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Background: Magnetic resonance spectroscopy (MRS) has been used to identify

gamma-aminobutyric acid (GABA) alterations inmood disorders, particularly in themedial

prefrontal cortex (mPFC) where decreased concentrations have been associated with

anhedonia. In major depressive disorder (MDD), prior work suggests that repetitive

transcranial magnetic stimulation (rTMS) increases mPFC GABA concentrations

proportional to antidepressant response. To our knowledge, this has not been examined

in acute bipolar depression.

Methods: As part of a multicentre 4-week randomized, double-blind, sham-controlled

trial using intermittent theta-burst stimulation (iTBS) of the left dorsolateral prefrontal

cortex (DLPFC) in individuals with acute bipolar depression, we quantified mPFC GABA

and Glx (glutamate+glutamine) concentrations using a 3T MRS scan at baseline and

after the intervention. Depressive symptoms were measured using the Montgomery-

Asberg Depression Rating Scale (MADRS) and the Hamilton Depression Rating Scale-

17 (HRDS-17), and anhedonia was measured using the Snaith-Hamilton Pleasure

Scale (SHAPS).

Results: The trial was terminated for futility and magnetic resonance spectroscopy

data was acquired for 18 participants. At baseline, there were no associations between

GABA or Glx concentrations and anhedonia, however GABA was negative correlated

with depressive symptom severity on the HRDS-17. Compared to the sham-iTBS

group, participants receiving active-iTBS had a significant increase in mPFC GABA

concentrations. This was unrelated to antidepressant outcomes or improvements

in anhedonia.
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Conclusion: Our data suggests that iTBS targeting the DLPFC is associated with

physiological changes in the mPFC. In acute bipolar depression, our preliminary data

suggests that mPFC GABA is dissociated from antidepressant iTBS treatment outcomes

and anhedonia.

Keywords: repetitive transcranial magnetic stimulation, intermittent theta burst stimulation, bipolar disorder,

bipolar depression, magnetic resonance spectroscopy, gamma-aminobutyric acid

INTRODUCTION

Bipolar disorder (BD) is a leading cause of global disability that is
defined by episodes of mania or hypomania (1). Yet, patients with
BD type I spend as much as 70% of the time of the symptomatic
periods experiencing syndromic or sub-syndromic depressive
symptoms, while this proportion is over 80% in patients with BD
type II (2). There are currently only four treatments that have
been approved by the US Food and Drug Administration for the
treatment of acute bipolar depression, namely olanzapine and
fluoxetine combination, quetiapine, lurasidone, and caripirazine,
and limited alternatives for those who do not respond to or
tolerate these treatments (3).

Non-invasive neurostimulation techniques, such as
transcranial magnetic stimulation (TMS), are efficacious in the
treatment of Major Depressive Disorder (MDD). Accordingly,
they are often considered in acute bipolar depression, however
the literature in BD is small (4, 5). Newer TMS protocols, such
as intermittent theta-burst stimulation (iTBS), are efficacious
in MDD (6, 7) but have not demonstrated efficacy in BD to
date (8, 9). Given lack of efficacy in BD, this may provide an
opportunity to dissociate physiological effects that are and are
not treatment mechanisms.

A growing body of research highlights alterations in brain
gamma-aminobutyric acid (GABA) and glutamate systems in
mood disorders (10, 11). 1H-MRS studies report decreases in
cortical GABA in unipolar depression that correlate inversely
with glutamate (12–15). Lower GABA levels have been repeatedly
seen in the medial prefrontal cortex (mPFC) in depression, and
this has been associated with anhedonia (16–18). Importantly,
mPFC GABA levels increase with successful pharmacological
treatment of MDD (19), as well as with repetitive transcranial
magnetic stimulation (rTMS) treatment (20).

Several lines of evidence highlight the importance of the
mPFC, and the anterior cingulate cortex more specifically, in the
therapeutic effects of rTMS when the target is the dorsolateral
prefrontal cortex (DLPFC). Indeed, a single treatment to the
left DLPFC is associated with sustained changes in fMRI BOLD
response and the GABA/Glx ratio in the anterior cingulate (21).
Hyperactivity of the anterior cingulate predicts successful rTMS
treatment (22), and clinical response to rTMS is associated with
the degree of anticorrelated activity between the precise DLPFC
target and the anterior cingulate cortex (23–25). In light of these
findings, GABA concentrations in the medial prefrontal cortex
(mPFC) may represent a physiological marker associated with
large scale network changes in depression (26) that are amenable
to rTMS.

