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ABSTRACT: 10-Arylbenzo[h]quinolines were synthesized by
cross-coupling of ethyl benzo[h]quinoline-10-carboxylate with
arylboronic acids via group-directed Ni(0) catalyzation. The
catalytic system combining Ni(COD)2 (10 mol %) with PCy3
(20 mol %) and t-BuOK (3 equiv) was optimal for the above
transformations. A series of arylboronic acids reacted with ethyl
benzo[h]quinoline-10-carboxylates for the production of various
substituted 10-phenyl[h]quinolines in moderate and good yields under optimized reaction conditions.

■ INTRODUCTION
Transition-metal-mediated cross-coupling of aryl halides and
arylboronic acids, namely, the Suzuki−Miyaura reaction, has
been widely applied in the construction of organic materials,
pharmaceuticals, and natural products as a powerful and
reliable C−C bond formation method.1 Although the use of
organic halides as electrophiles dominates for these cross-
coupling reactions, in the past few decades, some other
compounds have also been found to react with arylboronic
acids as alternative electrophiles for the C−C bond formation.2

For example, several advanced methods have been developed
to use phenols or anilines as the electrophiles for cross-
coupling with arylboronic acids.3 The in situ generated
intermediates of aromatic nitriles, tertiary alcohols, aromatic
aldehydes, and amides have also been found to react with
arylboronic acids to form C−C bonds in the presence of
transition metals.4 The transition-metal-mediated decarbox-
ylation intermediates of aromatic acids and anhydrides were
found to react with arylboronic acids to give cross-coupling
products smoothly.5 The use of these substrates other than aryl
halides as electrophiles in coupling reactions has the following
advantages: First, these reactions do not produce metal halide
wastes that exert a strong corrosive effect on metal reactors and
thus are conducive to future industrial production. Second,
considering that these reactions use readily available raw
materials to construct useful complex molecules through rapid
transformation, production costs are considerably reduced.6

Hence, the development of new synthetic strategies and routes
that use different electrophiles for cross-coupling with
arylboronic acids is a continuous pursuit in synthetic organic
chemistry.
Esters are cheap and abundant in nature and are the most

commonly used organic substrates. Therefore, there is a
growing interest in using esters as electrophiles for coupling
with arylboronic acids.7 One such effort involves the cross-
coupling of this O-acetylated phenol derivative with phenyl-

boronic acid to selectively oxidize the aryl C−O bond of the O-
acetylated phenol in the presence of a metal (Scheme 1, i).8 In

addition, some active esters, such as 4-nitrophenyl esters,
benzoic acid phenyl esters, and 2-pyridyl esters, when there is a
suitably positioned directing group, are used as coupling
electrodes to arylboronic acids, which are converted to ketones
by the activation of acyl C−O bonds (Scheme 1, ii).9 As far as
we know, esters can also form carbon−carbon bonds through

Received: February 24, 2022
Accepted: May 30, 2022
Published: June 13, 2022
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direct carbon−carbon bond activation or decarbonylation
pathways, which involves the loss of the carbonyl group in the
form of carbon monoxide (Scheme 1, iii).10 Cavallo and
Rueping found that ligands play an important role in the
chemoselective C(acyl)−O bond vs C(aryl)−C bond cleavage
of aromatic esters in nickel-catalyzed C(sp2)−C(sp3) cross-
couplings with alkyl boron compounds.11 In 2012, our group
reported a chelation-assisted rhodium-catalyzed C−C bond
activation of ethyl benzo[h]quinoline-10-carboxylate that
provided a cross-coupling biaryl compound when reacted
with organoboron compounds.12 Although the use of a
rhodium catalyst gives high yields in this reaction, there is a
lack of methods that are inexpensive and with readily accessible
catalysts and can be performed with high cross-coupling
selectivity.13 Herein, we report the cross-coupling of ethyl
benzo[h]quinoline-10-carboxylate with arylboronic acids in the
presence of a Ni(0) catalyst.

■ RESULTS AND DISCUSSION
After screening the decarbonylative cross-coupling reaction of
ethyl benzo[h]quinoline-10-carboxylate (1a) and phenyl-
boronic acid (2a), Ni(COD)2 (10 mol %) and PCy3 (20
mol %) as the catalyst in combination with t-BuOK (3.0 equiv)
as the base were selected as the optimal catalytic system for the
current transformation (Table 1). In the optimal catalytic
system, the reaction of 1a and 2a in toluene at 120 °C for 20 h
gave the desired decarbonylative cross-coupling biaryl product
3a in 81% yield. Replacing phenylboronic acid with phenyl-
boronic acid pinacol ester (PhBpin) and triphenylboroxine

(PhBO)3 resulted in 72 and 75% product yields, respectively,
under similar reaction conditions. The use of other nickel
compounds, such as NiI2, NiCl2, Ni(OAc)2, and Ni(acac)2, as
catalysts in place of Ni(COD)2 provided low yields (0−10%)
of the decarbonylative cross-coupling products, indicating that
Ni(0) plays a catalytic role in such a reaction. However, the in
situ generation of Ni(0) via the reduction of Ni(OAc)2 with Zn
powder showed low catalytic activity in this reaction, and the
desired product was isolated in 15% yield. Notably, no
decarbonylative cross-coupling product was isolated when
Ni(PPh3)4, a frequently used Ni(0) complex, was utilized in
the reaction. This phenomenon implied that the ligand plays
an important role in this nickel-catalyzed reaction. Therefore,
different ligands were applied in the coupling reaction. When a
bisphosphine ligand, such as 1,2-bis(diphenylphosphino)
ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp),
rac-2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), or
9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (xantphos),
was introduced into the reaction mixture to substitute for
PCy3, the desired coupling products were obtained in
moderate yields that ranged from 43 to 55%. The substitution
of PCy3 with 1,3-bis(2,4,6-trimethylphenyl) imidazolium
chloride (IMes·HCl) or 1,3-bis(2,6-diisopropyl phenyl)-
imidazolium chloride (IPr·HCl), which could generate addi-
tional electron-donating NHC ligands in the presence of t-
BuOK, did not give positive results and resulted in the
isolation of the desired coupling product in 60 and 61% yields,
respectively. The type and amount of the base also had a
significant effect on the yield of this catalytic coupling reaction.
The coupling reactions gave product 3a in 55 and 57% yields
when K3PO4 and K2CO3 were used instead of t-BuOK,
respectively. When t-BuONa and Cs2CO3 were used as bases
in this reaction, the yields of 3a were 71 and 76%, which were
lower than the yields when t-BuOK was used as the base.
Reducing the amount of the base t-BuOK to 2 equiv caused
the product yield to drop to 73%. The coupling reaction
yielded no product when the base was completely removed
from the reaction mixture. Notably, the self-coupling product
of phenylboronic acid significantly increased when the amount
of the base applied exceeded 3 equiv. This result was very
different from that obtained for a similar reaction catalyzed by
rhodium,12 which give high product yields in the absence of a
base. This difference may indicate that this coupling reaction
may have a different mechanism. Futhermore, copper salt was
an effective additive to promote decarbonylation in the
rhodium system,12 so we tried to add CuI as an additive and
the results suggested that the yield of the product was not
ideal. Different solvents also provided different coupling
product yields. The reaction furnished 3a in 70% yield in
1,4-dioxane but was inhibited completely in acetonitrile.
With the optimal catalytic conditions in hand, the effects of

