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Deep learning for early dental 
caries detection in bitewing 
radiographs
Shinae Lee1, Sang‑il Oh2, Junik Jo2, Sumi Kang3, Yooseok Shin3 & Jeong‑won Park1*

The early detection of initial dental caries enables preventive treatment, and bitewing radiography is 
a good diagnostic tool for posterior initial caries. In medical imaging, the utilization of deep learning 
with convolutional neural networks (CNNs) to process various types of images has been actively 
researched, with promising performance. In this study, we developed a CNN model using a U-shaped 
deep CNN (U-Net) for caries detection on bitewing radiographs and investigated whether this model 
can improve clinicians’ performance. The research complied with relevant ethical regulations. In total, 
304 bitewing radiographs were used to train the CNN model and 50 radiographs for performance 
evaluation. The diagnostic performance of the CNN model on the total test dataset was as follows: 
precision, 63.29%; recall, 65.02%; and F1-score, 64.14%, showing quite accurate performance. When 
three dentists detected caries using the results of the CNN model as reference data, the overall 
diagnostic performance of all three clinicians significantly improved, as shown by an increased 
sensitivity ratio (D1, 85.34%; D1′, 92.15%; D2, 85.86%; D2′, 93.72%; D3, 69.11%; D3′, 79.06%; 
p < 0.05). These increases were especially significant (p < 0.05) in the initial and moderate caries 
subgroups. The deep learning model may help clinicians to diagnose dental caries more accurately.

Dental caries, also known as tooth decay, is one of the most common chronic diseases worldwide. According 
to the American Dental Association, dental caries can be classified as normal, initial, moderate, or extensive 
according to the lesion extent1. The early detection of initial dental caries can prevent invasive treatment, thereby 
saving healthcare costs. However, detecting posterior initial proximal caries with clinical examinations alone is 
difficult, and bitewing radiography is helpful as the gold standard for diagnosing demineralized proximal caries2. 
The combination of bitewing radiographs and a visual inspection is a routine diagnostic approach for proximal 
caries detection3. Besides radiographs, fiber optic transillumination and fluorescence-based methods, such as 
DIAGNOdent (KaVo, Charlotte, NC, USA), are other ways to detect dental caries4. However, these methods have 
limitations in detecting posterior initial proximal caries5 and incur additional device costs. Bitewing radiograph 
is still the most reliable and widely used method in clinical situations.

Although radiography is recommended as a diagnostic method, the detection of dental caries using radio-
graphs can be subjective. Major differences exist across observers in terms of whether caries lesions are detected, 
even using the same radiograph. Factors such as the quality of the radiograph, viewing conditions, the dentist’s 
expectations, variability across examiners (in particular, whether a dentist leans towards or minimizes caries 
diagnoses), and the length of time per examination cause discrepancies in interrater agreement6,7. In a previous 
study, 34 raters showed considerable variation when examining the same bitewing radiographs, with mean kappa 
values of 0.30–0.72 for the presence or absence of dental caries and the degree thereof6,8. A lack of consistency 
is a significant problem, especially for the detection of initial dental caries9.

In recent years, researchers have actively explored the utilization of deep learning with convolutional neural 
networks (CNNs) to process various types of medical images, with promising performance. The usage of deep 
learning for the diagnosis of diseases is increasing, and deep learning has shown precise and expeditious detection 
with improved clinical outcomes10. In dentistry, the use of deep convolutional networks has been investigated 
since 2015. The U-Net was employed by Ronneberger to analyze dental structure segmentation on bitewing 
radiographs11. Subsequently, multiple deep learning models for diagnosing dental caries or lesion detection on 
dental X-ray images have been studied12–14. Most extant research has been limited to analyses of the detection 
performance of deep learning models, and some recent papers have compared diagnostic performance between 
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deep learning models and clinicians9,15. However, no study has yet investigated the changes that result from using 
deep learning models in clinical situations, or how clinicians can benefit from deep learning models.

