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Targeting aberrant metabolism is a promising strategy for inhibiting cancer growth and metastasis. Research is now geared towards
investigating the inhibition of glycolysis for anticancer drug development. Betulinic acid (BA) has demonstrated potent anticancer
activities in multiple malignancies. However, its regulatory effects on glycolysis and the underlying molecular mechanisms are still
unclear. BA inhibited invasion and migration of highly aggressive breast cancer cells. Moreover, BA could suppress aerobic
glycolysis of breast cancer cells presenting as a reduction of lactate production, quiescent energy phenotype transition, and
downregulation of aerobic glycolysis-related proteins. In this study, glucose-regulated protein 78 (GRP78) was also identified as
the molecular target of BA in inhibiting aerobic glycolysis. BA treatment led to GRP78 overexpression, and GRP78 knockdown
abrogated the inhibitory effect of BA on glycolysis. Further studies demonstrated that overexpressed GRP78 activated the
endoplasmic reticulum (ER) stress sensor PERK. Subsequent phosphorylation of eIF2α led to the inhibition of β-catenin
expression, which resulted in the inhibition of c-Myc-mediated glycolysis. Coimmunoprecipitation assay revealed that BA
interrupted the binding between GRP78 and PERK, thereby initiating the glycolysis inhibition cascade. Finally, the lung
colonization model validated that BA inhibited breast cancer metastasis in vivo, as well as suppressed the expression of aerobic
glycolysis-related proteins. In conclusion, our study not only provided a promising drug for aerobic glycolysis inhibition but
also revealed that GRP78 is a novel molecular link between glycolytic metabolism and ER stress during tumor metastasis.

1. Introduction

Breast cancer is the most diagnosed malignancy among
women worldwide. In 2018, it is estimated that 2.1 million
new cases will be diagnosed. Breast cancer accounts for can-
cer occurrences in almost 1 in 4 females and for 11.6% of all
sites of malignancies in both men and women [1]. Impor-
tantly, breast cancer is also the leading cause of cancer

deaths among women in over 100 countries. There will be
62679 breast cancer deaths globally in 2018, which accounts
for 6.6% of all site cancer deaths in both sexes [2, 3].
According to cancer death cause analysis, metastasis is
always the leading reason and tremendous endeavor has
been dedicated to its underlying mechanisms, such as cancer
stem cells, immune depression, and metabolic alteration.
However, candidate drugs approved for the inhibition of
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metastasis are very limited, and natural phytochemicals
have become an important resource to discover precursors
of metastasis inhibitors.

Metabolic reprogramming is one of the hallmarks of can-
cer [4], especially for aerobic glycolysis. Since the first report
of cancer glycolysis activity by Otto Warburg in 1920, several
studies have demonstrated that cancers prefer glycolysis even
in the presence of oxygen, a phenomenon known as “War-
burg effect” [5, 6]. At present, the Warburg effect of tumor
could be monitored by 18F-fluorodeoxyglucose positron-
emission tomography (FDG-PET) to indicate metastasis
information [7]. At the same time, a number of molecular
targets have been identified in the glycolysis pathway and
been paid with great interests for metastasis inhibition and
anticancer drug development. For example, lactate dehydro-
genase A (LDHA) was found to promote breast cancer
metastasis and its inhibitor oxamate was effective in inhibit-
ing cancer cell invasion in multiple malignancies [8]. Pyru-
vate dehydrogenase kinase 1 (PDK1) overexpression could
enhance head and neck squamous carcinoma metastasis via
the upregulation of fibronectin [9]. The hexokinase II inhib-
itor 2-DG or 3-BrPA had the inhibitory effect on tumorigen-
esis and metastasis in multiple malignancies such as lung
cancer, liver cancer, and breast cancer [10, 11]. Conse-
quently, glycolysis inhibition may be a promising new strat-
egy for antimetastasis. However, the internal mechanisms
of aerobic glycolysis have not been fully elucidated. Identifi-
cation of prime carcinogenic signaling is critical for the
development of glycolysis inhibition strategy. Recent studies
suggested that glucose-regulated protein (GRP78) serves as a
molecular hub in mediating metabolism regulation and can-
cer metastasis [12].

GRP78, a major chaperone in the endoplasmic reticulum,
is a central sensor of cellular stress and is frequently highly
expressed in most solid tumors [13]. High expression of
GRP78 contributes to the acquisition of metastatic pheno-
types including apoptosis resistance, immune escape, angio-
genesis, and drug resistance [12]. It has been reported that
GRP78 is involved in the development of metastatic breast
cancer as a multifunctional receptor when it is expressed on
the cancer cell surface [14]. In fact, GRP78 also participates
in cancer cell metabolism regulation. Glucose deficiency
usually leads to GRP78 overexpression, which enhances glu-
tamine metabolism to support cell survival by modulating
β-catenin signaling [15]. A recent report demonstrated that
GRP78 regulated metabolic reprogramming by modulating
acetyl-CoA production and histone acetylation in prostate
cancer cells [16]. In addition, another study indicated that
GRP78 induction could result in enhanced HIF-1a tran-
scription and GLUT1 expression, which are the key factors
contributing to glycolysis [17]. Given the membrane trans-
location of GRP78 under cellular stress and its biofunction
in controlling glycolysis and metastasis, it is interesting and
promising to develop candidate inhibitors targeting GRP78
from natural phytochemicals, which may overcome the
limitations of existing glycolytic inhibitors. For example,
although 2-deoxyglucose and 3-bromopyruvic acid showed
excellent anticancer effects in preclinical studies, their clin-
ical applications were significantly limited due to the seri-

ous systemic adverse effects [18]. Therefore, the demand
for developing a glycolysis inhibitor with high safety is
highly appreciated.