various substituted groups on arylbononic acids and ethyl
benzo[h]quinoline-10-carboxylate on this decarbonylative
cross-coupling reaction were investigated, and the results are
shown in Table 2. When phenylboronic acids with a methyl
group at the p-, m-, or o-position were applied in coupling with
1a, the desired products 3b, 3c, and 3d were obtained with 78,
70, and 50% yields, respectively. These results demonstrated
that the yields of the corresponding products were decreased
by slightly increasing the steric hindrance of phenylboronic
acids. The yield of the desired product 3e acquired with
phenylboronic acids with the 2,5-Me substitution was 69%,
which was lower than that obtained with phenylboronic acids

Table 1. Optimization of the Reaction Conditions for the
Cross-Coupling of Ethyl Benzo[h]quinoline-10-carboxylate
with Phenylboronic Acida

deviation from “standard conditions”
yield
(%)a

substrate in place of 2a none 81
PhBpin 72
(PhBO)3 75

precatalyst in place of
Ni(COD)2

Nil2, NiCI2, Ni(OAc)2, Ni(acac)2 0−10
Ni(OAc)2 + Zn (3 equiv) 15
Ni(PPh3)4 0

ligands in place of PCy3 dppe, dppp, BINAP, xantphos 43−55
IMeS·HCI, IPr·HCI 60−61

base in place of t-BuOK K3PO4 55
K2CO3 57
t-BuONa 71
Cs2CO3 76

reduce the usage of base 0 equiv 0
2 equiv 73

additive Cul 10 mol % 61
1 equiv 18

replace toluene with other
solvents

acetonitrile 0
1,4-dioxane 70

aReaction conditions: 1a (0.1 mmol), 2a (2.3 equiv), catalyst (10 mol
%), ligand (20 mol %), and base (3.0 equiv) in 0.5 mL of toluene, 120
°C, 20 h under N2; isolated yields.
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without substitution. Steric hindrance may affect the trans-
metalation of phenylboronic acids to the metal center, thereby
decreasing the product yield. Phenylboronic acids with n-Bu at
the p-position reacted with 1a to produce 3f with 76% yield. 1a
could also react with phenylboronic acids containing a t-Bu
and i-Pr groups to produce the corresponding products 3g and
3h with 75 and 73% yields. In addition, the reaction of 4-Ph-
substituted phenylboronic acid with 1a yielded product 3i in
72% yield. These results indicated that the substitution of a
bulky alkyl or aryl at the p-position of phenylboronic acid has
little effect on the product yield of the reaction. The product 3j

was obtained in 81% yield using a phenylboronic acid with an
electron-donating p-MeO group. Phenylboronic acid with an
electron-withdrawing −CF3O group at the m-position
produced the desired product 3k with good yield (79%).
These experiments indicated that the lack or enrichment of the
electricity of phenylboronic acid has little effect on the
coupling reaction. Other boronic acids, such as naphthalen-2-
ylboronic acid and naphthalen-1-ylboronic acid, also reacted
with 1a smoothly to produce 3l and 3m in yields of 75 and
71%, respectively. Penylboronic acids with fluorine substitu-
tions, such as 4-F, 3,4,5-F, or 3,4-F, produced 3n, 3o, and 3p

Table 2. Cross-Coupling of Ethyl Benzo[h]quinoline-10-carboxylates with Arylboronic Acida,b

aReaction conditions: 1 (0.10 mmol), 2 (0.23 mmol), Ni(COD)2 (10 mol %), PCy3 (20 mol %), t-BuOK(3 equiv) in 0.5 mL toluene at 120 °C for
20 h under N2.

bIsolated yields.
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with 80, 84, and 81% yields, respectively. The F-substituent
was shown to have little effect on the yield. However, when
phenylboronic acids with 4-Cl and 4-Br substitutions were
utilized in the reaction with 1a, the corresponding coupling
products 3q and 3r were furnished in 53 and 40% yields. The
low yields may be due to the serious self-coupling side
reactions of phenylboronic acid with a −Cl or −Br substituent
in the presence of a Ni(0) catalyst. Phenylboronic acid with m-
NO2, a strong electron-withdrawing group, could also react
with 1a smoothly to give the desired product 3s in 72% yield.
A 3,4-CF3-substituted phenylboronic acid also gave the