In this study, we developed a U-Net CNN model11 for dental caries detection on bitewing radiographs through 
an analysis of dental structure and differences in radiographic density on radiographs without special manipula-
tion, and investigated whether the proposed model can help clinicians diagnose dental caries in actual clinical 
settings. The null hypothesis tested was that there would be no difference when the clinicians referred to the 
results of the CNN model when diagnosing dental caries on bitewing radiographs.

Materials and methods
Data collection.  This study was approved by the Institutional Review Board of Yonsei University Gangnam 
Severance Hospital and Yonsei University Dental Hospital (IRB No. 3-2019-0062 & No. 2-2019-0031) and all 
research was carried out in accordance with relevant guidelines and regulations. This study was a retrospec-
tive study, for which the requirement for informed consent was waived by the Institutional Review Board of 
Yonsei University Gangnam Severance Hospital and Yonsei University Dental Hospital due to its data source 
and methods. The radiographs were randomly selected by two dentists from the archive of the Department of 
Conservative Dentistry, Yonsei University containing bitewing radiographs taken from January 2017 to Decem-
ber 2018 for caries diagnosis and treatment. Radiographs including only permanent teeth were used for data, 
with no additional information about the patients (e.g. sex, age, or other clinical information). We tried to 
include a variety of cases that were as similar as possible to those encountered in real-world clinical situations. 
Radiographs with low image quality, excessive distortion, or severe overlapping of proximal surfaces due to the 
anatomical arrangement of particular teeth were excluded, because those features would interfere with a precise 
caries diagnosis. The bitewing radiographs were taken with the aid of a film-holding device (RINN SCP-ORA; 
DENTSPLY Rinn, York, PA, USA) using a dental X-ray machine (Kodak RVG 6200 Digital Radiography System 
with CS 2200; Carestream, Rochester, NY, USA).

The collected data were transferred to a tablet (Samsung Galaxy Note 10.1; Samsung Electronics Co., Suwon, 
South Korea) as Digital Imaging and Communications in Medicine files, and the two well-trained observers 
(postgraduate students of the Department of Conservative Dentistry, with a minimum clinical experience of 
5 years) examined the dental images sequentially. The observers were allowed to adjust the density or contrast 
of radiographs as they wished with no time limitation. The observers drew lines for the segmentation of dental 
structures (caries, enamel, dentin, pulp, metal restorations, tooth-colored restorations, gutta percha) (Fig. 1) on 
the bitewing radiographs. All types of dental caries (e.g., proximal, occlusal, root and secondary caries) that can 
be observed on bitewing radiographs were tagged regardless of the severity. Discrepancies in caries tagging (e.g., 
regarding the presence or absence of the caries and the size of the caries) were initially resolved by consensus 
between the two observers, and if the disagreement persisted, it was resolved by another author.

Training the convolutional neural network.  The bitewing radiographs were directly used as diagnostic 
data for CNN without specific pre-processing (e.g. image enhancement and manual setting of the region of inter-
est). The models were trained using each bitewing radiograph with 12-bit depth, which is the manufacturer’s raw 
format for bitewing radiographs, and its paired binary mask, while only the radiograph itself was fed into the 
models to detect the target regions for testing. The radiographs were scaled to the size of 572× 572 to be used 
as input for the networks. In total, 304 bitewing radiographs, which were randomly divided into two groups 

Dentist’s tagging Deep learning model

Caries (red), enamel (blue), dentin (green), pulp (yellow), metal restoration 

(orange), restoration (sky blue), gutta percha (brown), background (black)