To our knowledge, mPFCGABA concentrations during rTMS
treatment in acute bipolar depression have not been measured.
Therefore, in a randomized sham-controlled trial that examined
the efficacy of iTBS in comparison to sham-iTBS (9), we used
magnetic resonance spectroscopy (MRS) to assess mPFC GABA
in the study patients. We hypothesized that mPFC GABA
would be related to anhedonia, would increase with active-iTBS
but not sham-iTBS, and that the change would be related to
antidepressant response.

METHODS

We conducted a double-blind randomized controlled study in
two Canadian centers (the University of British Columbia and
University of Calgary) between October 2016 and March 2020.
The study was registered with ClinicalTrials.gov (NCT02749006)
and was approved by the clinical ethical review boards of the
University of British Columbia and conjoint health ethical review
board of the University of Calgary. The University of Calgary
site, but not the University of British Columbia site, acquired
GABA-edited MEGA-PRESS data in the mPFC.

The primary outcomes are described elsewhere (9). Briefly,
the trial was terminated for futility after 37 participants were
randomized due to the absence of an efficacy signal and overall
low rates of clinical response (15.7% sham-iTBS vs. 16.6% active-
iTBS). This low rate of clinical response was also observed after a
4-week open-label continuation for those that had not responded
in the double-blind phase (23.8%).

Participants
Participants were recruited by referral or by online and
community advertisements. Participants provided written
informed consent. Eligibility criteria included: males and females
18–70 years of age with a primary diagnosis of Bipolar I Disorder
or Bipolar II (BD1 or BD2), experiencing a major depressive
episode with ≥15 on the 17-item Hamilton Depression Rating
Scale (HRDS-17) (27), and having failed to achieve clinical
response with CANMAT first-line recommended treatments
(lithium, lamotrigine, quetiapine, lurasidone with or without
concurrent lithium or valproate) for an acute major depressive
episode (3). Participants were required to have been on a stable
pharmacological regimen for 2 weeks prior to screening that had
to include a mood stabilizer (lithium >0.6 mEq/L or valproate
>350 mM/L), an atypical antipsychotic, or a combination of a
mood stabilizer and an atypical antipsychotic. For participants
with BD2 only, lamotrigine monotherapy was acceptable if the
dose was >100 mg daily.
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FIGURE 1 | Representative T1 weighted image with mPFC voxel placement

and GABA-edited MEGAPRESS.

Exclusion criteria were acute suicidality; current psychosis;
a substance use disorder within the last 3 months; seizures; a
pacemaker or metallic implant; an unstable medical condition;
previous TMS; current use of more than three antipsychotic
agents; failed response to ECT in current episode; psychotherapy
initiated within the last 3 months; a psychiatric condition other
than BD that was deemed to be primary.

Treatment Protocol and Randomization
We generated three 1:1 randomization sequences for patients
treated with (a) mood stabilizers, (b) atypical antipsychotics,
or (c) a combination of mood stabilizer and antipsychotics
to ensure that randomization was stratified according to
current pharmacotherapy. Eligible patients were randomized
with allocation concealment. Patients and clinical evaluators
remained blind to their treatment condition. We utilized a
MagPro X100 stimulator (MagVenture, Denmark), and a COOL-
B70 or MCF-P-B70 placebo coil in conjunction with participant
anatomical MRIs and neuronavigation (Visor2, ANT Neuro, the
Netherlands). Resting motor threshold (rMT) was determined
using electromyographic (EMG) electrodes placed over the first
dorsal interosseous muscle, with threshold determined by the
stimulus intensity required to elicit 5/10 EMG responses>50µV.

Patients were randomly allocated to either active or sham
iTBS, consisting of a total of 600 pulses per session. Pulses were
delivered as triplets at 50Hz repeated at 5Hz (2 on 8 s off) and
at 120% rMT. These parameters reflect the stimulus parameters
that have been shown to be non-inferior to gold standard high-
frequency stimulation in a large single blind study (28). We
targeted the participants’ left DLPFC using neuronavigation
(Visor 2, ANT Neuro) using the T1-weighted MRI acquired at
baseline. For participants who could not tolerate the MRI, we
used the BeamF3method which was then registered to a template
MRI to permit reliable targeting for the duration of the study (29).

