chromo-

some segregation conclude, and a new round of DNA replication

is inhibited due to the presence of hemi-methylated DNA strands

[10]. This state is particularly characterized by the initiation of the

asymmetrical cell division [49]. CtrA, as well as CcrM and SciP,

remain active in the next state (Figure 3.II.d). In that state the full

methylation of the DNA strands by CcrM occurs [8]. The

asymmetric cell division takes place when CtrA, CcrM and SciP

are maximally expressed (Figure 3.II.c and 3.II.d). This process is

characterized by the formation of a divisional septum closer to one

pole of the cell, which eventually generates the two cell types [50].

In this state, CtrA promotes the expression of proteins involved in

the phosphorylation and proteolytic pathways [28].

It is known that the generation of spatial inhomogeneity inside

cells is mediated mainly by ions and proteins gradients contrib-

uting to the generation of the so-called cellular micro-domains

[51]. In C. crescentus, this is observed in pre-divisional cells, and is

the product of a compartmentalization event and generation of a

gradient of phosphate ions. Spatial micro-domains are observed

near each of the two cell poles. The domain close to the pole that

will develop the swarmer cell type is characterized by a high

concentration of phosphate, in contrast to the other domain

(corresponding to the stalked cell type) that has very low phosphate

levels. The generation of cellular spatial heterogeneities associated

to the micro-domains; and in particular, the generation of

phosphate gradients and differential spatial localization of the
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kinases and phosphatases responsible for the asymmetric division

of C. crescentus is supported directly (and indirectly) by

experimental evidence [38], [52], [53] obtained by applying

different techniques; for example, in vitro analysis of kinase,

phosphatase, and phosphotransfer reactions confirmed the gener-

ation of two cellular conditions in which some regulatory proteins

acted as kinases in one pole (when they were phosphorylated)

whereas in the other pole, they acted as phosphatases when they

were dephosphorylated [38].

Another source of cellular heterogeneity is produced by the

polar localization of PleC and DivJ proteins. Using immunoflu-

orescence and live cell microscopy techniques (in which the kinases

were fused with fluorescent proteins), the specific location of these

kinases in each of the cell poles could be observed [52], [53].

These experiments demonstrated the generation of the two

differentiated micro-domains by the specific translocation of the

kinases to each cell pole [52], [53].

PleC is anchored by PodJ to the pole that will give origin to the

swarmer cell whereas DivJ is predominantly located on the pole

that will give rise to the stalked cell type [52], [53]. Another

important element in the generation of spatial inhomogeneity is

the state of CtrA in the micro-domain associated to the swarmer

cell type. In this micro-domain, phosphorylated CtrA (CtrA-P) is

present at high concentration while in the other micro-domain

CtrA is almost absent and mainly non-phosphorylated. This

condition of CtrA is relevant, as in its active (phosphorylated) state,

it binds to the oriC region of DNA blocking the initiation of

replication and promoting the expression of genes that code for

proteins involved in the formation of concentration gradients at

each cell pole [10].

After simulating the dynamics of G2b, we found that all the

initial states reach either of two point attractors (see Figure 4.II

and sheet 4; Table S18 in File S1). Interestingly, the two point

attractors are in correspondence with the states of the regulatory

proteins in each of the two cell micro-domains near the poles

described above. This could explain the functional partition of this

regulatory network G2b, depending on the conditions inside the

cell (phosphate concentration and protein location). The attractor

corresponding to the state in which CtrA, Ccka, ChpT and CpdR

are phosphorylated, and DivK and DivJ unphosphorylated,

correspond to the micro-domain associated to the swarmer cell

type (Figure 4.i). The attractor in which DivK and DivJ are

phosphorylated, CckA, ChpT and CpdR are unphosphorylated,

and the proteolytic complex is assembled, correspond to the

micro-domain that will give rise to the stalked cell type (Figure 4.j).