Figure 1.   Example of the analysis of dental structures and caries tagging. The observers drew lines for the 
segmentation of dental structures (enamel, dentin, pulp, metal restoration, tooth-color restorations, gutta 
percha) and dental caries on the bitewing radiographs. *No software was used to generate the image. The picture 
used in Figure is a file printed using the source code that we implemented ourselves.
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(149 radiographs for DA , which was used for training on both structure and caries segmentation, and 105 radio-
graphs for DB , which was used for training on caries segmentation alone, as described below in greater depth) 
and a group of 50 radiographs with no dental caries ( DC) , were used to train the deep learning model, while 
50 radiographs ( DD) were used for performance evaluation. To evaluate the generality of the trained models 
without dataset selection biases, cross-validation was applied to the datasets DA, DB , and DC . Each dataset was 
randomly split into six different folds exclusive of each other. The six folds were grouped into training, validation, 
and test sets at a 4:1:1 ratio for each repeat, with six rounds of repeated fold shuffling. In other words, each fold 
was not just a training set for a cross-validation model, but also a test set for the other cross-validation model. 
During the training time, the optimal model epoch was selected by evaluating the error rate of the radiographs 
of the validation set. After finishing the training, the test set, which was a totally independent fold from both 
the training and validation sets, was used to measure the final performance by using the model with the opti-
mal epoch. If there had been pre-existing criteria for grading the level of difficulty of caries detection from the 
radiographs, we would have deliberately split the entire dataset into training, validation, and test sets according 
to those criteria. However, there are no standard criteria that could be used to gather each set without difficulty 
bias, which refers to the possibility that all the hard cases from the collected data could be included in the 
training set, whereas the easiest cases would be in the test set. Therefore, training and evaluating the model by 
randomly organized multiple cross-validation folds reduces the performance gaps between the test set and real-
world data caused by dataset selection bias. Two augmentation processes were applied to the training set to train 
the model. Image augmentation, including intensity variation, random flipping, rotation, elastic transformation, 
width scaling, and zooming, was equally applied first to each radiograph and its paired binary mask. The image 
augmentation process acts as a regularizer that minimizes overfitting by randomly incorporating various image 
artifacts into the image dataset. Subsequently, mask augmentation consisting of random kernel dilations and 
elastic transformation was applied to only the binary masks. Mask augmentation was designed to reflect label 
inconsistencies among dentists. To detect the caries and structure regions from each input radiograph, this study 
used the U-Net architecture, a famous architecture for segmenting target regions on the pixel level. The U-Net 
architecture includes a convolutional part and an up-convolutional part. The convolutional part has the typical 
structure of convolutional neural networks with five convolutional layers. Contrastively, the up-convolutional 
part performs an up-sampling of the feature map by taking a concatenated output of the previous layer and the 
opposite convolutional layer as an input. Then, a 1× 1 convolution maps the dimensionality of the feature maps 
to the desired number of classes. Finally, a softmax layer outputs a probability map where each pixel indicates 
the probability for each class within a range of [0, 1] [ref. Softmax]. The network was optimized by the adaptive 
moment estimation optimizer with an initial learning rate of 0.00001 [ref. Adam optimizer]. Details on model 
architecture are provided in the Supplementary Fig. S1 online.

To accurately detect caries regions from the input bitewing radiographs, we designed a two-step process: 
detection and refinement. To do this, the U-Net was trained on two models: the U-Net for caries segmentation 
(U-CS), and the U-Net for structure segmentation (U-SS). The purpose of the U-CS is to extract carious seg-
ments from the input radiograph, whereas the U-SS segments dental structures. The input radiographs and their 
corresponding binary masks were used to train two U-Nets. The target regions for the U-CS and the U-SS were 
carious regions and structures, respectively. To train U-SS, the DA dataset was used and showed quite accurate 
performance in segmentation of dental structures with a small training dataset. In contrast, the U-CS was trained 
by consecutively accumulating the datasets from DA to DC to observe the change in performance according to 
the features of the training dataset and the number of radiographs. Additionally, we introduced a penalty loss 
to overcome the limitation from the small scale of the training dataset, which can give rise to a large number of 
false detections. The penalty loss term was designed to assign a penalty to predicted carious regions on an input 
radiograph having no actual carious regions during training.

