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Abstract: Background and Objectives: Shoulder dystocia (ShD) is one of most dangerous obstetric
complication. The objective of this study was to determine if the ultrasonographic fetal biacromial
diameter (BA) and derived parameters could predict ShD in uncomplicated term pregnancies. Ma-
terials and Methods: We conducted a prospective observational study in a tertiary care university
hospital from March 2021 to February 2022. We included all full-term pregnancies accepted for
delivery that received an accurate ultrasonography (USG) scan before delivery. USG biometry and
estimated fetal weight (EFW) were collected. Therefore, we evaluated the diameter of the mid-arm,
the transverse thoracic diameter (TTD) and the biacromial diameter (BA). BA was estimated using
Youssef’s formula: TTD + 2 mid-arm diameters. The primary outcome was the evaluation of BA and
its related parameters (BA/biparietal diameter (BPD), BA/head circumference (HC) and BA–BPD in
fetuses with ShD versus fetuses without ShD. Diagnostic accuracy for ShD of BA, BA/BPD, BA/HC
and BA–BPD was evaluated using receiver operator curve (ROC) analysis. Results: 90 women were
included in the analysis, four of these had ShD and required extra maneuvers after head delivery.
BA was increased in fetuses with ShD (150.4 cm; 95% CI 133.2 cm to 167.6 cm) compared to no-ShD
(133.5 cm; 95% CI 130.1 cm to 137.0 cm; p = 0.04). Significant differences were also found between ShD
and no-ShD groups for BA/BPD (1.66 (95% CI 1.46 to 1.86) vs. 1.44 (95% CI 1.41 to 1.48); p = 0.04),
BA/HC (0.45 (95% CI 0.40 to 0.49) vs. 0.39 (95% CI 0.38 to 0.40); p = 0.01), BA–BPD (60.0 mm (95% CI
42.4 to 77.6 cm) vs. 41.4 (95% CI 38.2 to 44.6); p = 0.03), respectively. ROC analysis showed an
overall good accuracy for ShD, with an AUC of 0.821 (p = 0.001) for BA alone and 0.881 (p = 0.001),
0.857 (p = 0.016) and 0.867 (p = 0.013) for BA/BPD, BA–BPD and BA/HC, respectively. Conclu-
sions: BA alone, as well as BA/BPD, BA/HC and BA–BPD might be useful predictors of ShD in
uncomplicated term pregnancies. However, such evidence needs extensive confirmation by means of
additional studies with large sample sizes, especially in case of pregnancies at high risk for ShD (i.e.,
gestational diabetes).

Keywords: shoulder dystocia; fetal biacromial diameter; ultrasound fetal biacromial diameter; fetal
ultrasound biometry; delivery; fetal macrosomia

1. Introduction

Shoulder dystocia (ShD) represents an extremely harmful obstetric complication. It
is described as the inability to deliver the fetus’ shoulders after head delivery. Even if
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all recommended measures are adopted, there is a high risk of catastrophic neonatal and
maternal morbidity and mortality [1–3]. Multiple risk factors for shoulder dystocia were
investigated. The link between fetal macrosomia and ShD was established [4], and the
American College of Obstetricians and Gynaecologists recommends a cesarean delivery
(CD) to prevent ShD in diabetic women with an estimated fetal weight (EFW) over the
4500 g and in non-diabetic women who had an EFW of at least 5000 g [5]. Nevertheless,
most of ShD cases (50%) happen without an EFW over these cut-offs [6]. Other potential
risk factors evaluated were: instrumental birth [7,8], high BMI [9], chronic diabetes [10] and
gestational diabetes [11]. Besides these well-established risk factors, other risk variables
suggested in the scientific work include non-white race/ethnicity [12], shorter height [13],
multiparity [14], history of past shoulder dystocia [15], prolonged labor [16] and labor
induction [17] despite the type of induction [18–20]. Different types of anesthesia are
practiced in obstetricians’ routine [21–23], however, some evidence suggests that epidural
anesthesia could raise the incidence of shoulder dystocia [24]. Despite all these risk factor
evaluations, ShD remains unpredictable [5]. According to a large retrospective cohort study,
sonographic fetal anthropometric measurements do not appear a helpful technique for ShD
screening, with a low positive predictive value [11]. Other authors discovered that ShD
was expected when the fetal shoulder’s mean diameter was prominent [25,26]. Based on
these assumptions, Youssef et al. suggested a new ultrasound fetal biometrics measure
to predict the fetal biacromial diameter (BA) and reported a correlation between the BA
and fetal macrosomia [27]. On these premises, we used Youssef’s formula to calculate the
intrauterine fetal biacromial diameter and its potential association with ShD onset.