BA, a pentacyclic triterpene widely found in birch bark
extracts, has been reported to act anticancer activities in mul-
tiple cancers, including breast cancer [19]. What is more
important, it was found that BA did not display apparent sys-
temic toxicity in tumor-bearing mice even at 500mg/kg [20].
Subsequent studies also suggested that BA did not exhibit
discernable impact on normal cells at doses which killed can-
cer cells in vitro [21]. Therefore, BA attracts increasing atten-
tion due to its high selectivity for cancer cells. With regard to
pharmacological mechanisms, current findings include (i)
the induction of cancer cell apoptosis via the mitochondrial
pathway induced by the release of soluble factors or genera-
tion of reactive oxygen species (ROS) [22, 23]; (ii) the inhibi-
tion of angiogenesis [24]; (iii) the degradation of transcription
factor specificity protein 1 (Sp1) [25, 26]; and (iv) the induc-
tion of DNA damage by suppressing topoisomerase I [27,
28]. Notably, a recent report suggested that BA could change
cellular glucose metabolism with concomitant reduction of
glucose oxidation [29]. Besides, we also noticed that BA
exerted antimetastatic potential by reversing EMT in mela-
noma cells via repressing the expression of neutrophil
gelatinase-associated lipocalin (NGAL) [30]. However, the
underlying molecular mechanisms of BA are far away from
full elucidation. It is interesting to identify the molecular tar-
get of BA and the association with glycolysis regulation.

In the present study, we found that BA could attenuate
migration and invasion of highly aggressive breast cancer
cells via aerobic glycolysis inhibition. GRP78 silencing
blocked the inhibitory effects of BA on glycolytic proteins
including LDHA, PDK1, and c-Myc. Exploration of the
molecular mechanism indicated that BA interrupted the
binding between GRP78 and PERK, which subsequently acti-
vated eIF2α phosphorylation, and suppressed downstream
signaling by β-catenin/c-Myc. In vivo studies also demon-
strated that BA inhibited lung colonization of breast tumor.
Our results provide novel insights of BA as a promising
molecular inhibitor of breast cancer metastasis via glycolysis
inhibition and also reveal a novel regulatory pathway
between GRP78 and glycolytic metabolism in cancer cells.

2. Materials and Methods

2.1. Cell Culture. Breast cancer cell lines MDA-MB-231 and
BT-549 and mammary epithelial cell line HBL-100 were pur-
chased from the American Type Culture Collection (ATCC).
The cells were cultured in the basal medium supplemented
with 10% fetal bovine serum and 1% penicillin and strepto-
mycin in a humidified incubator with 5% CO2 at 37

°C.

2.2. Cell Viability. Cell viability was detected by CCK-8 assay.
MDA-MB-231, BT-549, and HBL-100 were plated at a den-
sity of 3 × 103 cells into the 96-well plate. After attachment,
the cells were treated by serial concentration gradients of
BA (Xi’an Natural Field Bio-Technique Co. Ltd., Xi’an,
China) for 24 h, 48 h, and 72 h. The cell viability was
measured by the CCK-8 reagent (Beyotime Biotechnology,
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Shanghai, China) according to the absorbance value. Three
independent repetitive experiments were conducted.

2.3. Colony Formation Assay. 1000 cells were plated into each
well of a 6-well plate to disperse homogeneously.

Cells were firstly treated by 20 or 40 μM BA for 4 h and
then cultured with fresh medium for 2 weeks. The ultimately
formed colonies were fixed with 4% paraformaldehyde and
stained with Coomassie blue.

2.4. Wound Healing and Transwell Invasion Assay. For the
wound healing assay, cells were seeded into the 6-well plate
at a density of 4 × 105. When the cells grew to 100% conflu-
ence, a “wound” in a cell monolayer was created and its dis-
tance was compared at 0, 12, 24, and 48h to quantify the
migration rate of the cells with or without BA treatment.
To exclude the antiproliferative effects of BA on cell migra-
tion, the MDA-MB-231 and BT-549 cells were treated with
BA for 12 h before scratching. After removing BA, the same
amounts of cells were then cultured in serum-free medium
to avoid the influence of proliferation. For Transwell inva-
sion assays, the chambers were coated with a layer of Matrigel
prior to the experiment. Similarly, MDA-MB-231 and BT-
549 cells were pretreated by BA for 12h, then quantified
and seeded into the upper compartment with 200 μl serum-
free media (50000 cells per well). In contrast, the lower com-
partment contained 10% FBS. After 24 h incubation, the cells
that penetrated the filter were fixed with 4% paraformalde-
hyde, followed by 0.1% Coomassie blue staining for 20min.