desired product 3t in 81% yield. The two examples indicated
that this decarbonylative cross-coupling reaction was compat-
ible with strongly electron-deficient boronic acids. The 4-
COOEt-substituted phenylboronic acid also produced the
desired product 3u but with moderate yield (50%). The
coordination of the COOEt group may prevent the trans-
metalization of phenylboronic acid to the metal center, thereby
decreasing the product yield. Unfortunately, when the −CN,
−SMe, and −CONH2-substituted phenylboronic acids were
used as substrates, the desired cross-coupling products were all
not observed. Heterocyclic and alkenyl-substituted phenyl-
boronic acids were suitable candidates and gave the desired
products 3y and 3z in 31 and 76% yields, respectively. Other
ethyl benzo[h]quinoline-10-carboxylate derivatives, such as 5-
methyl, 6-(naphthalen-2-yl), or 6-phenyl substitutes, also
reacted with phenylboronic acid smoothly to produce 4a, 4b,
and 4c in yields of 80, 81, and 80%, respectively, indicating that
alkyl or aryl substitutions at the benzo[h]quinoline framework
has little effect on the coupling reaction. This result is
consistent with the observation for the rhodium (I) catalytic
system in our previous report. The reaction was also applied to
ethyl 2-(2-pyridinyl)benzoate (5) as a coupling partner to give
product 5a in 51% yield.
As a leaving group of the ester group via the C−C bond

cleavage of benzoquinoline esters, phenyl benzo[h]quinoline-
10-carboxylate (1c) is somewhat less reactive compared to
ethyl benzo[h]quinoline-10-carboxylate (1a) and methyl
benzo[h]quinoline-10-carboxylate (1b). However, the reaction
of ethyl benzoate (6a) with 4-methoxyphenylboronic acid
under the same optimal reaction conditions gave only 15% of
the coupling product (7a). It is proved that the presence of the
guide group in this substrate facilitates carbon−carbon bond
activation (Scheme 2).
A plausible catalytic mechanism is proposed and shown in

Figure 1, which is based on the current experiments and

previous reports on decarbonylative coupling of ester and
boronic acids. The formation mechanism of 3 includes the
following steps: First, the highly catalytically active catalyst A is
formed through the ligand exchange of Ni(COD)2, the
catalytic precursor, with PCy3. Then, the nitrogen of ethyl
benzo[h]quinoline-10-carboxylate coordinates with the metal
center of catalyst A. In this case, the Ni(0) metal center and
the C(acyl)−O bond are brought into proximity. The
following oxidative addition between the C(acyl)−O bond
and the Ni(0) metal center produces the six-membered cyclic
chelated Ni(II) complex B. Subsequently, the carbonyl group
of the ester fragment in B migrates to the Ni(II) metal center
to give the five-membered cyclic chelated Ni(II) intermediate
C. This process is accompanied by the departure of a PCy3
ligand. Next, CO is exchanged and released with the PCy3
ligand to produce the intermediate D. The transmetalation of
arylboronic acid into the Ni(II) metal center in the presence of
t-BuOK yields the aryl nickel complex E and releases a
K[B(OH)2(OEt)(O-t-Bu)] complex at the same time. Finally,
the reductive elimination of the aryl and the benzo[h]quinolin-
10-yl group from intermediate E yields the desired cross-
coupling product 3a, and the regenerated intermediate A can
further coordinate with 1a to enter another catalytic cycle. It is

Scheme 2. Reactivities of 1a, 1b, 1c, and 6a with (4-Methoxyphenyl) Boronic Acid

Figure 1. Plausible mechanism for the decarbonylative cross-coupling
reaction of ethyl benzo[h]quinoline-10-carboxylate and arylboronic
acids via chelation-assisted nickel(0)-catalyzed C(acyl)−C bond
cleavage
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worth to note that the use of 3 equiv of the base and an excess
amount of arylboronic acid are beneficial to the trans-
metalation of D into E, thereby providing a high yield of the
cross-coupling product. This reaction is significantly different
from a similar reaction catalyzed by rhodium without the use
of an additional base. This difference implies that the rate-
determining steps of these two catalytic reactions may be
different. In the proposed reaction mechanism, the slow
process from D to E coincides with the reaction that requires a
large excess amount of base and arylboronic acids. PCy3 may
play an important role in the release of CO by re-cooperating
with the Ni (II) metal center of intermediate C.

■ CONCLUSIONS

We have developed a new method for the synthesis of biaryl
derivatives through decarbonylative cross-coupling of aromatic
esters and arylboronic acids via chelation-assisted Ni(0)-
catalyzed C(acyl)−C bond cleavage. Ni(COD)2 (10 mol %)
and PCy3 (20 mol %) catalysts in combination with t-BuOK
(3.0 equiv) were selected as the best catalytic system for the
current conversion. Under optimal catalytic conditions, a series
of arylbononic acids bearing various substituted groups reacted
with ethyl benzo[h]quinoline-10-carboxylate derivatives to
produce various 10-aryl-substituted benzo[h]quinolines with
moderate-to-good yields. Although these reactions were
sensitive to hindrance, arylboronic acids with electron-
withdrawing or electron-donating groups were compatible
with this reaction. The ligand was observed to play an
important role in achieving high yields. A large and more
electron-donating phosphine ligand, PCy3, was identified to be
the best ligand for this transformation. A reasonable catalytic
mechanism, which included C(acyl)−O oxidation, decarbon-
ylation, ligand exchange, transmetalization, and reductive
elimination, was proposed to explain the formation of cross-
coupling products. Although the yield of the nickel-catalyzed
reaction is slightly lower, it is more competitive than the
rhodium-catalyzed reaction because nickel catalysts are cheap
and readily available. Our laboratory is currently further
studying the application of this reaction in the generation of
benzoquinoline derivatives with fluorescence properties.

■ EXPERIMENTAL SECTION

General Information. Unless otherwise noted, all
commercially available reagents were used as received without
further purification. Toluene was dried from sodium/
benzophenone under a nitrogen (N2) atmosphere and distilled
prior to use. All reactions were carried out under an
atmosphere of N2 with oven-dried glassware and anhydrous
solvents. Reactions were monitored by TLC with silica gel 60
F254. Silica gel (200−300 mesh) was used for column
chromatography. 1H NMR, 19F NMR, and 13C NMR were
recorded in deuterated solvents on a 400 MHz Bruker DRX-
400 spectrometer. Electrospray mass spectra (ESI-MS) of
products were recorded on Bruker MiorOTOF-Q II. The
starting materials were synthesized and purified according to
the corresponding literature procedures, and the 1H NMR and
13C NMR data were consistent with the literature.14−16

Ethyl Benzo[h]quinoline-10-carboxylate (1a). The product
was prepared according to the literature14 as a yellow solid
(86% yield). 1H NMR (400 MHz, chloroform-d) δ 8.90 (dd, J
= 4.4, 1.8 Hz, 1H), 8.17 (dd, J = 8.0, 1.8 Hz, 1H), 7.97 (dd, J =
7.3, 2.1 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.74−7.65 (m, 3H),

7.51 (dd, J = 8.1, 4.3 Hz, 1H), 4.60 (q, J = 7.2 Hz, 2H), 1.43 (t,
J = 7.2 Hz, 3H). 13C NMR (101 MHz, chloroform-d) δ
172.36, 147.73, 145.12, 135.55, 134.02, 132.55, 129.33, 127.76,
127.72, 127.45, 126.97, 126.18, 126.11, 121.99, 61.50, 14.28.