Clinical Measures and Self-Reports
Participants were assessed by an independent evaluator
(AM) blinded to treatment conditions. The diagnosis of BD
was confirmed with the MINI International Neuropsychiatric
Interview 7.0. Clinician rated instruments included the Hamilton
Rating Depression Scale 17-item (HRDS-17), the Montgomery-
Asberg Depression Rating Scale (MADRS) (30), the Young
Mania Rating Scale (YMRS) (31), and the Clinical Global
Impression (CGI) subscales for severity and improvement (32)
at baseline, after 2 weeks, and after 4 weeks of double-blind
treatment. Clinical response was defined as a reduction of 50%
or more in MADRS score, and clinical remission was defined as a
MADRS score of 12 or less. To measure anhedonia, participants
completed the Snaith-Hamilton Pleasure Scale (SHAPS) (33) at
baseline and at the conclusion of the double-blind phase.

GABA-MRS
Imaging was performed at 3 T (MR750, General Electric
Healthcare, USA). Because the GABA peaks are overlapped
by more abundant metabolite peaks, advanced spectroscopy
methods are required for its accurate quantification; the most
common being J-difference editing (34). For voxel localization
and subsequent segmentation, first a T1-weighted acquisition
was performed (TR/TE = 8.3/3.2ms, 1mm isotropic voxels,
aligned to the AC-PC line). Gamma-aminobutyric acid data
were acquired from a 30 × 30 × 30 mm3 voxel in the mPFC
using a GABA-edited MEGA-PRESS acquisition (TR/TE = 2
s/68ms, 320 averages, 14ms editing pulses alternating between
1.9 and 7.46 ppm every two averages, and eight unsuppressed
averages for metabolite quantification). Voxels were then placed
parallel to the AC-PC line anterior to the genu of the corpus
callosum (Figure 1). Gamma-aminobutyric acid and the co-
edited Glx (glutamate+glutamine) peak were analyzed in Gannet
(35) including voxel localization and segmentation with SPM12,
tissue correction for tissue specific T1 and T2 relaxation, and
water visibilities (36, 37). Gamma-aminobutyric acid data also
included tissue correction for concentration differences of GABA
in white and gray matter, assuming the concentration of GABA
in gray matter is twice that of white matter (38).

Data quality was visually assessed, which included assessing
the GABA peak and resolution of subtraction artifact following
spectral alignment, confirming the stability of water frequency
(indicative of movement or scanner drift), confirming the quality
of creatine alignment and fit of the spectrum and residuals. The
includedMEGA-PRESS acquisitions had a GABA fit error of 7.74
± 3.28, full-width half-maximum of 22.03 ± 4.48Hz, and signal
to noise ratio of 11.97± 3.05.

Voxel Placement Consistency
The T1-weighted image from the follow-up session was
registered to the baseline acquisition [FSL’s FLIRT (39, 40)]
and the transformation matrix for that registration was then
applied to the follow-up voxel such that both voxels for each
subject could be visualized in the same space to ensure voxel
placement consistency. In addition to visual confirmation of
voxel placement consistency across sessions, the dice coefficient
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FIGURE 2 | CONSORT flow diagram.

of the voxel overlap was calculated. The average dice coefficient
was 72% (standard deviation= 10%).

Statistical Analysis
Statistical analysis was performed in SPSS (IBM SPSS Statistics
Version 26, IBM). Data normality was confirmed using the
Shapiro-Wilk test and outliers were identified using Tukey’s
Fences (41). Cross-sectional analyses of continuous data were
performed using Student’s t-test or Mann Whitney U Test. Chi-
square was used for dichotomized variables. One way ANOVA
and linear regression was used to explore relationships between
mPFC GABA and clinical characteristics. Change in mPFC
GABA was quantified with repeated measures ANOVA. Two
tailed significance was set at α < 0.05.

