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Simple Summary: Multiple genetic mutations are associated with the outcomes of patients with non-
small cell lung cancer (NSCLC) after using tyrosine kinase inhibitor, but the cost for detecting multiple
genetic mutations is high. Few studies have investigated whether multiple genetic mutations can be
simultaneously detected based on image features in patients with NSCLC. We developed a machine
learning-derived radiomics approach that can simultaneously discriminate the presence of EGFR,
KRAS, ERBB2, and TP53 mutations on CT images in patients with NSCLC. These findings suggest
that machine learning-derived radiomics may become a noninvasive and low-cost method to screen
for multiple genetic mutations in patients with NSCLC before using next-generation sequencing tests,
which can help to improve individualized targeted therapies.

Abstract: Purpose: To develop a machine learning-derived radiomics approach to simultaneously
discriminate epidermal growth factor receptor (EGFR), Kirsten rat sarcoma viral oncogene (KRAS),
Erb-B2 receptor tyrosine kinase 2 (ERBB2), and tumor protein 53 (TP53) genetic mutations in patients
with non-small cell lung cancer (NSCLC). Methods: This study included consecutive patients from
April 2018 to June 2020 who had histologically confirmed NSCLC, and underwent pre-surgical
contrast-enhanced CT and post-surgical next-generation sequencing (NGS) tests to determine the
presence of EGFR, KRAS, ERBB2, and TP53 mutations. A dedicated radiomics analysis package
extracted 1672 radiomic features in three dimensions. Discriminative models were established using
the least absolute shrinkage and selection operator to determine the presence of EGFR, KRAS, ERBB2,
and TP53 mutations, based on radiomic features and relevant clinical factors. Results: In 134 patients
(63.6 ± 8.9 years), the 20 most relevant radiomic features (13 for KRAS) to mutations were selected
to construct models. The areas under the curve (AUCs) of the combined model (radiomic features
and relevant clinical factors) for discriminating EGFR, KRAS, ERBB2, and TP53 mutations were 0.78
(95% CI: 0.70–0.86), 0.81 (0.69–0.93), 0.87 (0.78–0.95), and 0.84 (0.78–0.91), respectively. In particular,
the specificity to exclude EGFR mutations was 0.96 (0.87–0.99). The sensitivity to determine KRAS,
ERBB2, and TP53 mutations ranged from 0.82 (0.69–90) to 0.92 (0.62–0.99). Conclusions: Machine
learning-derived 3D radiomics can simultaneously discriminate the presence of EGFR, KRAS, ERBB2,
and TP53 mutations in patients with NSCLC. This noninvasive and low-cost approach may be helpful
in screening patients before invasive sampling and NGS testing.
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1. Introduction

Lung cancer is responsible for 11.6% of de novo malignancies and 18.4% of cancer-
related deaths in 2018 [1]. Over the past 15 years, the treatment of non-small cell lung cancer
(NSCLC) has changed dramatically with the introduction of tumor genomic profiling and
targeted therapy [2]. Several genetic mutations were identified in patients with NSCLC.
The prevalence of mutations varies with ethnicity [3]. Epidermal growth factor receptor
(EGFR) mutations exist in 40–60% of pulmonary adenocarcinoma in the Asian population,
while only 7–10% in the European population [4]. Kirsten rat sarcoma viral oncogene
(KRAS) mutation accounts for approximately 25% of patients with NSCLC [5]. A total of
27% of the Caucasians had the KRAS mutation, significantly higher than 17% of African
Americans [6]. The over-expression of Erb-B2 receptor tyrosine kinase 2 (ERBB2) was
observed in 2.4–38% of NSCLC cases [7,8]. Tumor suppressor protein 53 (TP53) gene
mutation can be found in 35–60% of patients with NSCLC [9]. These gene mutations
are associated with the prognosis of patients with NSCLC after receiving tyrosine kinase
inhibitor (TKI) therapy and may confer resistance to TKI [10]. For example, EGFR is the
main actionable target in patients with NSCLC [11]; a recent trial showed that sotorasib
can be used against NSCLC harboring KRAS mutation [12].