Ethyl 2-(2-Pyridinyl)benzoate (5). The product was
prepared according to the literature17 as a yellow solid (86%
yield). 1H NMR (400 MHz, chloroform-d) δ 8.63 (dt, J = 5.0,
1.2 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.74 (td, J = 7.7, 1.9 Hz,
1H), 7.59−7.42 (m, 4H), 7.29−7.19 (m, 1H), 4.13 (q, J = 7.1
Hz, 2H), 1.05 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz,
chloroform-d) δ 168.82, 158.87, 149.00, 140.98, 136.21,
131.79, 131.09, 129.77, 128.31, 122.85, 122.02, 60.96, 13.82.

Experimental Procedure for the Ni-Catalyzed Benzo-
[h]-quinoline-10-carboxylic Acid Ethyl Ester with Sub-
stituted Phenylboronic Acids. Substituted ethyl benzo[h]-
quinoline-10-carboxylate (0.1 mmol), substituted phenyl-
boronic acid (0.23 mmol), PCy3 (0.02 mmol), t-BuOK (0.3
mmol), and Ni(COD)2 (0.01 mmol) were successively added
into a 10 mL sealed tube using anhydrous toluene (0.5 mL) as
the solvent. The mixture was vigorously stirred at 120 °C
under a nitrogen atmosphere to the end of the reaction.
Organic solvents were removed in vacuo, and then the residue
was purified by silica gel column chromatography to give the
desired product.

10-Phenylbenzo[h]quinolone (3a). White solid, 20.5 mg
(yield: 81%). 1H NMR (400 MHz, chloroform-d) δ 8.45 (dd, J
= 4.3, 2.1 Hz, 1H), 8.09 (dd, J = 8.1, 2.3 Hz, 1H), 7.94 (d, J =
7.9 Hz, 1H), 7.87 (dd, J = 8.8, 2.1 Hz, 1H), 7.74−7.64 (m,
2H), 7.58 (d, J = 7.3 Hz, 1H), 7.42 (ddd, J = 11.8, 8.9, 6.7 Hz,
5H), 7.32 (dt, J = 6.1, 3.2 Hz, 1H). 13C NMR (101 MHz,
chloroform-d) δ 146.93, 146.86, 146.48, 141.74, 135.25,
135.03, 131.55, 129.06, 128.77, 128.34, 128.01, 127.44,
127.27, 127.09, 125.99, 125.74, 121.13.

10-(p-Tolyl)benzo[h]quinolone (3b). Colorless oil, 21 mg
(yield: 78%). 1H NMR (400 MHz, chloroform-d) δ 8.45 (dd, J
= 4.3, 1.9 Hz, 1H), 8.05 (dd, J = 8.0, 1.9 Hz, 1H), 7.88 (dd, J =
7.8, 1.5 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.65 (dd, J = 8.3, 5.8
Hz, 2H), 7.53 (dd, J = 7.3, 1.5 Hz, 1H), 7.32−7.18 (m, 5H),
2.45 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ 146.90,
146.85 143.46, 141.73, 135.10, 135.05, 131.68, 129.09, 128.65,
128.33, 128.12, 127.81, 127.23, 127.06, 125.90, 121.04, 21.34.

10-(m-Tolyl)benzo[h]quinolone (3c). White solid, 18.8 mg
(yield: 70%). 1H NMR (400 MHz, chloroform-d) δ 8.49 (dd, J
= 4.3, 1.9 Hz, 1H), 8.10 (dd, J = 8.0, 1.9 Hz, 1H), 7.94 (dd, J =
7.9, 1.5 Hz, 1H), 7.88 (d, J = 8.8 Hz, 1H), 7.75−7.66 (m, 2H),
7.59 (dd, J = 7.3, 1.5 Hz, 1H), 7.38−7.29 (m, 2H), 7.26 (t, J =
2.0 Hz, 1H), 7.21 (t, J = 7.2 Hz, 2H), 2.45 (s, 3H). 13C NMR
(101 MHz, chloroform-d) δ 146.91, 146.31, 141.87, 136.87,
135.21, 135.05, 131.58, 129.37, 129.07, 128.35, 127.90, 127.25,
127.23, 127.07, 126.47, 126.06, 125.92, 121.10, 21.67.

10-(o-Tolyl)benzo[h]quinolone (3d). Yellow oil, 13.4 mg
(yield: 50%). 1H NMR (400 MHz, chloroform-d) δ 8.40 (dd, J
= 4.3, 1.9 Hz, 1H), 8.04 (dd, J = 8.0, 1.9 Hz, 1H), 7.92 (dd, J =
7.9, 1.4 Hz, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.71−7.61 (m, 2H),
7.45 (dd, J = 7.3, 1.4 Hz, 1H), 7.32−7.21 (m, 4H), 7.17 (dd, J
= 7.0, 1.9 Hz, 1H), 1.84 (s, 3H). 13C NMR (101 MHz,
chloroform-d) δ 147.50, 147.06, 146.48, 141.06, 135.91,
135.10, 134.67, 130.75, 129.48, 128.76, 128.46, 127.97,
127.93, 127.28, 126.98, 125.96, 125.87, 125.15, 121.00, 20.25.