2.5. TUNEL Analysis. MDA-MB-231 and BT-549 were
treated with BA 20 and 40 μM for 48 h. Then, the cell apopto-
sis was detected in situ by fluorescence using TUNEL analysis
as described previously [31].

2.6. Western Blotting Analysis. Equal amounts of protein
lysates (50μg) were loaded for SDS-PAGE and transferred
to a PVDF membrane (Millipore, Billerica, MA). The signals
were probed with primary antibodies and amplified by the
secondary antibodies. The primary antibodies included E-
cadherin antibody (20874-1-AP, Proteintech, Rosemont,
IL, USA), N-cadherin antibody (22018-1-AP, Proteintech,
Rosemont, IL, USA), vimentin antibody (10366-1-AP, Pro-
teintech, Rosemont, IL, USA), MMP-2 antibody (A6247,
ABclonal Technology Cambridge, Boston, USA), MMP-9
antibody (sc-13520, Santa Cruz Biotechnology, Santa Cruz,
CA, USA), β-actin antibody (4970, Cell Signaling Technol-
ogy, Danvers, MA, USA), β-catenin antibody (51067-2-AP,
Proteintech, Rosemont, IL, USA), c-Myc antibody (A1309,
ABclonal Technology Cambridge, Boston, USA), LDHA
antibody (3582, Cell Signaling Technology, Danvers, MA,
USA), LDHB antibody (sc-100775, Santa Cruz Biotechnol-
ogy, Santa Cruz, CA, USA), PDK-1 antibody (sc-293160,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), p-PDK-
1 antibody (3061, Cell Signaling Technology, Danvers, MA,
USA), GRP78 antibody (11587-1-AP, Proteintech, Rose-
mont, IL, USA), caspase-12 antibody (55238-1-AP, Protein-
tech, Rosemont, IL, USA), CHOP antibody (15204-1-AP,
Proteintech, Rosemont, IL, USA), PERK antibody (5683,
Cell Signaling Technology, Danvers, MA, USA), p-PERK

antibody (DF7576, Affinity Biosciences, Cincinnati, OH,
USA), eIF2α (11233-1-AP, Proteintech, Rosemont, IL, USA),
and p-eIF2α (AP0635, ABclonal Technology Cambridge,
Boston, USA). Finally, the bands were imaged though
the ECL Advance reagent (Tanon Science & Technology,
Shanghai, China) and quantified by optical densities using
the ImageLab software (Bio-Rad, Hercules, CA).

2.7. Gelatin Zymography. Cells were cultured in the 6-well
plate in 10% fetal bovine serum (FBS) with or without BA
treatment. At 70-80% confluence, the FBS was removed
and continue to grow cells in FBS-free media. After 48 h,
the conditioned media were centrifuged and collected. Adjust
conditioned media in all samples to the same protein concen-
tration at 10 μg/ml before SDS-PAGE. The 7.5% acrylamide
gel contained 8mg gelatin. The gel was washed 2 × 30 min
with washing buffer (2.5% Triton X-100, 50mM Tris-HCl,
pH7.5, 5mM CaCl2, and 1 μM ZnCl2) after electrophoresis
and then incubated in an incubation buffer (1% Triton X-
100, 50mM Tris-HCl, pH7.5, 5mM CaCl2, and 1μMZnCl2)
for 24 h at 37°C. Finally, the gel was stained with 0.5% Coo-
massie blue solution and in turn destained until bands can
clearly be seen.

2.8. RT-qPCR Analysis. Total RNA was extracted with
RNAiso Plus Reagent (Takara BIO, Japan) and transcribed
to complementary DNA in reverse using the reverse tran-
scription reagent kit with gDNA eraser (Takara BIO,
Japan). The RT-PCR was performed by Applied Biosystems
ViiA7 Real-Time PCR System (Thermo Fisher Scientific,
Hudson, USA) using SYBR® Premix Ex TaqTM II kit
(Takara BIO, Japan) in accordance with the manufacturer’s
instruction. The relative mRNA levels were compared using
the 2-ΔΔCt method.

2.9. Lactate Production Assays. Cells were treated with gradi-
ent concentration of BA for 48h and then lysed in lactate
assay buffer using VCX105 ultrasonic cell crusher (SONICS,
USA). The lactate production in cell lysates was measured
using the Lactate Assay Kit (Sigma-Aldrich, Shanghai,
China) according to the manufacturer’s instructions.

2.10. Cell Energy Phenotype Analysis. The cell energy pheno-
type profiles were analyzed though the oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR) values
that were obtained by the Seahorse XF24 extracellular flux
analyzer (Seahorse Bioscience). Briefly, 4 × 104 cells per well
were seeded into XF24 cell culture microplates and cultured
overnight. Meanwhile, the XF24 cartridge was equilibrated
with the calibration solution overnight at 37°C. On the
second day, cells were treated with 40 μM BA for 3 h prior
to the measurement. XF assay medium (containing 10mM
glucose, 2mM glutamine, and 1mM pyruvate in XF base
medium, pH = 7 4) was used to prepare the cellular stress-
inducing reagents, including 1.0 μM oligomycin, 1.0μM
carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone
(FCCP), 0.5μM antimycin A, and 0.5μM rotenone (final
concentration). All the reagents were loaded in the ports
according to the manufacturer’s instructions. After the
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measurement, cell numbers in each well were counted and
were used to normalize the OCR and ECAR values.