Detection of multiple genetic alterations in patients with lung cancer is crucial to
decide the applicability of targeted therapy. Next-generation sequencing (NGS), a high-
throughput genetic sequencing method, allows for simultaneous and rapid detection
of multiple tumor mutations [13,14]. NGS achieved an accuracy of 99.1% for detecting
EGFR mutation in patients with advanced lung adenocarcinoma, compared with the
traditional Sanger sequencing method [15]. Thus, many medical centers used NGS in
clinical practice [16]. However, the current clinical practice for NGS involves invasive
biopsy or surgical resection, which is associated with high cost and patient discomfort.
Intra-tumor heterogeneity, which leads to the heterogeneous molecular sampling results,
reduces the accuracy of identifying potential genetic mutations [17]. Furthermore, in some
areas, the clinical implementation of NGS is still poor. A comprehensive and noninvasive
approach will help to screen candidate patients for invasive sampling and NGS testing.

Radiomics, a subfield of machine learning, is a promising noninvasive approach to
assess genetic mutations in lung cancer. Radiomics extracts and analyzes a large number
of advanced quantitative image features with high throughput. This approach can be
used to determine the molecular type of lung tumors based on the phenotypic appearance
in computed tomography (CT) [18]. Several studies have reported encouraging results
in discriminating EGFR mutation using radiomics [19,20]. For example, Jia et al. built a
random forest classifier to identify EGFR mutation and reached an area under the receiver
operating characteristics curve (AUC) of 0.802 [21]. Pinheiro et al. found that radiomic
features can discriminate EGFR mutation with an AUC of 0.75, but did not find a ra-
diomic feature correlated to KRAS mutation [22]. To our knowledge, few studies have
investigated whether multiple genetic mutations can be simultaneously detected based on
image features in patients with NSCLC. Therefore, this study aimed to develop a machine
learning-derived radiomics approach to discriminate the presence of EGFR, KRAS, ERBB2,
and TP53 mutations on CT images in patients with NSCLC.

2. Methods
2.1. Study Population

This study retrospectively included consecutive patients with NSCLC who visited our
institute from April 2018 to June 2020. The inclusion criteria were as follows: (1) surgically
resected tumor sample tissues; (2) patients with NSCLC confirmed by hematoxylin-eosin
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and immunohistochemistry staining; (3) post-surgical NGS test proved the mutation status
of EGFR, KRAS, ERBB2, and TP53; (4) thin-slice contrast-enhanced chest CT (slice thickness
≤ 1 mm) performed prior to tumor resection; (5) interval between CT scanning and tumor
resection < 1 month. The exclusion criteria were: (1) non-contrast CT examination; (2) low-
quality CT images affected by image artifacts; (3) indistinguishable tumor edge, caused by
adjacent obstructive pneumonia, atelectasis, and mediastinal adhesions, etc. The collected
clinical factors were age at diagnosis, sex, cTNM stage, smoking status, and tumor location.
The cTNM stage categorizes the extent of the tumor during imaging examination before
any treatment. The cTNM stage was determined by whole-body CT except the lower
extremities or whole-body PET-CT.

The local Institutional Review Board approved this retrospective study (No. SGH-
2018-56) and waived the requirement for patient informed consent. The patient selection
flowchart is shown in Figure 1.