The stalked cell cycle and their dynamical differences
with the swarmer cell cycle

As mentioned before, the dynamics of G2b generates two stable

steady states. One corresponds to the swarmer cell and the other to

the stalked cell type. In stalked cells, the proteolysis of CtrA

changes the cyclic attractor of G2b. The states in the attractor

corresponding to the stalked cell type are the only ones in which

DnaA is expressed at maximum (Figure 3.II.e); in consequence,

GcrA is maximally expressed too (Figure 3.II.f). The next state in

the attractor is characterized by the expression of CtrA at its

maximum level (Figure 3.II.g). In the following state, CtrA

maintains its expression while CcrM and SciP become expressed

(Figure 3.II.h). The difference between the cyclic attractor of the

swarmer cell type and that of the stalked cell type is directly related

to the expression of SciP and DnaA. In the former only DnaA is

expressed, whereas in the latter both, DnaA and SciP, are

maximally expressed. This might explain why SciP is expressed in

a cell-type specific manner (in this case, in the swarmer cell) [27].

Transition from swarmer to stalked cells
In the process of differentiation from a swarmer to a stalked cell

many morphogenetic events occur. The ejection of the flagellum

and pili, and the synthesis of the stalk are among the main events

during this process. An important event that promotes differen-

tiation is the replacement of PleC by DivJ. This replacement

produces a change in the state of the kinase DivK in the swarmer

cell, which triggers a phosphorylation-signaling cascade that

promotes CtrA degradation [52]. In our discrete, logical model

this switch behavior can be interpreted as changes in the states of

PleC, DivJ and DivK, which induce a change at the system level

from an attractor that corresponds to the micro-domain of the

swarmer cell to the one corresponding to the stalked cell,

(Figure 4.III). The state of nodes in this attractor makes biological

sense since CtrA is degraded by the proteolytic complex (ClpXP-

RcdA) in stalked cells. Our model also revealed that changes in the

phosphorylation state of the kinases CckA and ChpT could lead to

cell differentiation. These results, in agreement with a mathemat-

ical model recently developed [19], show that PleC (acting as a

kinase or phosphatase) has a bi-stable response that propagates to

the signaling network. Experimental observations [19] suggest the

existence of a spatial replacement of PleC by DivJ, which is in

agreement with our results. Changes in the phosphorylation state

of the kinases in each of the cell poles and in their spatial

localization were observed using immunofluorescence microscopy

and in vivo phosphorylation assays [52]. From these observations,

the spatial replacement of PleC by DivJ could be justified as a

putative mechanism involved in the cellular differentiation process

of C. crescentus.

Simulating the dynamics of perturbed networks
We did not observe a significant change in the dynamics of G2a

(Table 2) after simulating gene deletions in subnetworks G2a and

G2b (refer to Table 2); nevertheless, perturbations in G2b (Table 3)

might have more pronounced effects because this subnetwork

turned out to be more sensitive to gene deletions. In spite of that,

both subnetworks seem to be robust enough to maintain the

cellular cycle, as well as other important processes in this

bacterium (see Tables S19 to S22 in File S1, sheet 4).

Dynamical regime of network G2

We found that the studied network operate in the ordered

regime near criticality (m = 0.83), as can be seen in Figure 5.a

Figure 5.b shows how the elimination of vertices changes the

dynamics of the entire network G2, driving the network to a

chaotic regime. Only deletions of genes gcrA, divJ and sciP
(referred to as DgcrA, DdivJ and DsciP) take the network to a more

ordered regime. The operation of the regulatory network G2 near

the critical regime may explain why the bacterium, even when

subjected to constant changing environments, is able to maintain

its characteristic cell-cycle and asymmetric division.

Discussion

A previous sketch of the coupled networks G2a and G2b

presented here has been already outlined by McAdams and

Shapiro [13], [53]. They introduced the notion of a core engine

with a hierarchical activity of regulators controlling the cell cycle.

They also suggested the existence of a phosphorylation-signaling

pathway mediating asymmetric cell division and controlling the

phosphorylation states of CtrA. In agreement with these observa-

tions (proposals), we constructed a discrete dynamical model for

cell fate emergence based on the integration of the network G2a

Modeling the Cell Cycle of Caulobacter crescentus
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Table 2. Dynamics of simulated gene deletions on G2a.