2. Materials and Methods

We performed a single-center prospective observational study at a tertiary-care uni-
versity hospital from March 2021 to February 2022. Our Institutional Ethical Review Board
had authorized the research design (protocol no. 0013626/i date: 3 May 2021), and all
participating women submitted written consent after a detailed discussion. We included
all full-term pregnancies (37–42 weeks) accepted for the delivery. We excluded pregnan-
cies with antepartum hemorrhage, fetal growth restriction, stillbirths, multiple gestations,
breech position, uterine or congenital malformations. In addition, the complete history
with age, parity, past miscarriages, body mass index (BMI) and any medical illnesses was
recorded for each patient. The fetal diameters were assessed utilizing a Voluson E8 (General
Electric Medical Systems, Zipf, Austria) or a Samsung HS70 (Samsung Medison, Seoul,
South Korea) with a transabdominal convex probe (3.5–5.5 MHz). To reduce the bias, all
ultrasound scans were conducted only by two expert sonographers (M.L.V. and M.M.)
(equipped with the Fetal Medicine Foundation certificate of competence in the 11–13-week
scan) who performed all the ultrasonographic examinations of enrolled women [28]. We
recorded the main fetal ultrasonographic parameters: biparietal diameter (BPD), head
circumference (HC), abdominal circumference (AC), femur length (FL) and amniotic fluid
index (AFI). Estimated fetal weight (EFW) was calculated using the Hadlock 4 formula [29].
We also registered two additional parameters: the mid-arm diameter measured by placing
the caliper from skin to skin on the upper arm near the heart (Figure 1) and the transverse
thoracic diameter (TTD) estimated by determining a transverse section of the fetal chest at
the level of the heart (four-chamber view) (Figure 2).

After this, we calculated the fetal BA, applying Youssef’s ultrasonography formula:
[TTD + 2 mid-arm diameter] [27]. All pregnant women underwent an ultrasound exam
24–48 h before the delivery. All women had an admission computerized cardiotocography
(CTG) and were monitored with CTG during labor according to hospital guidelines [30–33].
After the birth, the following data were collected: delivery method, neonatal birth weight,
Apgar scores at 1 and 5 min, presence of any difficulties during the delivery and occurrence
of ShD maneuvers during the vaginal delivery. The primary endpoint was the comparison
of ultrasound fetal BA in fetuses with ShD versus the no-ShD group (control group). The
ShD was defined as the need for extra obstetric procedures to deliver the baby after the head
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was delivered and mild traction was unsuccessful [34]. We considered the BA combined
with other ultrasonographic parameters in the ShD group as secondary endpoints: BA/BPD;
BA/HC, BA–BPD.
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Based on the current literature, an a priori calculation for the size of sample required
to detect a minimum number of ShDs was performed: given 80% power and an alpha
level of 0.05, and an estimated incidence of 0.3%, considering a 7% loss to follow up,
a minimum of 84 women were needed to detect significant differences in the primary
outcome of interest.

The data were coded, tabulated and analyzed using GraphPad PRISM 9 (GraphPad,
La Jolla, CA, USA) The Student’s t-test was used to assess quantitative data. The Mann–
Whitney test was used to examine qualitative data. Receiver operating characteristic
(ROC) curves were calculated to determine the predictive value of the BA and surrogate
parameters to predict ShD at birth. Therefore, sensitivity, specificity and positive likelihood
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ratio were obtained for each ultrasonographic parameter. A p-value (p) lower or equal to
0.05 was considered statistically significant.

3. Results

Ninety pregnant women were prospectively enrolled. During labor, four of these
patients needed additional maneuvers after head delivery (McRoberts’ and Rubin’s maneu-
vers were performed). Table 1 described the demographic and baseline characteristics of
the included patients. Eleven patients were affected by gestational diabetes (12.2%), one
had pregestational diabetes (1.1%) and eight women developed gestational hypertension
and preeclampsia (8.8%) (Table 1).

Table 1. Demographic data of the study participants (n = 90).

Age, (years)
mean ± SD 31.67 ± 5.6

Height, (cm)
mean ± SD 162.8 ± 5.7

Pre-gestational weight, (Kg)
mean ± SD 78.4 ± 14.47

BMI, (Kg/m2)
mean ± SD 29.65 ± 5.18

Weight gain, (Kg)
mean ± SD 15.88 ± 17.05

Week of gestation
mean ± SD 40.0 ± 1.1

Parity,
mean ± SD 0.4 ± 0.7

Primigravida,
number (%) 40 (44.4)

Multigravida,
number (%) 60 (55.56)

Previous miscarriage,
number (%) 24 (26.67)

Gestational diabetes,
number (%) 11 (12.22)

Pregestational diabetes mellitus,
number (%) 1 (1.11)

Gestational hypertension and preeclampsia,
number ± (%) 8 (8.89)

SD, standard deviation; BMI, body mass index.