10-(2,5-Dimethylphenyl)benzo[h]quinolone (3e). White
solid, 19.5 mg (yield: 69%). 1H NMR (400 MHz, chloro-
form-d) δ 8.43 (dd, J = 4.3, 1.9 Hz, 1H), 8.06 (dd, J = 8.0, 1.9
Hz, 1H), 7.92 (dd, J = 7.9, 1.5 Hz, 1H), 7.85 (d, J = 8.8 Hz,
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1H), 7.71−7.64 (m, 2H), 7.46 (dd, J = 7.2, 1.4 Hz, 1H), 7.29
(dd, J = 8.0, 4.3 Hz, 1H), 7.13−7.07 (m, 2H), 7.02 (d, J = 1.7
Hz, 1H), 2.36 (s, 3H), 1.77 (s, 3H). 13C NMR (101 MHz,
chloroform-d) δ 147.50, 147.06, 146.25, 141.20, 135.06,
134.62, 134.35, 132.82, 130.87, 129.48, 128.67, 128.57,
128.47, 127.82, 127.23, 126.93, 126.54, 125.80, 120.97,
21.20, 19.72. ESI-MS [M + H]+ calcd for C21H17N:
284.1439, found: 284.1440.
10-(4-Butylphenyl)benzo[h]quinolone (3f). White solid,

23.6 mg (yield: 76%). 1H NMR (400 MHz, chloroform-d) δ
8.41 (dd, J = 4.3, 1.9 Hz, 1H), 8.03 (dd, J = 8.0, 1.9 Hz, 1H),
7.87 (dd, J = 7.9, 1.5 Hz, 1H), 7.81 (d, J = 8.8 Hz, 1H), 7.67−
7.62 (m, 2H), 7.55 (dd, J = 7.3, 1.5 Hz, 1H), 7.30−7.24 (m,
3H), 7.20 (d, J = 8.0 Hz, 2H), 2.71 (t, J = 7.7 Hz, 2H), 1.77−
1.64 (m, 2H), 1.44 (q, J = 7.4 Hz, 2H), 0.98 (t, J = 7.3 Hz,
3H). 13C NMR (101 MHz, chloroform-d) δ 146.98, 146.84,
143.65, 141.86, 140.19, 135.21, 135.07, 131.61, 129.17, 128.61,
128.36, 127.81, 127.50, 127.24, 127.08, 125.91, 121.06, 35.54,
33.82, 22.48, 14.15. ESI-MS [M + H]+ calcd for C23H21N:
312.1752, found: 312.1756.
10-(4-(tert-Butyl)phenyl)benzo[h]quinolone (3g). White

solid, 23.3 mg (yield: 75%). 1H NMR (400 MHz, chloro-
form-d) δ 8.44 (dd, J = 4.3, 1.9 Hz, 1H), 8.08 (dd, J = 8.0, 1.9
Hz, 1H), 7.92 (dd, J = 7.8, 1.5 Hz, 1H), 7.86 (d, J = 8.8 Hz,
1H), 7.72−7.66 (m, 2H), 7.60 (dd, J = 7.3, 1.4 Hz, 1H), 7.45
(d, J = 8.1 Hz, 2H), 7.32 (dt, J = 8.2, 2.0 Hz, 3H), 1.46 (d, J =
1.0 Hz, 9H). 13C NMR (101 MHz, chloroform-d) δ 148.47,
146.97, 146.90, 146.88, 143.35, 141.77, 135.21, 135.06, 131.63,
129.19, 128.38, 128.35, 127.20, 127.08, 125.91, 124.28, 121.05,
34.58, 31.62. ESI-MS [M + H]+ calcd for C23H21N: 312.1752,
found: 312.1750.
10-(4-Isopropylphenyl)benzo[h]quinolone (3h). White

solid, 21.4 mg (yield: 73%). 1H NMR (400 MHz, chloro-
form-d) δ 8.40 (dd, J = 4.3, 1.9 Hz, 1H), 7.98 (dd, J = 8.0, 1.9
Hz, 1H), 7.86−7.75 (m, 2H), 7.64−7.51 (m, 3H), 7.30−7.20
(m, 5H), 3.21−2.71 (m, 1H), 1.34 (d, J = 7.0 Hz, 6H). 13C
NMR (101 MHz, chloroform-d) δ 147.03, 146.93, 146.24,
143.83, 141.90, 135.25, 135.13, 131.71, 129.23, 128.75, 128.41,
127.87, 127.27, 127.13, 125.95, 125.50, 121.09, 34.00, 24.33.
10-([1,1′-Biphenyl]-4-yl)benzo[h]quinolone (3i). White

solid, 23.8 mg (yield: 72%). 1H NMR (400 MHz, chloro-
form-d) δ 8.45 (dd, J = 4.3, 1.9 Hz, 1H), 8.10 (dd, J = 8.0, 1.9
Hz, 1H), 7.95 (dd, J = 7.9, 1.5 Hz, 1H), 7.88 (d, J = 8.8 Hz,
1H), 7.77−7.64 (m, 6H), 7.60 (dd, J = 7.2, 1.5 Hz, 1H), 7.51−
7.42 (m, 4H), 7.39−7.31 (m, 2H). 13C NMR (101 MHz,
chloroform-d) δ 146.89, 146.83, 145.56, 141.44, 141.30,
138.36, 135.25, 135.06, 131.52, 129.22, 129.06, 128.75,
128.32, 128.04, 127.26, 127.10, 127.06, 126.95, 126.08,
125.98, 121.14.
10-(4-Methoxyphenyl)benzo[h]quinolone (3j). White

solid, 23.1 mg (yield: 81%). 1H NMR (400 MHz, chloro-
form-d) δ 8.46 (dd, J = 4.3, 1.9 Hz, 1H), 8.04 (dd, J = 8.0, 1.9
Hz, 1H), 7.87 (dd, J = 8.0, 1.5 Hz, 1H), 7.81 (d, J = 8.8 Hz,
1H), 7.68−7.60 (m, 2H), 7.53 (dd, J = 7.3, 1.5 Hz, 1H), 7.29
(dd, J = 8.3, 4.8 Hz, 3H), 7.02−6.90 (m, 2H), 3.88 (s, 3H).
13C NMR (101 MHz, chloroform-d) δ 157.98, 147.03, 146.92,
141.41, 138.96, 135.26, 135.13, 131.76, 129.85, 129.17, 128.37,
127.81, 127.25, 127.09, 125.93, 121.07, 112.86, 55.34.
10-(3-(Trifluoromethoxy)phenyl)benzo[h]quinolone (3k).