Simulated deletion of nodes in the G2a

Mutants Effect References PMID

DctrAa The cyclic attractor is perturbed. Only the states of DnaA and GcrA oscillate. This is in agreement with
experimental data, where oscillations of DnaA are independent of the action of CtrA. A mutant of ctrA
could not display asymmetric división

3143580

DgcrA This mutation was experimentally lethal, but in our model this could not be observed 15087506

DdnaA This mutation was lethal since the cells could not replicate their DNA, but the oscillations of CtrA are in
agreement with experimental data

11309130

DccrM Experimental evidence shows that this deletion is lethal for the bacterium, in agreement with our model.
This is because DnaA is not expressed

12234936

DsciP It is predicted that the cycle is perturbed and change the state of expression of CtrA. This is in agreement
with experimental evidence

22790399

Simulated constitutive strains or over-expressed for the nodes in the G2a

Constitutive
strains Effect References PMDI

CtrAa(+) The cycle is arrested to the point that only CtrA and SciP are expressed, causing the inhibition of DNA is
replication, in agreement with experimental data

3143580

GcrA(+) It could arrest the cell cycle because DnaA is not expressed. The rest of the genes are properly expressed,
some experimental data suggest this finding.

15087506

DnaA(+) The cell cycle is perturbed and DNA replication could be reinitiated repeatedly, since DnaA maintain its
expression.

1309130

CcrM(+) Cell cycle is arrested, as evident from the simulation. It explained why there is no expression of CtrA, GcrA,
DnaA and SciP. It also caused a lethal effect in hemi-methylated DNA

12234936

SciP(+) The cell cycle is arrested and evident cells are not viable, has correspondence with experimental data 20956288

doi:10.1371/journal.pone.0111116.t002

Table 3. Dynamics of simulated gene deletions on G2b.

Simulated mutants for the nodes in the G2b

Mutants Effect References PMDI

DctrAb Makes cells unviable because only generates one attractor in which there is no phosphorylation
of CtrA

3143580

Ddivk Arrests cell cycle because only one stable state is formed, indicating that no proteolysis occurs to CtrA.
The results are in agreement with experimental evidence

12237413

DdivJ For the mutant of divJ, it exhibits a single attractor, which is related to the swarmer cell type. 12852859

DpleC For the mutant of pleC, it generates a normal phenotype, in agreement with experimental data 12852859

DdivL Causes a change in the phosphorylation state of CtrA, but not in proteolysis, in agreement with
experimental evidence

17827294

DcckA, DchpT There is neither phosphorylation of CtrA nor assembly of the proteolytic complex causing a
degradation of CtrA, in agreement with experimental evidence

12603734, 10199407

DcpdR Shows no evident alterations, only the fact that the proteolytic complex is not assembled and
there is no CtrA proteolysis

16829582

DclpXP-rcdA There is not proteolysis of CtrA, but there is proper phosphorylation, in agreement with evidence 19747489, 12445780

Simulated constitutive strains or over-expressed for the nodes in the G2b

Constitutive
strains Effect References PMID

CtrAb(+) There is no proteolysis of CtrA 3143580

DivK(+), DivJ(+),
PleC(+)

Promote the presence of only one cell type and no cell division. The cycle is arrested, some
experimental data suggest these findings

12852859

DivL(+),CckA (+),
ChpT(+), CpdR(+)

Prevents the proteolysis of CtrA, and the division of cells. The cell cycle is arrested. There is not
experimental data to compare

-----

ClpXP-RcdA(+) There are no CtrA phosphorylation and no CtrA expression, causing a lethal effect. There is not
experimental data to compare

-----

doi:10.1371/journal.pone.0111116.t003
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(which regulates the cell cycle) with a signaling network G2b (which

acts as a phosphorylation-signaling pathway).