RESULTS

The progress of participants through the University of Calgary
site within this multisite study is described in the CONSORT flow
diagram (Figure 2). Twenty-one participants were randomized
between sham-iTBS (n = 10) and active iTBS-rTMS groups (n
= 11). Three individuals did not tolerate the MRI, and therefore
we acquired valid GABA data at baseline from 18 participants

(n = 7 sham-iTBS and n = 11 active-iTBS). Sociodemographic
and clinical characteristics were comparable between groups
at baseline, and treatment outcomes also did not differ
(Table 1).

mPFCGABA concentrations at baseline were skewedwith one
notable outlier >3 standard deviations from the mean. When
this participant was removed, this data was normally distributed.
There were no significant baseline differences in GABA levels
between sham-iTBS and active-iTBS groups [n = 7 sham-iTBS
2.13 ± 0.36 mmol vs. n = 10 active-iTBS 1.96 ± 0.45 mmol t(15)
= −0.84, p = 0.41]. mPFC Glx concentrations were normally
distributed and there was a trend toward higher Glx levels at
baseline in the sham-iTBS group [n= 7 sham-iTBS 11.20± 2.53
mol/kg vs. n= 10 active-iTBS 9.41± 0.94 mmol t(15) =−2.06, p
= 0.057].

At baseline, there were no significant associations between
GABA and SHAPS score [F(1, 15) = 0.07, p = 0.79], medication
regimen [F(2, 16) = 0.02, p = 0.97], MADRS score [F(1, 16) =

2.41, p = 0.14], or CGI-severity score [F(1, 15) = 1.53, p =

0.23], however there was a significant association withHRDS-17
scores [Figure 3A; F(1, 16) = 5.18, p = 0.038, Standardized B =

−0.50]. mPFCGlx did not significantly correlate with any clinical
characteristic (p > 0.18).
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TABLE 1 | Sample characteristics and clinical outcomes.

Sham-iTBS Active-iTBS Statistic p

n (%) or M ± SD n (%) or M ± SD

Age 42.20 ± 13.32 45.27 ± 14.52 t(19) = 0.50 0.62

Female sex 5 (50.0%) 5 (45.5%) χ
2 = 0.04 0.83

Education (years) 16.00 ± 2.16 16.64 ± 3.72 t(19) = 0.47 0.64

Diagnosis χ
2 = 0.11 0.73

BD1 2 (28.6%) 4 (36.4%)

BD2 5 (71.4%) 7 (63.6%)

Medication stratification χ
2 = 0.06 0.96

Mood stabilizer 4 (40.0%) 5 (45.5%)

Atypical antipsychotic 1 (10.0%) 1 (9.1%)

Mood stabilizer + atypical antipsychotic 5 (50.0%) 5 (45.5%)

Baseline characteristics

HRDS-17 20.50 ± 3.30 22.54 ± 3.88 t(19) = 1.29 0.21

MADRS 31.60 ± 3.89 32.90 ± 4.30 t(19) = 0.72 0.47

CGI-Severity 4.20 ± 0.42 4.70 ± 0.94 t(19) = 1.52 0.14

SHAPS 11.00 ± 3.09 10.30 ± 4.00 t(18) = −0.43 0.66

Treatment outcomes

Percent MADRS improvement at 4 weeks 40.33 ± 34.93 24.69 ± 36.48 t(15)= −0.90 0.38

Clinical response 3 (33.3%) 1 (12.5%) χ
2 = 1.02 0.31

Clinical remission 3 (33.3%) 1 (12.5%) χ
2 = 1.02 0.31

FIGURE 3 | (A) Baseline mPFC GABA concentrations were negative associated with HRDS-17 scores. (B) Active-iTBS, but not sham-iTBS, was associated with an

increase in mPFC GABA concentrations after 4 weeks of treatment. *time interaction p < 0.05.

At the conclusion of double-blind treatment, paired pre-
post MRS data were available for n = 6 sham-iTBS and n =

6 active-iTBS participants. We observed a significant increase
in mPFC GABA in the active-iTBS group, but not the sham-
iTBS group [Figure 3B; Time F(1, 10) = 4.65, p = 0.056, Time
∗ Group F(1, 10) = 6.99, p = 0.025]. This significant effect
persisted after controlling for percent change in MADRS scores
[Time F(1, 9) = 0.69, p = 0.42, Time ∗ %MADRS F(1, 9) =

1.51, p = 0.24, Time ∗ Group F(1, 9) = 8.68, p = 0.016]. We
found no evidence for mPFC Glx time or treatment group
effects [Time F(1, 9) = 0.00, p = 0.99, Time ∗ Group F(1, 9) =
0.00, p= 0.98].