2.11. DARTS. The molecular target of BA was identified by
the DARTS strategy according to the protocol provided by
Lomenick et al. [32] and improved by ourselves [33]. Briefly,
the breast cancer cell lines MDA-MB-231 or BT-549 were
treated with gradient concentrations of BA (0.1-100 μM) or
DMSO control for 3 h. The cells were then lysed with prote-
ase and phosphatase inhibitors and diluted to the same
concentration of protein. Each sample was proteolyzed at
4°C for 30min with 0.05mg/ml pronase (Roche Diagnostics,
Indianapolis, USA). To find the protected bands, SDS-PAGE
was applied, and the gels were stained with Coomassie blue.
Protected bands were ultimately cut out and digested by tryp-
sin for mass spectrometry analysis.

2.12. Plasmid Construction and Transfection. shRNAs were
purchased from GenePharma (Shanghai, China), and recom-
binant plasmids of GRP78 were obtained from Vigene Bio-
sciences (Maryland, USA). The scrambled plasmids and
empty vector were used as control. MDA-MB-231 and BT-
549 cells were transfected with lipofectamine 3000 (Invitro-
gen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. The protein expressions were verified by western
blotting after transfection of 48 h.

2.13. Coimmunoprecipitation Analysis. Coimmunopreci-
pitation assay was carried out by the Pierce® Co-
Immunoprecipitation Kit (Thermo Fisher Scientific,
Hudson, NH, USA) according to the manufacturer’s instruc-
tions. In brief, GRP78 antibody was immobilized with resin.
Then, the immobilized resin was incubated with the MDA-
MB-231 and BT-549 cell lysates for detection of target pro-
tein PERK by immunoblotting.

2.14. Mouse Procedures. Five-week-old female Balb/c nude
mice were obtained from the Beijing Vital River Labora-
tory Animal Technology Co. Ltd. Experimental treatments
of all mice were reviewed and approved by the supervision
of the Institutional Animal Research Ethics Committee in
Guangzhou University of Chinese Medicine (Approval No.
20180912013). The mice were fed in the specific pathogen-
free ventilation chambers under an ambient temperature of
20-25°C and 45-50% relative humidity and given sterilized
food and water. To establish the lung colonization model of
breast cancer in mice, luciferase gene-tagged MDA-MB-231
cells were injected through the tail vein at the density of 2
× 105 once a week and continuing for 6 weeks. Starting from
the third week, the mice were segregated into 3 groups ran-
domly (n = 6), including vehicle (0.5% CMC-Na) and BA
125 and 250mg/kg. The dosage of BA is rationalized accord-
ing to previous studies [20]. BA was dissolved in DMSO and
then dispersed in 0.5% CMC-Na. The final amount of DMSO
was less than 5%. BA was administered by intraperitoneal
injection every other day for 4 weeks. At the end of treatment,
the mice were anesthetized by isoflurane inhalation and
injected intraperitoneally with D-luciferin (PerkinElmer,
Boston, USA) at 150mg/kg for luminescent imaging. We
imaged photonic emission with the IVIS-spectrum system

(PerkinElmer, Boston, USA) and quantified bioluminescence
of the lung colonization.

2.15. Immunohistochemistry and Hematoxylin-Eosin Staining.
Tumor specimens were fixed in 4% paraformaldehyde for
24 h, followed by the protocol as we described previously
[31]. Hematoxylin-eosin staining was conducted using
the Hematoxylin and Eosin Staining Kit (Beyotime Bio-
technology, Shanghai, China) according to the manufac-
turer’s instructions.

2.16. Immunofluorescence Analysis. The lung tissue speci-
mens were processed same as the immunohistochemistry
assays and then permeabilized with 0.25% Triton X-100, fol-
lowing being blocked with 5% bovine serum albumin
(Sigma-Aldrich, Shanghai, China) for 30min at room tem-
perature. Afterwards, the specimens were incubated with
primary antibodies overnight at 4°C and fluorescence-
conjugated secondary antibody for 1 h at room temperature
in the dark. The nucleus was stained by DAPI (Sigma-
Aldrich, Shanghai, China) for 20min at room temperature.
In the end, the fluorescence was visualized by the LMS710
confocal microscope (ZEISS, Jena, Germany).

2.17. Statistical Analysis. All statistical analyses were per-
formed using Statistical Product and Service Solutions (SPSS)
20.0 software. The one-way ANOVA and the Dunnett post
hoc test were performed for comparison among multiple
groups. ANOVA for repeated measurement was performed
towards repeated measures data. P < 0 05 was considered as
statistically significant.