Yellow solid, 26.8 mg (yield: 79%). 1H NMR (400 MHz,
chloroform-d) δ 8.41 (dd, J = 4.3, 1.8 Hz, 1H), 8.08 (dd, J =
8.0, 1.9 Hz, 1H), 7.94 (d, J = 7.9 Hz, 1H), 7.85 (d, J = 8.8 Hz,
1H), 7.68 (t, J = 8.6 Hz, 2H), 7.52 (dd, J = 7.3, 1.4 Hz, 1H),

7.42 (t, J = 8.1 Hz, 1H), 7.32 (dd, J = 7.5, 4.9 Hz, 2H), 7.21 (d,
J = 7.7 Hz, 2H). 19F NMR (376 MHz, chloroform-d) δ
−57.57. 13C NMR (101 MHz, chloroform-d) δ 148.55, 148.31,
147.00, 146.44, 139.96, 135.31, 134.98, 131.21, 128.86, 128.76,
128.54, 128.21, 127.29, 127.07, 126.85, 126.16, 122.20, 121.97,
121.28, 119.42 (q, J = 254.7 Hz), 118.36.

10-(Naphthalen-2-yl)benzo[h]quinolone (3l). White solid,
22.9 mg (yield: 75%). 1H NMR (400 MHz, chloroform-d) δ
8.33 (dd, J = 4.3, 1.9 Hz, 1H), 8.10 (dd, J = 8.1, 1.9 Hz, 1H),
8.00−7.86 (m, 5H), 7.78 (d, J = 8.5 Hz, 1H), 7.75−7.70 (m,
2H), 7.65 (dd, J = 7.3, 1.5 Hz, 1H), 7.48 (ddd, J = 23.5, 7.3,
2.5 Hz, 3H), 7.30 (dd, J = 8.0, 4.3 Hz, 1H). 13C NMR (101
MHz, chloroform-d) δ 146.97, 146.72, 144.53, 141.51, 135.22,
135.07, 133.82, 132.20, 131.98, 129.49, 129.09, 128.36, 128.19,
128.13, 127.64, 127.27, 127.24, 126.01, 125.71, 125.57, 125.43,
125.20, 121.14. ESI-MS [M + H]+ calcd for C23H15N:
306.1283, found: 306.1284.

10-(Naphthalen-1-yl)benzo[h]quinolone (3m). White
solid, 21.6 mg (yield: 71%). 1H NMR (400 MHz, chloro-
form-d) δ 8.07−7.98 (m, 3H), 7.91 (q, J = 8.2 Hz, 3H), 7.80−
7.69 (m, 2H), 7.64−7.51 (m, 2H), 7.41−7.33 (m, 2H), 7.22
(d, J = 8.6 Hz, 1H), 7.16−7.04 (m, 2H). 13C NMR (101 MHz,
chloroform-d) δ 147.24, 146.48, 144.97, 139.61, 134.96,
134.69, 133.24, 133.08, 131.69, 130.34, 128.36, 128.31,
127.92, 127.29, 127.12, 126.43, 126.22, 126.08, 125.58,
125.10, 125.02, 124.64, 120.85.

10-(4-Fluorophenyl)benzo[h]quinolone (3n). White solid,
21.8 mg (yield: 80%). 1H NMR (400 MHz, chloroform-d) δ
8.46 (dd, J = 4.4, 1.9 Hz, 1H), 8.10 (dd, J = 8.0, 1.9 Hz, 1H),
7.94 (d, J = 7.9 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.69 (dd, J =
10.9, 8.2 Hz, 2H), 7.53 (d, J = 7.3 Hz, 1H), 7.33 (ddd, J =
13.5, 8.2, 4.9 Hz, 3H), 7.10 (t, J = 8.7 Hz, 2H). 19F NMR (376
MHz, chloroform-d) δ −118.10. 13C NMR (101 MHz,
chloroform-d) 161.59 (d, J = 244.42 Hz), 146.89, 146.76,
142.26 (d, J = 4.0 Hz), 140.67, 135.32, 135.04, 131.52, 130.17
(d, J = 8.0 Hz), 129.06, 128.32, 128.18, 127.29, 127.05, 126.04,
121.17, 114.14 (d, J = 21.2 Hz).

10-(3,4,5-Trifluorophenyl)benzo[h]quinolone (3o). White
solid, 25.9 mg (yield: 84%). 1H NMR (400 MHz, chloroform-
d) δ 8.51 (dd, J = 4.3, 1.8 Hz, 1H), 8.12 (dd, J = 8.0, 1.9 Hz,
1H), 7.97 (dd, J = 8.0, 1.4 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H),
7.75−7.59 (m, 2H), 7.48 (dd, J = 7.2, 1.4 Hz, 1H), 7.38 (dd, J
= 8.0, 4.3 Hz, 1H), 6.94 (dd, J = 8.6, 6.6 Hz, 2H). 19F NMR
(376 MHz, chloroform-d) δ −137.30 (d, J = 20.5 Hz),
−165.78 (t, J = 20.7 Hz). 13C NMR (151 MHz, chloroform-d)
δ 151.49 (dd, J = 10.6, 4.5 Hz), 149.85 (dd, J = 10.6, 4.5 Hz),
147.23, 146.26, 142.82−142.09 (m), 139.26 (t, J = 15.5 Hz),
138.59, 137.61 (t, J = 15.5 Hz), 135.52, 135.02, 130.95, 128.98,
128.79, 128.23, 127.46, 127.09, 126.39, 121.51, 112.93 (dd, J =
16.6, 3.0 Hz).