By simultaneously feeding each input radiograph into the U-SS and the U-CS, a caries probability map and 
a structure probability map were generated. The program was constructed to visualize detected dental caries 
as an area on the bitewing radiograph and also to show the degree of dental caries numerically. For the caries 
probability map, a pixel value of more than 0.55 was classified as a caries pixel. To find the threshold value of 
0.55, we iteratively observed the agreement between the outputs of the trained model and experts’ diagnoses for 
the validation sets, while changing the threshold value from 0.01 to 0.99 with a step size of 0.01. In this process, 
the threshold value of 0.55 showed the optimal results in terms of agreement. To reduce the likelihood of false 
detection, areas of caries detected by the U-CS without overlap with enamel or dentin regions were eliminated. 
Figure 2 shows an overview of caries detection and false detection refinement.

Performance evaluation of the CNN model.  To evaluate the performance of dental caries detection, 
the assessments were computed at the caries component level. If a blob classified as caries overlapped with a 
ground truth caries region at a specific ratio, we regarded the blob as a hit. We measured the precision (also 
known as positive predictive value (PPV), TP/(TP + FP) , %), recall (also known as sensitivity, TP/(TP + FN) , 
%), and F1-score ( F1 score =

(

2
(

precision ∗ recall
))/(

precision+ recall
)

 ) according to the overlap ratio ( θ ), 
which was set to 0.1, between the agreed-upon and predicted carious regions. We computed the final result by 
summing the number of caries from the test set of the cross-validation models on each dataset DA,DB, and DC , 
whereas DD was not included.

Performance evaluation and comparisons of dentists (before vs. after revision) with assistance 
of the CNN model.  To assess whether the developed deep learning model can support the diagnosis of 
dentists, we used DD , the evaluation dataset containing 50 radiographs. Specifically, we explored how dentists’ 
diagnoses changed before and after they referred to the predictions of dental caries made by the deep learning 
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model. To do this, the deep learning model, which was previously trained with 304 training images, was used 
to detect dental caries in 50 radiographs, and three dentists (working in clinics with a clinical experience of 
4–6 years) were instructed to tag dental caries independently, without any consultations. A few weeks later, the 
three dentists diagnosed the same radiographs, but with two distinguishable guidance lines, comprising the 
regions of dental caries predicted by the model and their previous diagnosis. The three dentists were instructed 
to revise (modify, delete, or add) their previously tagged dental caries by referencing the dental caries results 
detected by the deep learning model. As a result, each radiograph had seven sets of dental caries regions in total: 
six from dentists, and one from the model. To evaluate the validity of the model as a diagnostic support system, 
we analyzed the changes between first and second diagnoses of each dentist by measuring the PPV (%), sensitiv-
ity(%) and F1-score.Three dentists reached consensus on dental caries detection in DD , the evaluation dataset 
containing 50 radiographs, and divided the agreed-upon dental caries into 3 subgroups according to the severity 
of caries (initial, moderate, and extensive). The radiographic presentation of the proximal caries was classified 
as follows: sound: no radiolucency; initial: radiolucency may extend to the dentinoenamel junction or outer 
one-third of the dentin; moderate: radiolucency extends into the middle one-third of the dentin; and extensive: 
radiolucency extends into the inner one-third of the dentin1. If the same area was included, the same dental 
caries was considered to have been detected regardless of the overlap ratio on the caries lesion level; using this 
criterion, the sensitivity (%) was calculated according to the severity of the agreed-upon dental caries.

Statistical analysis.  The diagnostic performance for readers and the U-Net CNN model was calculated in 
terms of the PPV (%), sensitivity (%), and F1-score. To compare the PPV and sensitivity between readers and 
the U-Net CNN model, generalized estimating equations (GEEs) were used, while the F1-score was compared 
using the bootstrapping method (resampling: 1000). All statistical analyses were performed using SAS (version 
9.4, SAS Inc., Cary, NC, USA) and R package (version 4.1.0, http://​www.R-​proje​ct.​org). The significance level 
was set at alpha = 0.05.