3. Results

3.1. BA Inhibits Metastasis of Highly Aggressive Breast Cancer
Cells. Our previous study had shown that BA suppressed gly-
colysis metabolism of breast cancer cells [34]. Moreover,
emerging evidence implied that targeting tumor cell glycoly-
sis may be a promising strategy to inhibit metastasis. To
investigate the activity of BA against breast cancer metastasis,
two basal-like highly aggressive breast cancer cell lines MDA-
MB-231 and BT-549 were treated by BA for 24, 48, and 72 h.
The viability of both cell lines was inhibited in a time- and
dose-dependent manner (Figure 1(a)). However, BA had a
minimal influence on the proliferation of the nonmalignant
mammary epithelial cell line HBL-100 from 24 to 72h, con-
firming its highly selective inhibitory effect onmalignant cells
(Figure 1(b)). We next performed colony formation assays to
evaluate the long-term inhibitory effects of BA. Obviously,
colonies of MDA-MB-231 and BT-549 cells were signifi-
cantly suppressed by BA treatment (Figure 1(c)). In contrast,
BA only had a modest effect on the colony growth of HBL-
100, further validating the high safety profile of BA over a
long exposure period (Figure 1(d)). Based on these results,
the influence of BA on cancer cell migration and invasion
was analyzed by wound healing and Transwell migration
assays. We found that the extent of wound healing was
impaired (Figure 1(e)) and the number of invading cells pass-
ing through the membrane was significantly reduced follow-
ing BA treatment (Figure 1(f)). These findings suggested that
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BAmay also have the effect of inhibiting breast cancer metas-
tasis, in addition to glycolysis suppression.

3.2. BA Blocks Breast Cancer EMT and MMP Secretion.
Previous studies demonstrated that BA induced cancer cell
apoptosis and DNA damage directly. Similarly, our study
also identified the role of BA in inducing MDA-MB-231 and
BT-549 cell apoptosis via the TUNEL assay (Figure 2(a)).

Besides, H2AX was activated in response to BA treatment,
reflected by the presence of double-strand DNA breaks in
breast cancer cells (Figure 2(b)). On the other hand, western
blotting analysis also indicated that BA downregulated the
levels of N-cadherin and vimentin as the mesenchymal
markers, while increased E-cadherin which is an epithelial
marker (Figure 2(c)), validating the EMT inhibition effects
of BA in breast cancer cells. Since matrix metalloproteinases
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Figure 1: BA inhibits breast cancer cell proliferation and metastasis. (a) BA inhibited MDA-MB-231 and BT-549 cell viability in a dose- and
time-dependent manner. (b) BA exerted minimal inhibitory effects on HBL-100. (c, d) 20 and 40 μM BA significantly suppressed colony
growth of both MDA-MB-231 and BT-549, while it did not apparently affect the colony formation of HBL-100. (e) BA significantly
slowed down the confluence of wound healing, revealing its ability of migration resistance. (f) Transwell assay indicated that the number
of invasive cells was reduced by BA (the results were obtained from triplicate experiments and were represented as mean values ± SD;
∗P < 0 05 and ∗∗P < 0 01 as compared with control).
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(MMPs) promote tumor metastasis by degrading the extra-
cellular matrix (ECM), western blotting and gelatin zymo-
graphy were used to measure the relative amounts of
MMP-2 or MMP-9. The results indicated that BA signifi-
cantly decreased the expression of MMP-2 and MMP-9
secreted by breast cancer cells (Figures 2(c) and 2(d)). All
these findings further validated the activity of BA against
breast cancer metastasis.

3.3. BA Suppresses Metastasis through β-Catenin-Mediated
Aerobic Glycolysis. Based on the above findings, further stud-
ies were needed to clarify the intrinsic association of BA in
glycolysis and metastasis inhibition. Therefore, a panel of
metastasis-related genes was selected to identify the most
responsive gene influenced by BA using qPCR. Although
the relative expression of all metastasis-associated genes
was downregulated, β-catenin ranked first among the top five
responsive genes in both MDA-MB-231 and BT-549
(Figure 3(a)). Interestingly, aberrant β-catenin accumulation
and the activated downstream target gene of c-Myc are criti-
cal to cancer metastasis and metabolic alteration. We there-