Cancers 2021, 13, x 3 of 15 

3 
 

This study retrospectively included consecutive patients with NSCLC who visited 
our institute from April 2018 to June 2020. The inclusion criteria were as follows: 1) surgi-
cally resected tumor sample tissues; 2) patients with NSCLC confirmed by hematoxylin-
eosin and immunohistochemistry staining; 3) post-surgical NGS test proved the mutation 
status of EGFR, KRAS, ERBB2, and TP53; 4) thin-slice contrast-enhanced chest CT (slice 
thickness ≤ 1 mm) performed prior to tumor resection; 5) interval between CT scanning 
and tumor resection < 1 month. The exclusion criteria were: 1) non-contrast CT examina-
tion; 2) low-quality CT images affected by image artifacts; 3) indistinguishable tumor 
edge, caused by adjacent obstructive pneumonia, atelectasis, and mediastinal adhesions, 
etc. The collected clinical factors were age at diagnosis, sex, cTNM stage, smoking status, 
and tumor location. The cTNM stage categorizes the extent of the tumor during imaging 
examination before any treatment. The cTNM stage was determined by whole-body CT 
except the lower extremities or whole-body PET-CT. 

The local Institutional Review Board approved this retrospective study (No. SGH-
2018-56) and waived the requirement for patient informed consent. The patient selection 
flowchart is shown in Figure 1. 

 
Figure 1. Patient inclusion flowchart. NGS = next generation sequencing; EGFR = epidermal growth factor receptor; KRAS 
= Kirsten rat sarcoma viral oncogene; ERBB2 = Erb-B2 receptor tyrosine kinase 2; TP53 = tumor protein 53. 

2.2. NGS 
In this study, a Clinical Laboratory Improvement Amendments (CLIA)-certified test-

ing center (Burning Rock Biotech, Guangzhou, China) performed deoxyribonucleic acid 
(DNA) processing and subsequent NGS procedures for adequate formalin-fixed and par-
affin-embedded tumor sections to detect somatic genetic mutations. In brief, a minimum 
of 50 ng of DNA isolated from the tumor tissue was processed for NGS library construc-
tion and profiled using the capture-based targeted sequencing panels targeting multiple 
genes. NGS was performed by using an ultra-deep (20,000×) 168-gene panel named Lung-
Plasma (Burning Rock Biotech, Guangzhou) [23]. Sequencing panels were selected based 
on the patients’ clinical characteristics and financial situation. The panels interrogated the 
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2.2. NGS

In this study, a Clinical Laboratory Improvement Amendments (CLIA)-certified testing
center (Burning Rock Biotech, Guangzhou, China) performed deoxyribonucleic acid (DNA)
processing and subsequent NGS procedures for adequate formalin-fixed and paraffin-
embedded tumor sections to detect somatic genetic mutations. In brief, a minimum of 50
ng of DNA isolated from the tumor tissue was processed for NGS library construction
and profiled using the capture-based targeted sequencing panels targeting multiple genes.
NGS was performed by using an ultra-deep (20,000×) 168-gene panel named LungPlasma
(Burning Rock Biotech, Guangzhou) [23]. Sequencing panels were selected based on the
patients’ clinical characteristics and financial situation. The panels interrogated the whole
exons and critical intronic regions of the actionable genes including EGFR, KRAS, ERBB2,
and TP53 in this study.
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2.3. CT Image Acquisition

All included patients underwent contrast-enhanced chest CT scans using two CT
scanners (Somatom Force, Siemens Healthineers, Erlangen, Germany; Revolution CT, GE
Healthcare, Milwaukee, WI, USA). A total of 60–80 mL of contrast medium (Iopamiro
300, Bracco, Milan, Italy) was injected at 4 mL/s. The reconstructed slice thickness was
0.6 mm and 0.625 mm, respectively. Table S1 presents the detailed acquisition protocol and
reconstruction parameters.