Results
Diagnostic performance of the CNN model.  The diagnostic performance of the final CNN model on 
the total test dataset ( DA,B,C ) was as follows: precision, 63.29%; recall, 65.02%; and F1-score, 64.14%.

The deep learning program was quite accurate and showed a stable pattern of dental caries detection perfor-
mance. All types of dental caries (root caries, secondary dental caries, and gaps under restoration) recognizable 
on bitewing radiographs, other than proximal dental caries, were detectable. However, the false detection rate 
of dental caries was somewhat higher when the quality of the radiographs was low, dental overlap was severe, 
and when the bitewing images included the third molar.

Diagnostic performance of dentists (before vs. after revision) with assistance of the CNN 
model.  The PPV, sensitivity, and F1-score between dentists (before vs. after revision) and the model are 
shown in Table 1. When the three dentists detected dental caries with support from the deep learning model, 

Radiograph
input

Caries detection

Dental structure
analysis

Post-processing
Combination of 

dental structure and 
caries detection

* Caries detection and showing the severity of caries,

moderate dental caries (over enamel and dentin)

* Caries probability map * A pixel value of more than 0.55 was classified to a caries pixel.

Removal

Figure 2.   Flowchart of the detection of dental caries in the deep learning model, showing two models: the 
U-Net for caries segmentation (U-CS), and the U-Net for structure segmentation (U-SS). *No software was used 
to generate the image. The picture used in Figure is a file printed using the source code that we implemented 
ourselves.
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their sensitivity increased, while the PPV decreased. Statistically significant differences (p < 0.05) were found in 
the overall sensitivity and PPV of the dentists (before vs. after revision). However, there was no significant differ-
ence (p > 0.05) in the F1 score of the dentists (before vs. after revision). When the three observers independently 
diagnosed dental caries on 50 images, the number of dental caries tagged by each was as follows: D1, 177; D2, 
182; and D3, 155. After revision of their diagnoses referencing the dental caries detection results of the deep 
learning model, the final number of dental caries tagged by the three observers increased as follows: D1, 211; 
D2, 202; D3, 175. When the clinicians detected dental caries with reference to the results of the CNN model, 
they detected more caries.

When the results were analyzed according to the severity of the dental caries, the clinicians tended to be less 
accurate in detecting initial caries lesions with lower sensitivity (Fig. 3). When the three clinicians referred to 
the deep learning results as a second opinion, the sensitivity of all three clinicians for initial and moderate caries, 
which are easy to miss, significantly improved (p < 0.05).

Table 1.   Diagnostic performance of three dentists (before vs. after revision) and the CNN model on DD , the 
evaluation dataset (subgrouped according to the severity of the agreed-upon dental caries). Statistical analyses 
were performed using SAS (version 9.4, SAS Inc., Cary, NC, USA), GEEs were used. CNN Convolutional 
neural network, CI Confidence intervals. † Difference between Dentist 1 (before revision, (1)) vs. Dentist 1 
(after revision, (5)), p < 0.05. § Difference between Dentist 2 (before revision, (2)) vs. Dentist 2 (after revision, 
(6)), p < 0.05. *Difference between Dentist 3 (before revision, (3)) vs. Dentist 3 (after revision, (7)), p < 0.05.

Overall Initial Moderate Extensive

Sensitivity (95% 
CI) PPV (95% CI)

F1 score (95% 
CI)

Sensitivity (95% 
CI)

Sensitivity (95% 
CI)

Sensitivity (95% 
CI)

Before revision

Dentist 1 (1) 85.34(80.32–
90.36)† 100(100–100)† 92.07(88.95–

94.77)
77.89(69.54–
86.24)†

90.54(83.87–
97.21)† 100(100–100)

Dentist 2 (2) 85.86(80.92–
90.80)§ 100(100–100)§ 92.42(89.28–

95.06) 80(71.96–88.04)§ 91.89(85.67–
98.11)§ 90.91(78.9–100)