fore assessed changes in their protein expression level in
response to BA treatment. Western blotting results showed
that BA dose-dependently downregulated the expression of
β-catenin and c-Myc (Figure 3(b)). Meanwhile, the levels of
glycolytic enzymes, including LDHA and p-PDK1/PDK1,
were all decreased in a dose-dependent manner by BA. In
contrast, LDHB that catalyzes the conversion of lactate to
pyruvate was increased (Figure 3(c)). Consistently, lactate
production in both MDA-MB-231 and BT-549 cells was sig-
nificantly reduced following BA administration (Figure 3(d)),
indicating that the glycolysis pathway may be inhibited by
BA. What is more important, the cell energy phenotype of
MDA-MB-231 and BT-549 was profiled by the extracellular
flux analyzer. The results demonstrated that the extracellular
acidification rate (ECAR), which reflects the glycolysis activ-
ity, was retarded following BA administration. Additionally,
the oxygen consumption rate (OCR), which is a marker of
mitochondrial respiration, was also decreased simulta-
neously (Figure 3(e)). Overall, these results implied that BA
switched the cells from an energetic metabolic state to a rela-
tively quiescent state, which might be closely correlated with
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Figure 2: BA induces breast cancer cell DNA damage and inhibits EMT and MMPs. (a) TUNEL assay showed that BA induced MDA-MB-
231 and BT-549 apoptosis (the scale bars indicate 50 μm). (b) BA broke double-strand DNA in MDA-MB-231 and BT-549 cells, as
represented by H2AX activation (the scale bars indicate 20 μm). (c) BA reversed EMT in breast cancer cells, represented by a dose-
dependent decrease in N-cadherin and vimentin and an increase in E-cadherin. MMP-2 and MMP-9 were also downregulated by BA
treatment. (d) Gelatin zymography assay indicated that BA downregulated MMP-2 and MMP-9 secreted by breast cancer cells.
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Figure 3: BA suppresses metastasis through β-catenin-mediated glycolysis. (a) The transcription levels of metastasis-related genes were
screened by qPCR after BA treatment. Almost all genes were suppressed, among which β-catenin ranked as the most repressed gene in
both cell lines (the results were obtained from triplicate experiments and were represented as mean values ± SD; ∗P < 0 05 as compared
with control). (b) Western blotting further confirmed that β-catenin and its downstream target c-Myc were downregulated by BA in a
dose-dependent manner. (c) BA dramatically attenuated the levels of glycolysis-related proteins including LDHA and p-PDK1/PDK,
whereas LDHB was elevated due to its function of converting lactate into pyruvate. (d) BA reduced the lactate production of MDA-MB-
231 and BT-549 cells in a dose-dependent manner (values were represented as mean ± SD; ∗P < 0 05 and ∗∗P < 0 01 as compared with
control). (e) The cell energy phenotype was profiled by the extracellular flux analyzer. BA reduced ECAR and OCR values, keeping breast
cancer cells in a relative quiescent energetic state.
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the downregulation of the metabolic switch c-Myc. And
β-catenin might be a panel point between the two hall
markers of glycolysis and metastasis in tumor cells.

3.4. BA-Induced GRP78 Overexpression Restrains Aerobic
Glycolysis of Breast Cancer Cells. Our previous study has
uncovered that GRP78 is a molecular target for chemosensi-
tizing effects of BA [31]. In the current study, it was also iden-
tified that GRP78 was the direct binding protein of BA in
highly aggressive breast cancer cells by DARTS strategy. Fol-
lowing BA treatment at 0.1-100 μM, a protected band around
70 kDa was presented (Supplementary Figure 1A). The
protected gel was subsequently identified as GRP78 by
LC/MS analysis (Supplementary Figure 1B).

Western blotting further confirmed that BA treatment
significantly enhanced GRP78 expression in MDA-MB-231
and BT-549 cells (Figure 4(a)). To determine the functional
relevance of GRP78 to BA inhibition of aerobic glycolysis
in breast cancer, MDA-MB-231 and BT-549 cells were trans-
fected with a recombinant GRP78 plasmid. Consistent with
the pharmacological action of BA, overexpressed GRP78
attenuated the levels of glycolytic-related proteins, including
LDHA, p-PDK1/PDK1, and c-Myc (Figure 4(b)). In contrast,
GRP78 knockdown promoted the expression of glycolysis-
related proteins and abolished the inhibitory effects of BA
(Figure 4(c)), indicating the critical role of GRP78 in medi-
ating the pharmacological action of BA. We next studied
the possible mechanism by which GRP78 induction inhib-
ited the switch activation of β-catenin/c-Myc for glycolysis.
It is known that GRP78 would activate PERK signaling
under ER stress and the activated PERK would phosphor-
ylate eIF2α, resulting in the inhibition of protein transla-
tion. Therefore, we first verified that BA activated PERK
signaling and in turn promoted phosphorylation of eIF2α
(Supplementary Figure 2A), which was also in line with
our previous study that BA could activate ER stress
apoptotic pathway. In addition, BA-induced downregulation
of β-catenin was reversed by ISRIB, a specific inhibitor of
PERK (Figure 4(d)). Conversely, salubrinal, a small molecule
compound enhancing eIF2α phosphorylation, attenuated
β-catenin expression (Figure 4(e)). Altogether, these results
suggested that BA-induced downregulation of β-catenin
was mediated by the GRP78/PERK/eIF2α pathway.
Moreover, GRP78 and PERK could be coprecipitated in the
highly aggressive breast cancer cells, and their interaction
was interrupted following BA treatment in a dose-dependent
manner (Figure 4(f), Supplementary Figure 2B). These
findings suggested that BA inhibited the β-catenin/c-Myc
pathway by interrupting the binding between GRP78 and
PERK and ultimately suppressed the glycolysis of breast
cancer cells.