10-(3,4-Difluorophenyl)benzo[h]quinolone (3p). White
solid, 23.5 mg (yield: 81%). 1H NMR (400 MHz, chloro-
form-d) δ 8.48 (dd, J = 4.3, 1.9 Hz, 1H), 8.11 (dd, J = 8.0, 1.9
Hz, 1H), 7.95 (dd, J = 8.0, 1.4 Hz, 1H), 7.86 (d, J = 8.8 Hz,
1H), 7.75−7.62 (m, 2H), 7.50 (dd, J = 7.3, 1.4 Hz, 1H), 7.36
(dd, J = 8.1, 4.3 Hz, 1H), 7.21−7.10 (m, 2H), 7.04 (dddd, J =
8.3, 4.4, 2.1, 1.4 Hz, 1H). 19F NMR (376 MHz, chloroform-d)
δ −140.45 (d, J = 21.7 Hz), −143.07 (d, J = 21.7 Hz). 13C
NMR (101 MHz, chloroform-d) δ 149.7 (dd, J = 245.4 Hz,
12.8 Hz), 148.1 (dd, J = 243.6 Hz, 12.8 Hz), 147.03, 146.45,
143.22 (d, J = 10.8 Hz), 139.45, 135.39, 134.97, 131.25,
128.87, 128.56, 128.24, 127.33, 127.03, 126.18, 124.50 (dd, J =
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6.0 Hz, 3.5 Hz), 121.32, 117.85 (d, J = 17.2 Hz), 116.03 (d, J =
17.1 Hz).
10-(4-Chlorophenyl)benzo[h]quinolone (3q). White solid,

15.3 mg (yield: 53%). 1H NMR (400 MHz, chloroform-d) δ
8.46 (dd, J = 4.3, 1.8 Hz, 1H), 8.09 (dd, J = 8.0, 1.9 Hz, 1H),
7.93 (dd, J = 7.9, 1.4 Hz, 1H), 7.85 (d, J = 8.7 Hz, 1H), 7.72−
7.64 (m, 2H), 7.53−7.46 (m, 3H), 7.35−7.32 (m, 1H), 7.26−
7.19 (m, 2H). 13C NMR (101 MHz, chloroform-d) δ 146.66,
146.30, 145.10, 140.05, 135.07, 134.71, 131.09, 131.02, 130.23,
130.15, 129.84, 128.55, 128.05, 127.99, 127.22, 126.99, 126.81,
125.82, 120.97, 119.40.
10-(4-Bromophenyl)benzo[h]quinolone (3r). Colorless oil,

13.3 mg (yield: 40%). 1H NMR (400 MHz, chloroform-d) δ
8.46 (dd, J = 4.3, 1.9 Hz, 1H), 8.10 (dd, J = 8.0, 1.9 Hz, 1H),
7.93 (dd, J = 7.9, 1.4 Hz, 1H), 7.86 (d, J = 8.8 Hz, 1H), 7.72−
7.64 (m, 2H), 7.50 (td, J = 6.8, 1.7 Hz, 3H), 7.34 (dd, J = 8.0,
4.3 Hz, 1H), 7.26−7.21 (m, 3H). 13C NMR (101 MHz,
chloroform-d) δ 146.94, 146.58, 145.37, 140.33, 135.36,
134.99, 131.31, 130.50, 130.43, 128.83, 128.33, 128.27,
127.27, 127.09, 126.10, 121.25, 119.68.
10-(3-Nitrophenyl)benzo[h]quinolone (3s). White solid,

21.6 mg (yield: 72%). 1H NMR (400 MHz, chloroform-d) δ
8.36 (dd, J = 4.3, 1.9 Hz, 1H), 8.23 (ddq, J = 5.0, 2.4, 1.2 Hz,
2H), 8.12 (dd, J = 8.0, 1.9 Hz, 1H), 8.00 (dd, J = 8.0, 1.4 Hz,
1H), 7.89 (d, J = 8.8 Hz, 1H), 7.76−7.72 (m, 2H), 7.68 (dt, J
= 7.6, 1.3 Hz, 1H), 7.57−7.50 (m, 2H), 7.35 (dd, J = 8.0, 4.3
Hz, 1H). 13C NMR (101 MHz, chloroform-d) δ 147.96,
147.73, 146.95, 146.23, 138.95, 135.54, 135.10, 135.01, 131.22,
129.01, 128.72, 128.25, 128.02, 127.38, 127.16, 126.32, 123.98,
121.45, 120.83.
10-(3,4-Bis(trifluoromethyl)phenyl)benzo[h]quinolone

(3t). White solid, 31.6 mg (yield: 81%). 1H NMR (400 MHz,
chloroform-d) δ 8.36 (dd, J = 4.3, 1.9 Hz, 1H), 8.12 (dd, J =
8.0, 1.9 Hz, 1H), 8.01 (dd, J = 8.0, 1.4 Hz, 1H), 7.91−7.85 (m,
2H), 7.83 (s, 2H), 7.77−7.70 (m, 2H), 7.52 (dd, J = 7.2, 1.4
Hz, 1H), 7.36 (dd, J = 8.0, 4.3 Hz, 1H). 19F NMR (376 MHz,
chloroform-d) δ −62.59. 13C NMR (151 MHz, chloroform-d)
δ 148.14, 146.97, 146.11, 138.47, 135.61, 135.11, 131.31,
130.30 (q, J = 32.7 Hz), 129.40, 129.36, 128.70, 128.30,
127.43, 127.26, 126.46, 123.93 (q, J = 272.8 Hz), 121.68,
119.69−119.49 (m).
Ethyl 4-(benzo[h]quinolin-10-yl)benzoate (3u). White

solid, 16.3 mg (yield: 50%). 1H NMR (400 MHz, chloro-
form-d) δ 8.38 (dd, J = 4.3, 1.9 Hz, 1H), 8.12−8.05 (m, 4H),
7.93 (dd, J = 7.9, 1.4 Hz, 1H), 7.85 (d, J = 8.8 Hz, 1H), 7.71−
7.65 (m, 2H), 7.49 (dd, J = 7.2, 1.4 Hz, 1H), 7.43−7.38 (m,
2H), 7.30 (dd, J = 8.0, 4.3 Hz, 1H), 4.43 (q, J = 7.1 Hz, 2H),
1.44 (t, J = 7.1 Hz, 3H). 13C NMR (101 MHz, chloroform-d) δ
167.18, 151.54, 146.92, 146.46, 140.63, 135.29, 134.94, 131.03,
130.19, 128.85, 128.80, 128.75, 128.45, 128.22, 127.75, 127.28,
127.22, 127.07, 126.12, 121.26, 60.80, 14.48.
10-(Thiophen-3-yl)benzo[h]quinolone (3y). White solid,