Dentist 3 (3) 69.11(62.56–
75.66)* 100(100–100)* 81.72(77.17–

85.98)
56.84(46.88–
66.8)* 78.38(69–87.76)* 90.91(78.9–100)

CNN model (4) 83.25(77.95–
88.55)

76.08(70.30–
81.86)

79.46(74.81–
83.29) 74.74(66–83.48) 90.54(83.87–

97.21) 95.45(86.74–100)

After revision

Dentist 1 (5) 92.15(88.34–
95.96)†

89.34(85.03–
93.65)†

90.67(87.53–
93.73)

86.32(79.41–
93.23)† 97.3(93.61–100)† 100(100–100)

Dentist 2 (6) 93.72(90.28–
97.16)§

94.21(90.89–
97.53)§ 94(91.4–96.14) 90.53(84.64–

96.42)§ 97.3(93.61–100)§ 95.45(86.74–100)

Dentist 3 (7) 79.06(73.29–
84.83)*

96.79(94.02–
99.56)* 87.02(82.99–90.2) 66.32(56.82–

75.82)*
89.19(82.12–
96.26)* 100(100–100)

DX, before revision; DX’, a�er revision.
Abbrevia�on: CNN, convolu�onal neural network; CI, confidence intervals.
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Figure 3.   Comparison of diagnostic performance (sensitivity) between three dentists (before and after revision) 
and the deep learning model. Mean ± standard deviation, CNN convolutional neural network, CI confidence 
intervals. *The significance level was set at alpha = 0.05 in the post hoc analysis. Statistical analyses were 
performed using SAS (version 9.4, SAS Inc., Cary, NC, USA), GEEs were used.
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Discussion
In this study, we developed a CNN model using U-Net for dental caries detection on bitewing radiographs with 
quite accurate detection performance and confirmed that this model could meaningfully help clinicians detect 
caries in clinical situations.

In the present study, when three clinicians performed dental caries tagging on the evaluation dataset, the 
lowest sensitivity ratio was found for initial caries, followed in ascending order by moderate and extensive car-
ies. This result coincides with the study of Cantu-Garcia9. Clinicians were more likely to miss initial caries on 
bitewing radiography and showed lower accuracy than for extensive caries. However, when clinicians referred 
to the results of the deep learning model when making diagnoses, the sensitivity ratio increased in every group 
of caries severity. This change was particularly remarkable in the initial and moderate groups, with statistically 
significant differences (p < 0.05). Therefore, guidance from the deep learning model was meaningful as a way to 
help clinicians detect early caries that could otherwise be mistakenly missed.

In this study, after revision, the three dentists’ sensitivity significantly increased, while the PPV significantly 
decreased (p < 0.05); accordingly, the null hypothesis was rejected. Furthermore, after revision, the number of 
caries tagged by all three observers increased. When clinicians received assistance from the CNN model, they 
diagnosed more dental caries accurately with increased sensitivity; however, over-detection of caries increased 
the false-positive rate, resulting in a lower PPV. When the model results were referenced, it was more common 
for the observer to detect additional dental caries or to increase the extent of caries than it was for the observer 
to remove the caries or reduce the affected area. Thus, referencing deep learning results as a second opinion was 
helpful for finding dental caries that had not been discovered initially due to time restraints or mistakes. Since 
the U-Net CNN model selects candidate carious areas that can be missed by mistake in a busy clinical situation, 
it can prompt clinicians to look at the relevant areas once more, thereby reducing the likelihood of missing the 
appropriate timing for treatment as a result of not catching dental caries early.