3.5. BA Suppresses Breast Cancer Metastasis In Vivo. Given
the above results and the inhibitory effects of BA on cancer
cell invasion and migration in vitro, a lung colonization
model of breast cancer was established by injecting
luciferase-labeled MDA-MB-231 cells through the lateral tail
vein. The doses of BA were chosen according to the litera-
tures [20] and our preliminary experiment. In fact, BA at

250mg/kg did not induce observable morphological varia-
tions in primary organs of mice. In addition, BA at 250mg/kg
did not lead to noticeable changes on hematological, hepatic,
and renal functions in mice (data not shown). After 4 weeks
of treatment by BA, bioluminescent imaging demonstrated
thatBAsignificantly inhibitedbreast cancer cell colonygrowth
in the lungs, representing as reduced luminescent intensity
compared with vehicle-treated controls (Figures 5(a)–5(c)).
In addition, hematoxylin and eosin staining confirmed that
the pulmonary metastasis lesions were remarkably sup-
pressed after BA administration (Figure 5(d)).

3.6. BA Retards Breast Cancer Lung Colonization by
GRP78/β-Catenin/c-Myc Signaling. Based on the in vivo
results, immunohistochemistry analysis further revealed that
MMP-2 and MMP-9 expressions were reduced in the lung
colonization lesions after BA treatment, implying that BA
might diminish the aggressiveness of breast cancer cells
in vivo (Figure 6(a)). Immunofluorescence results further
validated that BA suppressed the levels of vimentin and ele-
vated E-cadherin expression (Figures 6(b) and 6(c)), con-
firming the blocking effect of BA in EMT process in vivo.
The expressions of GRP78, β-catenin, and c-Myc were also
detected in the lung colonization lesions after BA treatment.
In line with previous in vitro findings, BA was found to
enhanceGRP78 expression and significantly inhibitβ-catenin
and c-Myc expression in the lung lesions (Figures 6(d)–6(f)),
suggesting that the metastasis inhibition effects of BA were
closely correlated with GRP78-mediated glycolysis inhibi-
tion. In conclusion, our results suggested that BA inhibits
breast tumor metastasis in vivo and GRP78 might be the crit-
ical target of BA associating with its anticancer pharmacolog-
ical action.

4. Discussion

Metabolic reprogramming is required for both malignant
transformation and tumor development, including invasion
and metastasis [35]. In this study, we found that BA
restrained breast cancer metastasis by inhibiting aerobic gly-
colysis. Moreover, relatively high doses of BA applied in vitro
and in vivo seemed to be acceptable due to its low toxicity.
Also, numerous derivatives of BA have been validated with
satisfactory anticancer efficacy. It is worth noting that a
PEGylated derivative of BA possessed excellent water solubil-
ity of 160.2mg/ml (about 750-fold higher than BA) and
showed a high therapeutic index in a lung cancer xenograft
model [36]. In addition, the structure-activity relationship
analysis found that chemical modifications on the C-2 site
enhanced the antitumor potency of BA [37]. However, few
studies have examined why BA possesses selective cytotoxic-
ity against cancer cells. Intriguingly, one study implied that
BA might exert higher efficiency in low pH environments
(around 6.8) [38]. Similar with this finding, our study also
found that BA remarkably decreased cancer cell lactate pro-
duction and the expression of glycolytic enzymes, which
resulted in cell energy phenotype switching to a quiescent
status. More importantly, our study identified GRP78, which
is a glucose-regulated protein, as a direct interacting target of
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Figure 4: GRP78 overexpression suppresses aerobic glycolysis by activating PERK signaling to inhibit β-catenin. (a) Western blotting
analysis verified that BA significantly enhanced GRP78 expression. (b) Overexpressed GRP78 led to the downregulation of c-Myc and
subsequently decreased LDHA and p-PDK1/PDK1 but increased LDHB expression. (c) On the contrary, GRP78 knockdown reversed the
inhibition of c-Myc, LDHA, and p-PDK1/PDK1 and the enhancement of LDHB induced by BA. (d) ISRIB (100 nM), the specific PERK
inhibitor, inhibited eIF2α phosphorylation and reversed β-catenin inhibition induced by BA. (e) Like BA, salubrinal (75 μM) inhibited
eIF2α dephosphorylation and therefore downregulated β-catenin expression. (f) Coimmunoprecipitation assay revealed the binding of
GRP78 and PERK, which was disrupted by BA in a dose-dependent manner (the results were obtained from triplicate experiments and
were represented as mean values ± SD; ∗P < 0 05 and ∗∗P < 0 01).
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BA, further manifesting the central role of glucose metabo-
lism in mediating the selective killing effects of BA in cancer
cells. Actually, other pharmacological studies have also dem-
onstrated that BA could reduce prostate cancer angiogenesis
via inhibiting the HIF-1α/stat3 pathway [39]. A proteomic
study also implied that a ROS-mediated pathway was the
main target responsible for mediating the anticancer activi-

ties of BA [40]. All these findings suggested that the antican-
cer pharmacological mechanism of BA might be associated
with stress signaling.

