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ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has caused millions of deaths around the world and

revealed the need for data-driven models of pandemic spread. Accurate pandemic caseload forecasting allows

informed policy decisions on the adoption of non-pharmaceutical interventions (NPIs) to reduce disease trans-

mission. Using COVID-19 as an example, we present Pandemic conditional Ordinary Differential Equation (PAN-

cODE), a deep learning method to forecast daily increases in pandemic infections and deaths. By using a deep

conditional latent variable model, PAN-cODE can generate alternative caseload trajectories based on alternate

adoptions of NPIs, allowing stakeholders to make policy decisions in an informed manner. PAN-cODE also

allows caseload estimation for regions that are unseen during model training. We demonstrate that, despite

using less detailed data and having fully automated training, PAN-cODE’s performance is comparable to state-

of-the-art methods on 4-week-ahead and 6-week-ahead forecasting. Finally, we highlight the ability of PAN-

cODE to generate realistic alternative outcome trajectories on select US regions.
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INTRODUCTION

The coronavirus disease 2019 (COVID-19) pandemic remains a

severe threat to public health, affecting 235 million individuals, and

causing 4.8 million deaths as of October 2021.1 Forecasting future

disease caseload is critical for pandemic response2 and enables

informed policy decisions on medical resource allocation and poli-

cies to reduce disease transmission. For COVID-19, non-pharma-

ceutical interventions (NPIs) such as social distancing and mask

mandates are critical in slowing transmission3 and remain important

even as vaccines are deployed.4 In Figure 1, we visualize the nega-

tively correlated relationship between NPI adoption and COVID-19

transmission in the state of California. While NPIs drastically reduce

COVID-19 transmission, they also incur high socio-economic

costs,5,6 motivating the ability to model future COVID-19 caseload

as a function of NPI adoption stringency. Current approaches to

caseload forecasting include statistical methods,7,8 compartmental

models,9–14 deep neural networks,15–20 or ensembles such as the

COVID-19 Forecast Hub.21 These methods provide reliable short-

term forecasting, but as we further outline in Supplementary Appen-

dix A, many do not offer predictions past 4 weeks, cannot explicitly

model the relationship between NPI adoption and future caseload,

and require expert-intervention to be fit to data.

Here, we introduce the Pandemic conditional Ordinary Differen-

tial Equation (PAN-cODE), a fully-automated pandemic caseload

forecasting method capable of conditioning forecasts on the strin-

gency of NPI adoption. PAN-cODE uses deep neural networks in a

Latent Ordinary Differential Equation (ODE)22 architecture to learn

a conditional generative model of caseload dynamics only using past
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daily infection/death counts and NPI policy. When trained on US

state and county level COVID-19 caseload data,23 PAN-cODE

offers 4-week forecasts with accuracy comparable to state-of-the-art

methods and beats all COVID-19 Forecast Hub methods at 6-week-

ahead forecasting while using minimal data features. We show that

PAN-cODE can generalize learned dynamics to accurately predict

outcomes in unseen regions. Finally, we demonstrate PAN-cODE’s

ability to generate realistic outcomes based on alternative NPI adop-

tions for selected US states.

BACKGROUND

Deep epidemiological forecasting
Epidemiological forecasting is traditionally performed using com-

partmental SIR models24–26 or time series methods.7,8 By leveraging

the non-linear representational power of deep neural networks, deep

learning approaches for epidemiological forecasting aim to better

capture the complex relationship between historical caseloads, high-

dimensional covariate time series, and future caseload trajectories.

Current deep epidemiological forecasting methods use neural net-

works to estimate compartmental model coefficients from input fea-

tures,9,15 integrate spatio-temporal graph neural networks to model

how geographic proximity affects viral transmission,20,27–30 or apply

deep time series methods such as LSTMs14,18,19 for forecasting.

Neural and latent ODEs
PAN-cODE learns COVID-19 caseload dynamics from historical

data using the Neural ODE.31 Where x0:N denotes input data and

t0:N represents their time of observation, the Neural ODE represents

time series as the solution to an ODE such that:

x0:N ¼ ODESolveðfh;x0; t0:NÞ

where fh represents dx
dt ¼ f x; t; hð Þ and is parameterized by a neural

network. Alternatively, fh could be parameterized by a known ODE,

such as the SIR equations, where unknown parameters are then opti-

mized by the Neural ODE through backpropagation.