2.4. Lesion Segmentation and Extraction of Radiomic Features

Figure 2 shows the radiomics analysis pipeline steps. One radiologist with 18 years
of experience in diagnostic imaging, who was blinded to the results of the NGS test, per-
formed semi-automated three-dimensional (3D) tumor segmentation, using a radiomics
analysis software package (Radiomics 1.0.9a, Siemens Healthineers) on a research plat-
form (SyngoVia VB10b, Research Frontier, Siemens Healthineers). This radiomics analysis
package extracts radiomics features based on the Pyradiomics library [24], in conformance
with the Image Biomarker Standardization Initiative [25]. After finding the lesion and
clicking on it, the software automatically segments the tumor edge and extracts 1672 ra-
diomic features. These features comprise first-order (HU stats), shape, and texture features.
The first-order feature describes the intensity distribution of CT values in the volume of
interest by common basic measures, such as mean, range, and standard deviation [24]. The
texture features comprise the following five categories: (1) gray-level co-occurrence matrix;
(2) gray-level difference matrix; (3) gray-level run-length matrix; (4) gray-level size-zone
matrix; (5) neighborhood gray-tone difference matrix. These features are analyzed by nine
filters and eight wavelet transformations in high dimensions. Details on the principle of
feature algorithms are found in the supplementary materials.
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2.5. Selection of Radiomic Features

To assess the stability of feature extraction, two observers with 5 and 18 years of
experience in radiology independently evaluated 50 randomly selected patients. Spear-
man’s rank correlation coefficient between the two feature extracting procedures was
calculated to indicate the feature stability [26]. The features with a Spearman’s r > 0.8 were
considered stable for the subsequent analysis. Then, according to the F-statistic test in
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one-way analysis of variance (ANOVA), the most correlated features with the presence
of genetic mutations were selected. In radiomics studies, this method is commonly used
for univariant feature selection by estimating the degree of linear dependency between
features and labels (mutations in our study) [27,28]. The top 20 significant features to the
presence of mutations were eventually selected to establish the discriminative models.

2.6. Model Development

In this study, the one-vs-all strategy, which exhibited great interpretability and fitted
one classifier per class, was implemented to achieve the aim of the multi-classification task
to identify four different mutation types [29]. First, we established four discriminative
models based only on radiomic features (radiomics models) to determine the presence of
EGFR, KRAS, ERBB2, and TP53 mutations, using penalized multivariate logistic regression
with 5-fold cross-validation. The least absolute shrinkage and selection operator (LASSO)
was implemented for imposing a penalty to the logistic model with excessive features, so
that the coefficient of noncontributing features shrank to zero. LASSO logistic regression,
as a machine learning algorithm, is commonly used to select contributing features in
radiomics research [30].

Second, we built four other discriminative models (combined models), each of which
was based on the combination of radiomic features and clinical factors, to predict the
existence of EGFR, KRAS, ERBB2, and TP53 mutations. The Wilcox rank-sum test was
used to select significantly relevant clinical factors associated with the presence of a genetic
mutation. Then, multivariate logistic models combining radiomic features and significant
clinical factors were established to discriminate the presence of mutations.

2.7. Statistical Analysis

A one-sample Kolmogorov–Smirnov test was applied for the normality test of contin-
uous variables. The Fisher exact test or Chi-square test was used to compare categorical
variables, and the independent Student t-test or Mann–Whitney U test for continuous vari-
ables. The discrimination performance of models was evaluated by the receiver operating
characteristics (ROC) curve. The cutoff value was obtained by using the maximum likeli-
hood ratio on the ROC curve. Sensitivity, specificity, and accuracy were calculated based
on these cutoff values. DeLong’s test was used to compare the diagnostic performance
between the radiomics model and combined model for each of the four genetic mutations.

The Python Scikit-learn package (Python v3.7, Scikit-learn v0.22, https://scikit-learn.
org, accessed on 6 February 2021) was used for image feature selection, model development,
and performance assessment. R software package (R suite v3.6.2, https://www.r-project.
org, 6 February 2021) was employed for other statistical tests. A two-sided p-value < 0.05
was considered significant.