8.1 mg (yield: 31%). 1H NMR (400 MHz, chloroform-d) δ
8.60−8.51 (m, 1H), 8.13−8.05 (m, 1H), 7.94−7.89 (m, 1H),
7.84 (dd, J = 8.8, 1.7 Hz, 1H), 7.73−7.59 (m, 3H), 7.40−7.33
(m, 1H), 7.30−7.22 (m, 2H), 7.04 (d, J = 4.9 Hz, 1H). 13C
NMR (101 MHz, chloroform-d) δ 147.20, 146.86, 146.50,
136.25, 135.26, 135.00, 131.75, 130.72, 129.44, 128.32, 128.28,
127.21, 127.18, 125.94, 122.74, 121.20, 119.72.
10-(Cyclohex-1-en-1-yl)benzo[h]quinoline (3z). Colorless

oil, 20.4 mg (yield: 76%). 1H NMR (400 MHz, chloroform-d)
δ 8.99 (dd, J = 4.3, 1.9 Hz, 1H), 8.10 (dd, J = 8.1, 1.9 Hz, 1H),
7.80 (dd, J = 9.6, 7.7 Hz, 2H), 7.61 (dd, J = 16.4, 8.4 Hz, 2H),

7.54−7.35 (m, 2H), 5.63 (t, J = 3.7 Hz, 1H), 2.58 (d, J = 14.8
Hz, 1H), 2.40−2.21 (m, 2H), 1.89 (dd, J = 79.1, 45.4 Hz, 5H).
13C NMR (101 MHz, chloroform-d) δ 147.70, 146.93, 145.26,
144.25, 135.26, 134.85, 129.98, 129.01, 128.63, 127.55, 127.46,
127.20, 125.55, 120.86, 120.29.

6-Methyl-10-phenylbenzo[h]quinolone (4a). White solid,
21.5 mg (yield: 80%). 1H NMR (400 MHz, chloroform-d) δ
8.33 (dd, J = 4.3, 1.9 Hz, 1H), 8.11−8.04 (m, 1H), 7.97 (dd, J
= 8.0, 1.9 Hz, 1H), 7.76−7.69 (m, 1H), 7.59−7.51 (m, 2H),
7.45−7.29 (m, 7H), 7.28−7.21 (m, 1H), 2.82−2.79 (m, 3H).
13C NMR (101 MHz, chloroform-d) δ 146.91, 146.31, 146.06,
142.07, 134.86, 134.36, 133.68, 131.22, 129.11, 128.69, 128.63,
127.43, 127.09, 126.96, 125.89, 125.54, 123.84, 121.15, 20.62.

5-(Naphthalen-2-yl)-10-phenylbenzo[h]quinolone (4b).
White solid, 30.8 mg (yield: 81%). 1H NMR (400 MHz,
chloroform-d) δ 8.41 (dd, J = 4.2, 1.8 Hz, 1H), 8.15 (dd, J =
8.3, 1.9 Hz, 1H), 8.02−7.87 (m, 6H), 7.69 (t, J = 7.6 Hz, 1H),
7.63 (dd, J = 8.4, 1.7 Hz, 1H), 7.55 (td, J = 6.7, 2.4 Hz, 3H),
7.44−7.36 (m, 4H), 7.22 (dd, J = 8.1, 4.4 Hz, 1H). 13C NMR
(101 MHz, chloroform-d) δ 147.11, 146.66, 146.55, 141.75,
137.93, 137.04, 134.48, 133.66, 133.50, 132.80, 131.57, 128.84,
128.74, 128.70, 128.16, 128.13, 128.09, 128.02, 127.86, 127.46,
127.43, 126.58, 126.55, 126.36, 125.70, 120.95.

5,10-Diphenylbenzo[h]quinolone (4c). White solid, 26.5
mg (yield: 80%). 1H NMR (400 MHz, chloroform-d) δ 8.41
(dd, J = 4.2, 1.8 Hz, 1H), 8.14 (dd, J = 8.3, 1.8 Hz, 1H), 7.92
(dd, J = 7.9, 1.4 Hz, 1H), 7.82 (s, 1H), 7.70 (t, J = 7.6 Hz,
1H), 7.58−7.46 (m, 6H), 7.44−7.34 (m, 5H), 7.26 (d, J = 6.0
Hz, 1H). 13C NMR (101 MHz, chloroform-d) δ 147.02,
146.57, 146.52, 141.66, 139.49, 137.96, 134.40, 133.57, 131.48,
130.01, 128.68, 128.59, 128.53, 128.37, 128.02, 127.71, 127.42,
127.36, 126.40, 125.65, 120.88.

2-([1,1′-Biphenyl]-2-yl)pyridine (5a). Yellow oil, 11.8 mg
(yield: 51%). 1H NMR (400 MHz, chloroform-d) δ 8.65−8.60
(m, 1H), 7.70 (dd, J = 5.7, 3.3 Hz, 1H), 7.46 (dq, J = 7.8, 3.6
Hz, 3H), 7.38 (td, J = 7.7, 1.8 Hz, 1H), 7.26−7.20 (m, 3H),
7.16 (dd, J = 6.7, 2.9 Hz, 2H), 7.10 (dd, J = 7.4, 4.9 Hz, 1H),
6.88 (d, J = 7.9 Hz, 1H). 13C NMR (101 MHz, chloroform-d)
δ 159.27, 149.44, 141.36, 140.63, 135.22, 130.52, 130.50,
129.73, 128.55, 128.08, 127.67, 126.72, 125.44, 121.37.

4-Methoxy-1,1′-biphenyl (7a). White solid, 2.8 mg (yield:
15%). 1H NMR (400 MHz, chloroform-d) δ 7.57−7.50 (m,
4H), 7.41 (t, J = 7.7 Hz, 2H), 7.33−7.27 (m, 1H), 7.00−6.95
(m, 2H), 3.85 (s, 3H). 13C NMR (101 MHz, chloroform-d) δ
159.15, 140.85, 133.79, 128.75, 128.19, 126.77, 126.69, 114.21,
55.37.
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