The Neural ODE can be arranged into a variational auto-encoder

architecture known as the Latent ODE22 to increase its

representational ability. The Latent ODE first encodes multidimen-

sional input features using the GRU-ODE: a Gated Recurrent Unit

(GRU)32 that evolves hidden states between observations using a Neu-

ral ODE. The GRU-ODE encoder outputs the parameters for a factor-

ized Gaussian variational distribution over the initial state of a latent

trajectory. From this variational distribution, we sample a latent ini-

tial state denoted z0; and solve a separate Neural ODE parameterized

by fw from z0 to obtain a latent trajectory. Finally, this latent trajec-

tory is decoded with neural network f/ into the output trajectory. The

Latent ODE is represented by the following set of equations:

lz0; r2
z0 ¼ GRUODEfh ðx0:N ; t0:NÞ

z0 � q
�

z0 j x0:NÞ ¼ Nðlz0; r2
z0Þ

z0:N ¼ ODESolveðfw; z0; t0:NÞ

xi � N
�

f/ðziÞ; r2
�

for i ¼ 1; . . . ; N

where r2 is a fixed variance term. The Latent ODE is trained by

maximizing the evidence lower bound (ELBO), defined as:

Ez0 � qðz0 j x0:NÞ½log pðx0:NÞ� � KL½q
�

z0 j x0:NÞ k pðz0Þ�

METHOD

PAN-cODE introduces novel modifications to the Latent ODE

architecture to allow generation of alternative forecasts conditioned

on the stringency of NPI adoption. We visualize the PAN-cODE

architecture in Figure 2. PAN-cODE first learns a representation of

current caseload dynamics using observed data in the Encoding

Region, which includes input data up to the forecasting date,

denoted fc. The objective is to output the caseload in the Prediction

Region, which begins on the forecasting date and extends to the pre-

diction date, denoted pd. We denote the encoding region daily infec-

tion and death count as i0:fc and d0:fc, respectively. Other covariates,

denoted f 1:D
0:fc , are also included as input for the GRU-ODE encoder.

We assume regularly spaced time intervals between observations

and arbitrarily set t0:fc. However, in contrast to most other time-

series prediction methods, irregularly sampled time series can be

easily handled by setting t0:fc to the actual times of observation. The

GRU-ODE encoder outputs the parameters (lz0; r2
z0Þ for the varia-

tional distribution over the initial state of a latent trajectory.

PAN-cODE introduces the conditional Latent ODE, which

extends work on deep conditional generative models33 to the Latent

ODE. The conditional Latent ODE allows the latent initial state to

be conditioned on injected data features. For PAN-cODE, we condi-

tion on 4 metrics representing the stringency of NPI adoption at

forecasting time, denoted Ifc 2 R
4. These metrics are described in

the experimental section. The conditional Latent ODE is imple-

mented by concatenating the vector of conditional features to the

sampled latent initial state. Letting X ¼ i0:fc; d0:fc; f 1:D
0:fc

h i
, the aug-

mented latent initial state ~z0 is obtained as:

lz0; r2
z0 ¼ GRUODEfh ðX; t0:fcÞ

z0 � Nðlz0; r2
z0Þ

fz0 ¼ ½z0; Ifc�

Consequently, the ELBO objective becomes:

E logp x0:Nð j IfcÞ
� �

�KL q z0ð j x0:N ; IfcÞ k p z0jIfc

� �� �
During training, the model learns a correlational relationship

between the conditional variables and caseload forecasts. Afterwards,

Figure 1. The number of daily new infections over time in the state of Califor-

nia plotted alongside indices representing the level of NPIs adopted. These

indices are provided by the Oxford COVID-19 Government Response

Tracker34 and summarize the level of NPIs adopted into a single metric scored

out of 100. NPIs have a time-delayed, negatively correlated effect on COVID-

19 caseload, seen most clearly from 2020–2010 to 2021–2001.
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alternative caseload trajectories can be generated by modifying the

values of Ifc to correspond to modified NPI adoption stringency.

PAN-cODE uses an auto-regressive decoder (ARD) to convert

latent trajectories into data space. The ARD is a simple feed-

forward neural network combining the latent output at time t with

the previously predicted output at time t � 1, thus representing pre-

dictions as a function of the previous output. This is represented in

the equation:

it; dtð Þ ¼ Linear it�1; dt�1; zt j /ð Þ

where parameters / are shared across timepoints. The ARD serves

to restrict the maximum change in caseload between timepoints

when mapping to the data space.