Our model provides results that might validate the function of

the regulatory subnetwork G2b in the control of the whole cell

cycle. We propose that the proteolytic complex in G2b, given by

the association of ClpXP and RcdA (the CtrA presenter protein),

could also be integrated in the phosphor-signaling pathway. CtrA,

a central regulator in the network studied here, exhibits discrete

oscillatory behavior during the different phases of the cell cycle in

C. crescentus. We found that the architecture of the G2b produces

oscillations in the activity of the regulatory proteins. Our discrete

modeling approach describing the kinetics of synthesis, degrada-

tion and activity of the regulators reproduces biological observa-

tions on the role of the networks. From the nature of our model

and simulations, we speculate that it is possible for the regulators in

the network to act in a synchronized manner. Several models

[have tried to explain or have been proposed] to explain the

control of the cell cycle and the oscillatory behavior of the

regulatory proteins associated to this process [16], [17]. However,

these models did not consider how network dynamics give rise to

the formation of the two known cell types in C. crescentus.
Furthermore, they do not explain the cell type-dependent

expression of SciP and its relevance in the regulation of cell cycle,

as has been described in the recent literature [27]. Our model

illustrates the putative mechanisms for the formation of the two

cell types and integrates the activity of the protein SciP in the

regulation of the cell cycle; more specifically, our model shown

why SciP expression is performed only in the swarmer cell type.

Another model [19] has suggested that PleC could have bi-

stable behavior and that could lead to the formation of the cell

types. This proposal is in agreement with our finding of two stable

states in the phospho-proteolysis network and the formation of the

micro-domains. Moreover, we took also into account the role of

the proteolytic complex of CtrA (ClpXP-RcdA), and explained

how an initial phosphorylation state of the kinases, or the proteases

in the G2b could lead to the formation of each cell type. We

developed a dynamical description of proposals made in the

literature about the emergence of the two cell types [35], [54].

The dynamical regime in which the network operates is near the

critical regime. Biological networks have been shown to operate in

this regime or very close to it [55]. It has been argued that such

networks are adaptive to changes, but robust enough to

perturbations [56].

Several requirements have been stated for an organism to be

considered multicellular, such as a complex developmental

program, robust differentiation, and emergence of germ-line cells

[57]. Some of these traits are found in C. crescentus. Because of

this, in order to under stand some steps in the origin of

multicellular life forms it is important to study the dynamics of

cell cycle and the emergence of cell fates. Our dynamical model

Figure 5. Derrida map for determination of dynamical regime. The network operates in the ordered regime close to the critical regime. a)
Derrida map of the network G2, b) Derrida map of the network where a node was eliminated one at a time (indicated by D).
doi:10.1371/journal.pone.0111116.g005
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could shed light on the formation of differentiated cells from a

polarized cell. It has also been proposed that there exist three types

of multicellularity. One of them is characterized by the division

and generation of two different cell types, and only one of these is

capable of generating both cell types [58]; for example the

asymmetric division of C. crescentus. Using our model we could

explain this phenomenon and contribute to the understanding of

the origin of multicellular organisms.

Conclusions

The model of cell cycle, differentiation and asymmetric cell

division in C. crescentus presented here was reconstructed from

original literature and considered the assumptions described in

previous models. By using a discrete formalism to model the

dynamics of the network, it was possible to explain the operation of

the whole network, as reconstructed from individual events

collected from the literature. The network exhibits oscillatory

behavior of the regulators during the cell cycle and remarks their

temporal activity. This temporal activity could be explained in the

context of spatial micro-domains formed in the cell under precise

conditions. The phosphorylating and proteolytic pathways, which

converge in the global regulator CtrA, lead to the generation of the

two cell types.

On the one hand, what we currently know about the regulatory

network that controls the cell cycle in C. crescentus is the fact that

it directs a robust and complex process, able to buffer perturba-

tions on the network without propagating dysfunction. On the

other hand, the relatively long cascade of kinases and proteolytic

proteins makes the network sensitive enough to respond to

multiple environmental conditions. This work contributes to

understanding the regulatory mechanisms that operate at the

core of the asymmetric cell division process in Caulobacter
crescentus.
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