3. Results
3.1. Demographics

Among the 168 candidate patients, 134 (aged 63.6 ± 8.9 years, 78 males and 56 females)
were eligible for this study. Histological tests confirmed that all resected tumors were
NSCLC, including 120 (89.6%) adenocarcinomas, 8 (6.0%) squamous cell carcinomas, 6
(4.4%) adenosquamous carcinomas. The NGS test determined 65 (48.5%), 15 (11.2%),
13 (9.7%), and 60 (44.8%) patients who had EGFR, KRAS, ERBB2, and TP53 mutations,
respectively. None of the patients had these four mutations at the same time. Moreover, 2
(1.5%), 39 (29.1%), and 69 (51.5%) patients had three, two, and one mutation, respectively,
while 24 (17.9%) patients had no mutation. Table S2 shows the exon variants of these
four mutations.

https://scikit-learn.org
https://scikit-learn.org
https://www.r-project.org
https://www.r-project.org
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3.2. Extraction and Selection of Radiomic Features

The consistency analysis between the two feature extraction procedures showed that
1098 out of 1672 features were stable (Spearman’s r > 0.8) and usable for feature selection,
including 199 first-order, 14 shape, and 885 texture features.

Among the 1098 usable features, 40, 13, 166, and 398 features were highly relevant (F-
statistic test’s p > 0.1) to EGFR, KRAS, ERBB2, and TP53 mutations, respectively (Figure 3).
The 40 highly relevant features for EGFR mutation included five first-order and 35 texture
features but did not include any size and shape-related features. The highest correlated
first-order and texture features were exponential_firstorder_MeanAbsoluteDeviation and
logarithm_gldm_LargeDependenceHighGray LevelEmphasis, respectively. The 13 highly
relevant features for KRAS mutation were texture features, in which the highest correlated
one was square_ngtdm_Complexity. The 166 highly relevant features for ERBB2 included
23 first-order, 4 shape, and 139 texture features, in which the highest correlated features
were log.sigma.0.5.mm.3D_firstorder_Minimum, original_shape_ SphericalDisproportion,
and log.sigma.0.5.mm.3D_glrlm_ShortRunHighGrayLevelEmphasis, respectively. The 398
highly relevant features for TP53 mutation included 43 first-order, six shape, and 349 texture
features, in which wavelet.LHH_firstorder_Uniformity, original_shape_SurfaceArea, and
log.sigma.4.5.mm.3D_ngtdm_ Complexity had the highest correlation, respectively.

Subsequently, the top 20 relevant features (13 for KRAS) in the F-statistic test to EGFR,
KRAS, ERBB2, and TP53 mutations were used to construct discriminative models. Detailed
visualized results and distributions of these features are shown in Figures S1–S4. The
finally selected features with a non-zero coefficient after LASSO selection for all mutations
are presented in Table S3.

3.3. Model Performance

Gender was a significant factor associated with EGFR mutation (Wilcox rank-sum
p = 0.001) and with KRAS mutation (p = 0.036). Tumor stage (cT) was a significant factor
for ERBB2 mutation (p = 0.044). Age, sex, and tumor metastasis (cM) were significant
factors for TP53 mutation (all p < 0.01). Then, these relevant clinical factors (Table S4) were
combined with the above-mentioned radiomic features to establish combined models.
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The radiomics model and combined model showed similar performance in discrimi-
nating EGFR and ERBB2 mutations. The AUC (Figure 4) of these two models for discrimi-
nating EGFR was 0.77 (95% CI: 0.70 to 0.85) and 0.78 (0.70 to 0.86), respectively (DeLong’s
p = 0.590). The AUC of these two models for discriminating ERBB2 was 0.88 (0.80–0.96)
and 0.87 (0.78–0.95), respectively (p = 0.585). The combined model showed a sensitivity
and specificity of 0.52 (0.40–0.65) and 0.96 (0.87–0.99) for discriminating EGFR, respectively
(Table 1), and 0.92 (0.62–0.99) and 0.78 (0.67–0.87) for ERBB2, respectively.

Table 1. Summary of diagnostic metrics for discriminating EGFR, KRAS, ERBB2, and TP53 mutations.