PAN-cODE is trained to reconstruct Encoding Region observa-

tions and make predictions in the Prediction Region. After obtaining

augmented latent initial state ~z0, PAN-cODE obtains Encoding

Region reconstructions by solving a latent trajectory backwards in

time from the forecast date to the initial date and decoding it using

the ARD:

ifc:1; dfc:1

� �
¼ ARD ODESolve fz0; f/; tfc:1

� �� �

Next, a latent trajectory is solved forward in time to obtain the

caseload trajectory in the Prediction Region:

ifc:pd; dfc:pd

� �
¼ ARD ODESolve fz0; f/; tfc:pd

� �� �

Forecasts for longer prediction windows can be obtained by sim-

ply modifying pd.

EXPERIMENTS

Data
We train PAN-cODE using daily COVID-19 caseload counts in US

states and counties from Google Cloud Platform’s (GCP) Open Data

resource.23 Roughly 2500 trajectories are available, each with daily

observations since February 2020. We apply a 7-day rolling average

function to remove reporting noise and apply a shifted log transform

of log xþ 1ð Þ for numerical stability.

We provide PAN-cODE with historical NPI adoption stringency

as tracked by the Oxford COVID-19 Government Response

Tracker.34 The daily status of NPI adoption is represented by a vec-

tor of integers denoting the level of adoption for a specific NPI.

When forecasting deaths, we add a 14-day delay between these fea-

tures and COVID-19 caseload to account for the delayed effect of

social restrictions.35 We also include the daily temperate index from

GCP to account for seasonality in COVID-19. The choice of data

smoothing function and feature shift value was selected experimen-

tally and is shown in Supplementary Appendix C.

We use 4 metrics provided by OxGRCT as the conditional fea-

tures in PAN-cODE. These metrics aggregate the level of NPI adop-

tion in specific areas into a scalar score out of 100, where a higher

score indicates higher stringency. These metrics are the Stringency

Index, the Government Response Index (GRI), the Containment

Health Index (CHI), and Economic Support Index. We standardize

these metrics and use their values on the forecasting date as the

conditional latent variables. These indices are also used as input

covariates.

Figure 2. Architectural schematic of the PAN-cODE. We input the daily counts of infection (iÞ, death ðdÞ, and other covariates f 1:D
� �

up to forecast date fc. The

encoding region time series are encoded by a GRU-ODE encoder, which outputs parameters lz0; r2
z0 for the variational posterior on the latent initial state. We

obtain a sample latent initial state z0 from the variational posterior, which is then concatenated with the conditional features to obtain the augmented latent initial

state ~z0 . From ~z0 , the Neural ODE is used to solve the latent trajectory for the prediction and encoding regions, which is passed through the autoregressive

decoder to output the predicted daily infection and death count, up to prediction date pd :
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Hyper-parameters and training
We randomly vary the forecasting date per training epoch to expose

PAN-cODE to the correlation between conditional features and

future caseloads under various conditions. We first set a validation

cut-off date such that data after this date are unseen during training.

For each training epoch, we randomly sample an epoch forecast

date from between the start date and the validation cut-off date.

PAN-cODE is provided data up the epoch forecast date and is

tasked with predicting caseload 4 weeks ahead. PAN-cODE is

trained by maximizing the ELBO using the Adam optimizer.36 We

describe hyper-parameters in Supplementary Appendix D.

Tasks and evaluation
We evaluate the forecasting ability of the PAN-cODE using predic-

tion windows of 4 and 6 weeks. We evaluate against baseline meth-

ods using the metrics of median absolute error (MAE) and mean

rank, which is computed as the average, across the 51-state level

regions, of the rank of the method’s MAE in ranked list of the

MAE’s of all compared methods. We include an evaluation on data

from regions unseen during training to highlight the generalization

performance of PAN-cODE. We generate forecasts for up to 6

weeks from 2 forecasting dates: December 28, 2020 and March 8,

2021 to evaluate the model’s performance under different stages of

COVID-19 progression. Data after each forecasting date are not

used during training or model selection. The source code for PAN-

cODE is available at: https://github.com/morrislab/PAN-cODE.