Table 2 displays the ultrasound measures evaluated and EFW estimated before labor.
The ShD group had an increased BA with a mean of 150.4 cm (95% CI 133.2 cm to 167.6 cm)
versus the 133.5 cm (95% CI 130.1 cm to 137.0 cm) of the control group (p-value 0.04). In
addition, the BA/BPD, BA/HC ratio and BA–BPD showed statistical significance with a
higher mean in the ShD group compared to non-ShD group (Table 2). On the other hand,
the BA, maternal height ratio and the EFW did not show a statistical difference among the
two groups (Table 2).

The ROC curve analysis showed that BA has a good diagnostic accuracy for ShD, with
an AUC of 0.821 (0.735 to 0.906; p = 0.001), with a threshold > 138.3 mm, showing a sensi-
tivity of 100.0 (95% CI 75.75% to 100.0%), a specificity of 68.60% (95% CI 58.18% to 77.44%)
and a positive likelihood ratio of 3.185 (Figure 3).

The BA/BPD ratio also showed a good diagnostic accuracy for predicting ShD, with
an AUC of 0.881 (0.784 to 0.977; p = 0.001), showing the highest positive likelihood ratio
of 5.250 when the threshold was set >1.625, with a sensitivity of 75.00% (95% CI 30.06% to
98.72%) and a specificity of 85.71% (95% CI 76.67% to 91.63%) (Figure 4).
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Table 2. Ultrasonographic fetal measurements.

ShD (4) No ShD (86) p-Value

Biacromial diameter, cm
0.04 *mean 150.4 133.5

95% CI 133.2–167.6 130.1–137.0
BA/BPD,

0.04 *mean 1.66 1.44
95% CI 1.46–1.86 1.41–1.48

BA/HC,
0.01 *mean 0.45 0.39

95% CI 0.40–0.49 0.38–0.40
BA–BPD,

0.03 *mean 60.0 41.4
95% CI 42.4–77.6 38.2–44.6

Estimated fetal weight, g
0.61Mean ± SD 3273 ± 618 3448 ± 352

SD, standard deviation; CI confidence interval; BA, biacromial diameter; BPD, biparietal diameter; HC, head
circumference. * p < 0.05.
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The difference between BA and BPD had an AUC of 0.857 (95%, CI 0.750 to 0.963;
p = 0.016), with a positive likelihood ratio of 4.446 at a threshold of at least 54.8 mm, with
a 75.00% sensitivity (9%5 CI 30.06% to 98.72%) and 83.13% specificity (95% CI 73.66% to
89.68%) (Figure 5).

Similarly, BA/HC ratio showed an AUC of 0.867 (95% CI 0.773 to 0.962; p = 0.013),
showing that a threshold of at least 0.435 was the best cut-off, with a 4.500 positive
likelihood ratio, a sensitivity of 75.00% (95%, CI 30.06% to 98.72%) and a specificity of
83.33% (95 CI 73.95% to 89.80%) (Figure 6).

Seventy-eight women (86.67%) had a vaginal delivery with an 11.11% rate of need for
operative delivery. Twelve pregnant women (13.33%) delivered by cesarean section. Other
delivery data, including Apgar scores, mean birth weight, birth length and mean cranial
circumference are shown in Table 3.
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Table 3. Delivery data of the study participants.

Mode of Delivery
Number (%)

Vaginal
Cesarean Section

Operative Delivery

78 (86.67)
12 (13.33)
10 (11.11)

Apgar score,
mean ± SD

1′

5′
8.2 ± 0.89
9.4 ± 0.54

Birth weight, gr
mean ± SD 3426 ± 32

Birth length, cm
mean ± SD 51.32 ± 1.62

Cranial circumference, cm
mean ± SD 34.62 ± 1.12

SD, standard deviation.