Aberrant cellular stress is another hallmark of cancer
[41]. The rapid proliferation of cancer cells creates a rela-
tively nutrient-starved microenvironment, causing cancer
cells to adapt to this “stressful” condition by activating ER
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Figure 5: BA inhibits breast cancer lung colonization in vivo. (a) Bioluminescent imaging indicated that BA significantly reduced breast
cancer cell lung colonization compared with vehicle-treated controls. (b) Logarithmic value of luminescent intensity after treatment with
vehicle or BA (values represented as the mean ± SD, n = 6, ∗∗P < 0 01). (c) Hematoxylin and eosin staining demonstrated the reduction of
lung metastatic lesions in BA-treated mice (the scale bars indicate 100μm).
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stress signaling [42]. Emerging evidence has demonstrated
that ER stress influences cellular metabolism through various
mechanisms. ER stress is known to stimulate lipogenesis
through the unfolded protein response (UPR), thereby pro-
viding lipids for ER expansion. Mechanistic studies have
revealed that ER stress can promote fatty acid and cholesterol

biosynthesis through two major transcriptional regulators:
SREBP1 and SREBP2 [43, 44]. In addition, PERK, as the
sensor of ER stress, has also been reported to be significant
for lipogenic tissue development, since PERK knockout
impairs mouse mammary gland lipogenesis during preg-
nancy, which leads to a reduction of free fatty acid in milk
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Figure 6: BA inhibits glycolysis signaling in metastatic lesions by targeting GRP78/β-catenin/c-Myc signaling. (a) MMP-2 and MMP-9
expressions were attenuated by BA administration in the lung colonization lesions (the scale bars indicate 20μm). (b, c)
Immunofluorescence showed that BA increased E-cadherin expression in the lung tissue but reduced the expression of vimentin,
suggesting that EMT in breast cancer was blocked by BA in vivo (the scale bars indicate 10 μm). (d–f) Immunofluorescence
demonstrated that BA significantly elevated GRP78 levels and decreased β-catenin/c-Myc signaling in lung metastatic lesions (the scale
bars indicate 10μm).
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[45]. Furthermore, ER stress would facilitate physical cou-
pling and calcium transfer fromER tomitochondria, resulting
in augmented mitochondrial respiration and bioenergetics,
thereby enhancing adaptive ATP production [46]. However,
it is still unclear how ER stress affects cancer aerobic glycoly-
sis. In the present study, we reported that the ER stress protein
GRP78 inhibited aerobic glycolysis by promoting PERK acti-
vation, which impaired β-catenin production and conse-
quently inhibited downstream c-Myc-mediated glycolysis
(Figure 7). Our study proposes a regulatory relationship
between ER stress and glycolysis metabolism in tumor cells
and highlights that targeting ER stress to inhibit cancer aero-
bic glycolysis might be a novel strategy for cancer therapy.

GRP78, a biomarker of ER stress, is highly expressed in
multiple malignancies. Additionally, GRP78 has also been
reported to play an important role in cancer metastasis. For
example, GRP78 was identified as a potential diagnostic bio-
marker for the early detection of melanoma metastasis [47].
High expression of GRP78 was also detected in the metastatic
phenotype of prostate cancer [14], hepatocellular carcinoma
[48], and esophageal squamous cell carcinoma [49]. In our
study, the precise target of BA was identified as GRP78 by
using DARTS technology. However, the antimetastasis
effects of BA were found to be correlated with enhanced
GRP78 expression. Meanwhile, GRP78 overexpression could
suppress the expression of glycolytic proteins including
LDHA, PDK1, and c-Myc. These results indicated that
GRP78 overexpression could inhibit cancer glycolysis. Our
findings kept consistency with the report by Li et al. [17],
which found that GRP78 overexpression induced a decline
in the PKM2 level in colorectal cancer cells. What is more
important, the overexpression of GRP78 also downregulated
the LDHA mRNA expression, accompanied by reduced lac-
tic acid secretion. However, some studies also reported that
GRP78 overexpression could enhance glycolysis activity.
For example, Miharada et al. found that Cripto/GRP78 sig-
naling could improve glycolysis activity in hematopoietic
stem cells by regulating HIF-1α [50, 51]. As well known,

GRP78, as the stress-responsive chaperone, plays dual roles
in cancer initiation and development. To adapt to the hyp-
oxic and glucose-deprivation microenvironment in tumor
tissues, GRP78 was activated to degrade the unfolded protein
to satisfy the nutrient requirements of cancer cells. Therefore,
GRP78 upregulation was usually found in multiple cancer
cells and associated with drug resistance and metastasis and
angiogenesis. However, when GRP78 was overactivated, it
will trigger the ER stress apoptotic pathway and induce cell
death. Furthermore, the activation of the PERK/eIF2α path-
way in the ER stress signaling would result in the inhibition
of β-catenin translation, which led to c-Myc-mediated
glycolysis suppression (Figure 7). Since the expression of
GRP78 is significantly higher than normal cells, further exog-
enous overexpression of GRP78 would make cells to be in an
excessive stressful situation and towards apoptosis finally.
Therefore, selectively triggering ER stress by targeting
GRP78 in cancer cells might be a promising approach for
future drug discovery. Although BA demonstrated selective
killing effects in cancer cells, its specificity towards GRP78
and targeting for drug delivery still needs to be investigated.

5. Conclusions

In conclusion, this study uncovered the mechanism of BA
in inhibiting breast cancer metastasis by targeting GRP78
to trigger ER stress signaling, subsequently suppressing aer-
obic glycolysis. Our results shed new light on BA antimetas-
tasis through suppressing aerobic glycolysis and also
highlight GRP78 as a potential regulatory target for tumor
glucose metabolism.
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