RESULTS

PAN-cODE outperforms baselines on 6-week forecasts
In Table 1, we compare the performance of PAN-cODE on forecast-

ing the number of deaths in US states against our baselines and

competitive methods from the COVID-19 Forecast Hub, described in

Supplementary Appendix A. We apply the Wilcoxon ranked-sum test

using a P-value threshold of .05 against the best performing method

for each metric and find that the error in PAN-cODE’s forecasts is not

significantly larger than that of the best model in every metric. Fur-

thermore, on the March 8, 2021 6-week forecasting task, PAN-cODE

provides significantly lower error than all other methods, demonstrat-

ing its reliability for long-term forecasting. Daily infection forecasting

results are reported in Supplementary Appendix B.

PAN-cODE generalizes to unseen regions
In Table 2, we show the performance of PAN-cODE on countries

entirely unseen during training. We find that PAN-cODE makes rea-

sonable projections for 4- and 6-week infections forecasts, far out-

performing baselines. The VAE-GRU baseline performed extremely

poorly in this task and was omitted from our results.

PAN-cODE generates sensible alternative forecasts
In Figure 3, we demonstrate the ability of PAN-cODE to generate

alternative outcome trajectories. This ability to generate alternative

forecasts can aid policy decisions on NPI adoption for the desired

level of transmission reduction. We demonstrate PAN-cODE on

both state and county level forecasting and generate alternative tra-

jectories by increasing/decreasing the GRI and CHI measures of NPI

stringency. We note that the features for death forecasts are offset

by 14 days, meaning the alternative daily death forecasts assume

that the change was made 14 days prior.

The importance of features in forecasting
We computed feature importance estimates using LIME37 for

the trained PAN-cODE model (see Supplementary Appendix E).

Table 1. Median absolute error (MAE) and mean rank of the forecasted total deaths for PAN-cODE versus several baseline methods for all

50 states of the United States and the District of Columbia

December 28, 2020 forecast March 8, 2021 forecast

4 weeks ahead 6 weeks ahead 4 weeks ahead 6 weeks ahead

Model MAE Mean Rank MAE Mean Rank MAE Mean Rank MAE Mean Rank

PAN-cODE 167 7.39 207 3.63 93 8.53 80 4.41

JHU_IDD-CovidSP 210 9.76 312 4.51 95 11.06 120 5.82

Covid19Sim-Simulator 160 8.43 321 4.49 67 9.2 132 5.31

IowaStateLW-STEM 170 8.88 380 4.51 158 13.65 260 7.82

Columbia_UNC-SurvCon 210 9.62 446 4.92 108 11.86 145 6.96

UCLA-SuEIR 283 12.24 383 5.55 159 13.88 212 8.04

USC-SI_kJa 185 8.64 – – 84 10.55 134 5.72

JHUAPL_Bucky 432 14.59 853 7.33 95 11.18 109 5.96

GRU-ODE 371 12.94 644 6.61 90 11.39 132 6.1

VAE-GRU 964 18.86 1359 9.02 158 13.53 225 7.37

Google_Harvard-CPF 118 6.22 – – 86 9.49 – –

UMass-MechBayes 329 11.1 – – 74 8.12 – –

CU-select 486 14.2 – – 82 9.96 – –

COVIDhub-ensemble 154 6.91 – – 78 8.13 – –

Caltech-CS156 156 6.10 – – 93 9.35 – –

UCSD_NEU-DeepGLEAM 225 9.91 – – 75 8.48 – –

GT-DeepCOVID 131 8.45 – – 79 9.48 – –

UA-EpiCovDA 439 14.98 – – 116 11.69 – –

TTU-squider 259 10.76 – – 422 17.45 – –

Mean COVID Hub 240 – 380 – 122 – 174 –

Baseline (PrevWeek) 218 10.02 343 4.43 120 12.5 295 7.74

Note: Mean rank is computed across the 51 ranked lists of methods ordered by increasing MAE. In each column, the best method is underlined; methods whose

MAEs are not significantly worse than this model in a non-parametric paired test (ie, Wilcoxon sign-rank P> .05) are indicated in bold italics.
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The model anticipates that adopting preventative measures has a

high impact on infection counts 21 days before the forecast date but

that nearer to the forecast date (10 days prior), the actual caseload

has the greatest relevance. This behavior is consistent with the

known lagged effect of NPIs. Note that different feature importance

models make different assumptions about the relationship between

local feature perturbations and their impact on the model’s predic-

tions. As such, other feature importance methods, such as Boruta-

SHAP38 might find different relationships than LIME did.