4. Discussion

Shoulder dystocia is an uncommon event yet has the potential to cause severe neona-
tal injury. Prediction is challenged by uncertain factors such as maternal pelvic size or
fetal body [8,35]. Numerous risk factors influence the development of ShD and different
researchers have employed various risk factor combinations to find a predictive model for
ShD [11,16,34,36–38]. In modern obstetrics, managing ShD is difficult. The retrospective
methodology of available studies, as well as the nonuniform criteria of both macrosomia
and ShD and the lack of randomization, limit their findings. The function of ultrasono-
graphic evaluation in the definition, diagnosis and management of ShD has been a point of
contention so far [39]. Dyachenko et al. analyzed a statistical model for detecting ShD with
brachial plexus injury and discovered a model based on maternal height and weight, gesta-
tional age and parity, which identified 50.7% of the total cases [40]. Belfort et al. performed
a multivariate statistical analysis on patients with ShD and evidenced the association be-
tween the birthweight, operative vaginal delivery and ShD [36]. Ultrasound imaging has
been ineffective in identifying ShD cases to prophylactically plan for cesarean delivery [41].
Miller et al. evaluated a targeted ultrasound strategy based on abdominal diameter minus
biparietal diameter to predict the ShD, although the predictive values and false-positive
rates are not favorable [42]. Gerber et al. discovered that an abdominal/head circumference
ratio of more than 1.05 had a sensitivity and specificity of 46 and 75%, respectively, with a
positive predictive value of only 5.7% [43]. Other authors reported comparable results [11].
Youssef et al. evidenced the association between a new ultrasound formula (to measure
the fetal biacromial diameter), fetal macrosomia and ShD, which was the starting point
of our trial [27]. Similarly, Terzi et al. evaluated the role of fetal clavicle length to predict
ShD [44]. Their study showed a comparable diagnostic accuracy relative to BA. However,
their study was also limited by a reduced sample size [44]. In our study, the four women
who experienced ShD were heterogenous, with two of them with a diagnosis of gestational
diabetes mellitus. Two of them were nulliparous while the other two had delivered twice
before. Height ranged from 160 to 171 cm while weight ranged from 66 to 81 kg, with an
estimated BMI that ranged from 27.1 to 31.0 kg/m2. Regarding the differences between
diabetic and non-diabetic women, there were no significant changes relative to ultrasono-
graphic fetal biometric parameters among the cases. However, due to the extreme rarity
of the ShD, which led only to the four included cases, it was not plausible to perform a
regression analysis for the abovementioned covariates. Previous key research attempting
to develop a model for predicting ShD based on different risk-factor combinations, with
and without sonographic EFW, failed to match the objective. A machine learning model,
on the other hand, could add increased precision to previously observed algorithms by
combining multiple characteristics of both the woman and the fetus, as described by Tsur
et al. [38]. However, to date, no one method is proper and validated for preventing ShD [45].
Our study evidenced a statistically significant difference in ultrasonography BA, BA/BPD,
BA/HC and BA–BPD in the group of pregnant women who experienced shoulder delivery
difficulty at birth. According to the ROC curve analysis, BA and BA/BPD ratio had high
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diagnostic accuracy for ShD. Similarly, BA and BPD difference and BA/HC ratio had a
significant AUC. Actually, ShD occurs as an unpredictable obstetric emergency and the ob-
stetric staff follows multiple maneuvers to resolve the dystocia [46–48]. Due to the general
low sensitivity and specificity, no previous ultrasonographic formula was employed in a
clinical protocol. The formula presented here could help the early detection of ShD cases
and support clinical decision-making. However, due to the rare incidence of ShD, more data
are needed before its implementation in clinical practice. Therefore, our results suggest that
a large multicentric prospective study based on our findings would not be unrealistic, espe-
cially for the ShD high-risk population of diabetic pregnancies [49–51]. Nonetheless, other
authors have tried to improve the prediction of ShD by analyzing other ultrasonographic
parameters, including fetal abdominal and thigh soft tissue thickness [39,52]. BA and its
surrogate parameters seem to have increased diagnostic accuracy; however, comparative
trials are needed to evaluate differences regarding the various ultrasonographic measures
available. The strengths of our study include its prospective cohort design and the adoption
of the abovementioned and previously validated formula (Youssef’s formula). In addition,
we tested new ultrasonographic parameters and assessed their diagnostic accuracy for the
first time (BA/BPD, BA/HC and BA–BPD). The study’s main limitation was the rare ShD
incidence that needs a broader sample size to further validate the actual findings.

5. Conclusions

Ultrasonographic evaluation of the fetal biacromial diameter appears to be predictive
for shoulder dystocia in an unselected cohort of pregnant women at term. Therefore,
detailed comprehension of pertinent pelvic and fetal anatomy and the mechanisms be-
hind dystocia onset should be further clarified. For this reason, larger-scale prospective
studies are required to assess the shoulder dystocia predictive capability of the ultrasound
biacromial diameter and its surrogate parameters.
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