DISCUSSION

To our knowledge, this is the first study to use GABA-editedMRS
to investigate mPFC metabolite changes during TMS therapy in
acute bipolar depression. Though preliminary, our data suggests
that iTBS results in increased GABA in the mPFC, consistent
with previous data in MDD samples for the mPFC (20) and
in the DLPFC (42). However, contrary to both of these rTMS
studies, and others using pharmacological interventions (19), the
GABA effect we observed was dissociated from antidepressant
outcomes. We also failed to observe an association between
mPFC GABA and anhedonia.
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This data is interesting because it confirms a common
physiological effect of DLPFC TMS stimulation in different
pathologies. Yet, the lack of antidepressant effect in this
subsample or in the larger multisite trial from which it is drawn
highlights that not all physiological effects of therapeutic TMS are
causally associated with improvement in depressive symptoms.
Moreover, we did not observe associations betweenmPFCGABA
and clinical features such as anhedonia, a replicated finding in
MDD (18). While it is possible that the physiological effect we
observe precedes symptomatic improvement, the 4 week open
label extension of this trial for non-responders also had a low rate
of clinical response (9).

Given the small sample and inference from a null finding,
further research is required to determine whether our findings
represent a physiological difference between acute bipolar
depression and unipolar depression. It is possible that MRS
quantified GABA in the mPFC is not as tightly linked to
mood state in BD, given that previous studies in BD have
not found differences compared to healthy controls in either
depression (43) or euthymia (44, 45), and this has also been
suggested in meta-analyses (46). Post-mortem staining for
GABAergic subpopulations in the anterior cingulate cortex
indicate heterogeneity between BD and MDD, however this
is principally for calbindin positive neurons and appears layer
specific and therefore cannot be resolved with MRS methods
(47). Alternatively, concomitant medications indicated for acute
and prophylactic treatment in BD may confound MRS GABA
measures. Indeed, mood stabilizers modulate GABA (48–50) and
lithium modulates Glx (51), and all but one participant was
treated with these medications.

LIMITATIONS

Our preliminary data comes from a single site from a randomized
controlled trial that was terminated for futility. As a result,
the sample size is small, and the availability of paired pre-
post MRS data is further reduced. As such, the magnitude of
change seen in GABA concentrations in the active-iTBS group
may be inflated due to to small sample size bias. Nevertheless,
this increase is not observed in the sham-iTBS group, and
therefore is likely to be a physiological effect of iTBS. Larger
studies are required to more reliably determine the effect size,
and independence from clinical improvements in acute bipolar
depression. Participants in this trial were required to have
stable dosing of an antimanic agent, which resulted in 20
of the 21 participants using medications known to influence
GABA (48–50). While an unmedicated sample would resolve
this limitation, it represents a safety concern as even with
antimanic agents in this sample a treatment emergent affective
switch occurred after a single active-iTBS treatment, and another
participant experienced a treatment emergent affective switch
within eight treatments after transitioning from sham-iTBS to
open-label iTBS.

There is an inherent challenge in resolving GABA at 3 T
due to its low concentration and overlapped, more abundant
metabolites. The use of editing techniques, such as the MEGA-
PRESS sequence used in this study, is preferable to the use of
short-echo point resolved spectroscopy sequences for measuring

GABA, particularly at 3 T (52–54). Nonetheless, there are some
limitations and caveats worthy of discussion. Given the low signal
and the J-difference editing approach used in MEGA-PRESS,
a large voxel and many signal averages are required to obtain
high signal-to-noise data for a reliable GABAmeasurements (53).
The voxel used in the present study was 27 cm3, placed in the
mPFC. This large voxel limits the regional specificity of our
results as it encompasses multiple functionally or anatomically
distinct structures. Secondly, the measured GABA signal at 3
ppm includes a macromolecule contribution due to the limited
specificity of the editing pulses applied at 1.9 ppm (55, 56).
Macromolecules are typically considered functionally irrelevant,
though the macromolecular signal is variable between subjects
(53, 57). Finally, while frequency drift is known to affect
efficiency of the editing pulses, the level of macromolecular signal
contribution and can cause subtraction artifacts (58), the scanner
used in this study is highly stable and no included data showed a
frequency drift of >0.1 ppm.

CONCLUSION

Our sham-controlled data in acute bipolar depression suggests
that iTBS targeting the DLPFC is associated with physiological
changes in the mPFC. Unlike previous reports in MDD, in
acute bipolar depression mPFC GABA concentrations appear
to be dissociated from antidepressant treatment outcomes and
anhedonia or have a much smaller effect. Future research
is needed to better understand the clinical implications and
network level changes associated with neural metabolites in acute
bipolar depression.
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