True Label
Radiomic Features Combined Model (Radiomic Features and Clinical Factors)

Wildtype Mutation Sensitivity Specificity Accuracy AUC Wildtype Mutation Sensitivity Specificity Accuracy AUC

EGFR
Wildtype
(n = 69) 57 12 0.63(0.50–

0.74)
0.83(0.71–

0.90)
0.73(0.65–

0.80)
0.77(0.70–

0.85)
66 3 0.52(0.40–

0.65)
0.96(0.87–

0.99)
0.75(0.66–

0.82)
0.78(0.70–

0.86)
Mutation
(n = 65) 24 41 31 34

KRAS
Wildtype
(n = 119) 49 70 0.93(0.66–

0.99)
0.41(0.32–

0.51)
0.47(0.38–

0.56)
0.70(0.57–

0.83)
81 38 0.87(0.58–

0.97)
0.68(0.59–

0.76)
0.70(0.62-

0.78)

0.81(0.69–
0.93)

Mutation
(n = 15) 1 14 2 13

ERBB2
Wildtype
(n = 121) 42 79 1.00(0.72–

1.00)
0.65(0.56–

0.74)
0.69(0.60–

0.76)
0.88(0.80–

0.96)
88 33 0.92(0.62–

0.99)
0.73(0.64–

0.80)
0.75(0.66–

0.82)
0.87(0.78–

0.95)
Mutation
(n = 13) 0 13 1 12

TP53
Wildtype
(n = 74) 49 25 0.80(0.67–

0.89)
0.66(0.54–

0.77)
0.72(0.64-

0.80)

0.78(0.71–
0.86)

58 16 0.82(0.69–
0.90)

0.78(0.67–
0.87)

0.80(0.72–
0.87)

0.84(0.78–
0.91)

Mutation
(n = 60) 12 48 11 49

EGFR = epidermal growth factor receptor; KRAS = Kirsten rat sarcoma viral oncogene; ERBB2 = Erb-B2 receptor tyrosine kinase 2; TP53 =
tumor protein 53
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model (radiomic features and clinical factors).

The combined models showed improved performance in discriminating KRAS and
TP53 mutations. The combined model significantly improved the AUC of discriminating
KRAS mutation from 0.70 (0.57–0.83) to 0.81 (0.69–0.93) (DeLong’s p = 0.044), and from
0.78 (0.71–0.86) to 0.84 (0.78–0.91) for TP53 (p = 0.032). The combined model showed a
sensitivity and specificity of 0.87 (0.58–0.97) and 0.68 (0.59–0.76) for discriminating KRAS,
respectively, and 0.82 (0.69–0.90) and 0.78 (0.67–0.87) for TP53, respectively. Representative
CT images with tumor segmentation are shown in Figure 5.
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negative rate, which is helpful in selecting patients with mutations for invasive sampling 
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Figure 5. Representative CT images with tumor segmentation by a radiomics analysis platform. (A) A 30-year-old female
non-smoker, with EGFR mutation in lung adenocarcinoma. A lobulated solid mass is observed in the lower lobe of the right
lung. The maximum diameter is 23 mm. (B) A 64-year-old male smoker, with KRAS mutation in lung adenocarcinoma.
A solid mass with rough margin is observed in the upper lobe of the left lung. The maximum diameter is 10 mm. (C) A
74 year-old female non-smoker, with ERBB2 mutation in lung adenocarcinoma. A lobulated solid mass is observed in the
middle lobe of the right lung. The maximum diameter is 18 mm. (D) A 66-year-old male smoker, with TP53 mutation
in lung adenocarcinoma. A lobulated solid mass with rough margin is observed in the lower lobe of the right lung. The
maximum diameter is 12 mm.