DISCUSSION

PAN-cODE offers competitive performance with several advantages

over existing methods. While PAN-cODE uses a dynamical model

for disease transmission, the actual dynamical function is learned

directly from data, avoiding the need to manually specify an ODE

function as in traditional compartmental models like the SIR model.

However, it would be straightforward to incorporate a SIR com-

partmental model into PAN-cODE. By using the Neural ODE,

PAN-cODE would be able to fit the dynamical parameters of this

SIR model using backpropagation, avoiding the need for sampling

or manual parameter specification in, eg, JHU_IDD-CovidSP.39

PAN-cODE also uses fewer data features compared to other meth-

ods such as Google_Harvard-CPF.15 Notably, PAN-cODE does not

require mobility or hospitalization data, enabling forecasts in

regions where data is limited, or at smaller regional resolutions. Due

to the continuous-time Latent ODE architecture, PAN-cODE is also

capable of natively handling datasets for pandemics where observa-

tions are sparsely or irregularly observed.

PAN-cODE directly learns the correlation between NPI strin-

gency and future caseload without expert input or other manual

adjustments. Consequently, the capability for PAN-cODE to pro-

vide alternative forecasts can be useful for policy-makers when

determining the appropriate level of social restrictions required to

obtain the desired level of transmission reduction. In contrast, exist-

ing methods capable of alternative outcome forecasting typically

rely on manual adjustment of the R0 value in their compartmental

model formulation.39,40 Historically, the process of manual estima-

tion of pandemic trajectory can be error-prone.41 Given this com-

plex relationship between NPI adoption and future caseload

Table 2. Percentage error of the incident infections for PAN-cODE versus our baselines on several countries unseen during training, fore-

casted from December 28, 2020

4 weeks ahead 6 weeks ahead

Model Canada United Kingdom India Russia Canada United Kingdom India Russia

Baseline (PrevWeek) 39.0% 66.7% 63.1% 53.4% 103.4% 213.4% 85.9% 93.0%

GRU-ODE 474.4% 36.4% 144.8% –5.5% 777.7% 156.5% 179.2% 15.4%

PAN-cODE –10.4% 8.2% 7.2% 0.4% –51.4% –21.6% –55.3% –55.2%

Note: The lowest percentage error is shown in bold.

Figure 3. Four week ahead forecasts of COVID-19 infection and deaths at the state (Mississippi) and county (Fresno County, CA) level. The cumulative increase in

infections and deaths from the forecast date of May 8, 2021 is shown. PAN-cODE forecasts are conditioned on the OxGCRT Government Response Index, the

value of which is modified at the forecasting date to obtain alternative outcome trajectories. We visualize the effects of increasing and decreasing NPI adoption

compared to the predicted trajectory, which uses the real NPI adoption magnitude at forecast time. The 95% confidence interval is shown as a shaded area asso-

ciated with 2 standard deviations from the mean trajectory, as computed by sampling 100 latent trajectories with the modeled observation noise.
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trajectories, PAN-cODE’s data-driven nature allows our capability

to model this relationship to scale with the amount of available

data. However, we do note that PAN-cODE does not explicitly

learn a causal model between NPI stringency and future caseload.

Building a formal causal model is likely difficult due to delayed and

noisy reporting, and we leave this as future work.

Ideally, the counterfactuals in Figure 3 would show the effects of

individual NPIs. Although we use individual NPIs to help predict

the initial latent state, besides this, PAN-cODE’s predictions are

only conditioned on the 4 stringency measures, because we found

that the data on the individual NPIs was not rich enough to support

a more precise conditioning. Richer data could be used to train a

PAN-cODE model with the ability to model more counterfactuals.

CONCLUSION

We present PAN-cODE, a deep conditional generative approach to

pandemic forecasting using COVID-19 as an example. PAN-cODE

conditions forecasts on NPI adoption stringency and can generate

alternative caseload forecasts for modified NPI adoption stringen-

cies. We demonstrate the performance of PAN-cODE on US state

and county caseload forecasting and find it performs significantly

better than all existing methods10,15,21,25,26,29,39,42–50 on 6-week

death forecasting from March 8, 2021 and never performs signifi-

cantly worse than the best performing method in all other death

forecasting evaluation categories. Compared to existing methods,

PAN-cODE requires minimal data features, can provide longer-term

forecasts, and does not require retraining to generalize forecasts to

unseen regions. The fully data-driven nature of PAN-cODE offers a

scalable solution to inform public health response for COVID-19

and future pandemic outbreaks.
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