4. Discussion

In this study, we established machine learning-derived radiomics models to determine
the presence of EGFR, KRAS, ERBB2, and TP53 mutations in patients with NSCLC, based
on radiomic features and combined with clinical factors. The AUC of the combined
models ranged from 0.78 to 0.87 for discriminating these four mutations. In particular,
the specificity to determine EGFR mutation was 0.96, indicating a very low false-positive
rate that is potentially useful to screen outpatients with EGFR wildtype. The sensitivity to
define KRAS, ERBB2 and TP53 mutations ranged from 0.82 to 0.92, suggesting a low false-
negative rate, which is helpful in selecting patients with mutations for invasive sampling
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and NGS testing. Our study reveals the possibility of using a noninvasive method to screen
for multiple genetic mutations before invasive sampling and expensive molecular testing.

The mutation status of EGFR, KRAS, ERBB2, and TP53 is closely associated with
the response to targeted therapy for NSCLC. EGFR is the main actionable target of many
targeted therapies in patients with NSCLC [31]. KRAS mutation is also a common oncogenic
driver [5]. Recently, novel therapeutic strategies for KRAS G12C, the most common KRAS
mutation in NSCLC, have emerged [32,33]. A recent early-phase clinical trial evaluated the
efficacy of zenocutuzumab, a bispecific ERBB2/ERBB3 antibody [34]. TP53 mutation is a
potential negative prognostic factor for NSCLC patients with TKI therapy due to increased
cellular resistance to EGFR-TKIs [10,35]. The simultaneous and rapid detection of these
four mutations is crucial for clinical decision-making in patients with NSCLC.

Because lung cancer is a heterogeneous disease at the molecular level, testing for
genetic alteration biomarkers has been recommended for each specimen of advanced-stage
NSCLC [36]. NGS allows comprehensive polygenic analysis and facilitates the identifi-
cation of alterations for targeted therapy. Before NGS, genomic analysis was limited to
specific loci known to be associated with each cancer subtype. Single-gene sequencing
like Sanger technology is limited to DNA insertion, deletion, and substitution, while NGS
can detect chromosomal rearrangement, oncogenic fusion event, translocation, and copy
number alteration. Therefore, this study took NGS as the reference standard. Although
NGS is more cost-effective than multiple single-gene tests in detecting multiple genetic
alterations, the cost of NGS is still high, which limits its clinical implementation. Our
study demonstrated a noninvasive and low-cost method to screen patients with NSCLC
before NGS testing. In particular, the high specificity (0.96) to determine EGFR mutation is
potentially useful to screen outpatients with EGFR wildtype. The patients with negative
radiomic results would have a high probability for wildtype, thus avoiding unnecessary
NGS tests. The high sensitivity (0.82 to 0.92) to determine KRAS, ERBB2, and TP53 muta-
tions increases the certainty of detecting these mutations. Patients with positive radiomic
results may have a higher probability of harboring mutations in these genes that could be
validated through NGS.

Analysis of CT-based image features has received extensive attention on detecting
EGFR mutation, limited attention to KRAS and TP53 mutations, but no report on ERBB2
mutation. In 385 patients with lung adenocarcinoma, Liu et al. found that using human
semantic annotation of a CT scan combined with clinical variables reached an AUC of 0.78
to discriminate EGFR+/EGFR-, superior to using clinical variables alone (AUC = 0.69) [37].
Zhang et al. conducted a multivariate analysis based on CT radiomic features to dis-
criminate EGFR mutation in patients with NSCLC and reached AUCs of 0.86 and 0.87
the training (n = 140) and test (n = 40) cohorts, respectively [38]. Recently, Wang et al.
established a deep learning model to distinguish EGFR+/EGFR−, and reached AUCs of
0.85 and 0.81 in the training (n = 603) and test (n = 241) cohorts, respectively [39]. Our
models achieved an AUC of 0.78 to identify EGFR mutation, which is comparable to the
previous reports. However, there were few studies on discriminating KRAS and TP53
mutations. Velazquez et al. developed radiomic signatures to distinguish KRAS+/KRAS−,
EGFR+/EGFR−, and EGFR+/KRAS+ with a training cohort (n = 353) and reached AUCs of
0.63, 0.69, and 0.80 in an independent test cohort (n = 352), respectively [19]. Pinheiro et al.
Included 116 and 114 patients with NSCLC to establish models to detect EGFR and KRAS
mutations, respectively. They found that radiomic features were correlated with EGFR mu-
tation (AUC = 0.58) but not KRAS (AUC = 0.51), and the semantic hybrid model improved
the AUC to 0.74 for EGFR mutation status [22]. Wang et al. developed and validated a
radiomics-based fusion-positive tumor prediction model in 61 patients with early-stage
lung adenocarcinoma, which can discriminate TP53/EGFR mutations and tumor mutation
burden, and yielded AUCs of 0.84 and 0.59 for identifying TP53 mutation in the training
(n = 41) and test cohorts (n = 20), respectively [9]. Our models achieved AUCs of 0.81
and 0.84 to identify KRAS and TP53 mutations, respectively, which is higher than the
previous reports.
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This study’s major strength is to simultaneously analyze EGFR, KRAS, ERBB2, and
TP53 mutations in a single CT examination. The AUCs for discriminating these four
mutations ranged from 0.78 to 0.88. The AUCs of KRAS and TP53 were higher than the
reported results (0.63 and 0.66, respectively) [9,19]. One reason to archive high AUCs
might be a 3D radiomics algorithm, which was used in this study to extract and analyze
1672 radiomic features. The extracted features in most of the published radiomics studies
were relatively fewer. We extracted 1672 radiomics features, which laid the foundation for
machine learning to select highly relevant features. Thereafter, a wide range of candidate
features can maximize the potential information hidden in the images, thus improving the
capacity of reflecting the genotype of NSCLC lesions.

This study has some limitations. First, this retrospective study was conducted in one
center. Ideally, a prospective multicenter study would enhance the conclusion of this study.
The results may differ in case of the presence of mutations in other populations. Further
research is necessary to test the generalizability of our models in other races. Second, we
included 134 patients because the NGS test is expensive and not widely used in clinical
practice. Increasing the sample size will strengthen the robustness of radiomic models.
Third, the model described in this study has not been validated in an independent set.
Forth, the extracted radiomic features can be prone to inter- and intra-observer variability
as a consequence of the manual part of the image segmentation procedure.

5. Conclusion

Machine learning-derived 3D radiomics based on CT images can simultaneously
identify the presence of EGFR, KRAS, ERBB2, and TP53 mutations in patients with NSCLC,
which can sensitively determine EGFR mutation with a very low false-positive rate, and
increase the certainty of determining the presence of KRAS, ERBB2, and TP53 mutations.
These findings suggest that patients with a negative radiomics result of EGFR mutation can
avoid expensive NGS testing, but patients with positive KRAS, ERBB2, and TP53 results
should undergo NGS testing. Although these conclusions should be validated in a larger
sample size population, machine learning-derived radiomics has the potential to become a
noninvasive and low-cost method to screen multiple genetic mutations in patients with
NSCLC before using an NGS test, which can help improve individualized targeted therapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13081814/s1, Figure S1: Logistic regression paths showing the coefficients of top
20 features (13 for KRAS) at different lambda values in the least absolute shrinkage and selection
operator (LASSO) feature selection procedure, Figure S2, Correlation heatmaps with clustering of
the most relevant radiomic features with the presence of genetic mutation, Figure S3, Heatmaps of
the most relevant radiomic features with the presence of genetic mutation, Figure S4, Boxplots of
the most relevant radiomic features with the presence of genetic mutation. Table S1: CT acquisition
protocols and image reconstruction parameters, Table S2: Variation of EGFR, KRAS, ERBB2, and
TP53 mutations, Table S3: Finally selected features with non-zero coefficient after the least absolute
shrinkage and selection operator (LASSO) selection, Table S4: Association between clinical factors
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