Thus, it may be helpful for clinicians to reference the dental caries detection results of a deep learning model 
as a second opinion when using bitewing radiography for caries detection, as a way to improve diagnostic 
accuracy and not to miss the opportunity to provide preventive treatments, especially for early dental caries 
lesions. It should be kept in mind that bitewing radiography, as used in this study, is vulnerable to false-positive 
and false-negative diagnoses16, and therefore may not be sufficient for diagnosing dental caries in images where 
proximal surfaces overlap or distortion is severe. In this study, clinicians often disagreed about the presence or 
absence of initial caries in radiographs with overlapping proximal surfaces, and the CNN model also showed 
more false-positive errors in detecting caries in such regions. When there are differences in radiographic density 
due to a tooth fracture or other enamel defects, not dental caries, the CNN model tended to show false-positive 
responses. In contrast, clinicians make a final decision on the presence of caries through logical thinking based on 
their knowledge of the shape or pattern of dental caries progression. This is thought to be an inevitable limitation 
of bitewing radiography, and in such cases, the presence of caries would eventually have to be determined by a 
visual or clinical examination using the information obtained from radiography. When an impacted third molar 
overlaps with the second molar, the CNN model we trained tended to show false-positive responses because of the 
lack of training data for cases of superposition with other unexpected features; this limitation should be overcome 
by increasing the size of the training dataset. However, since such areas can be excluded as false-positive errors 
by clinicians, they are not thought to pose a major problem in clinical settings.

The deep learning model developed in this study showed reliable dental caries detection performance as a 
result of training with 304 images, which included 763 dental caries. However, a limitation is that the training 
data set was small. Therefore, two data augmentation processes were performed to compensate for this limita-
tion. Furthermore, only results that equaled or exceeded the threshold value (size of dental caries, prediction 
probability: 0.55) were considered to be detected dental caries, which was appropriate for reducing false detec-
tion results and improving detection performance. Additionally, the model was trained using 50 images with 
no dental caries (dataset DC), and a penalty for false detection was applied to the CNN model to reduce false 
positives. Subsequently, improvements in dental caries detection performance were confirmed. Furthermore, 
to avoid false positives, caries was detected from only the enamel and dentin areas by combining the results of 
caries detection (U-CS) and tooth segmentation (U-SS).

In future research, the ongoing addition of training data will be needed, which will improve the accuracy of 
detection of the CNN model. Additionally, to obtain meaningfully high levels of accuracy in a clinical setting, 
it is necessary to check whether the same dental caries detection performance is shown when using bitewing 
radiography in primary teeth or radiography obtained by devices at multiple institutions, instead of only using 
bitewing radiography obtained at a single institution This study used bitewing radiographs obtained at two 
hospitals (Gangnam Severance and Yonsei University Dental Hospital). The X-ray equipment used at both 
institutions was identical, and both sets of data showed a similar level of performance in dental caries detection.

In this study, the presence of dental caries was evaluated only using radiographs, without visual or clinical 
examination data. Therefore, this study used the data of agreed-upon dental caries based on the consensus of the 
observers, which could be biased toward clinicians’ prejudices, and has the limitation of lacking gold-standard 
findings such as histological assessment or a visual-tactile assessment with proximal tooth separation that would 
conclusively demonstrate the actual presence of dental caries. Therefore, clinicians’ diagnostic accuracy was likely 
to have been higher in our study than in other research. Nonetheless, for future research, it would be preferable 
to design a prospective study using methods such as visual-tactile assessment as the gold standard for verifying 
the actual presence of dental caries in the analysis of clinicians’ diagnostic performance before and after revision 
with assistance of the CNN model.

Regardless of how much the CNN model’s diagnostic performance improves, there are bound to be occasional 
false-positive errors. Furthermore, in this study, clinicians unintentionally found too many dental caries when 
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they referred to the results of the CNN model, resulting in an increased false-positive rate and a decreased PPV. 
The problem that would be expected if the CNN model is used to diagnose dental caries in clinical settings is that 
the false-positive results of the deep learning model would be grounds for unnecessary treatment or overtreat-
ment. Clinicians should not wholly rely on artificial intelligence-based dental caries detection results, but should 
instead use them only for reference. Through additional clinical examinations and an assessment of patients’ 
systemic state, overall oral condition, and overall caries risk, clinicians should determine the final diagnosis and 
treatment plan on their own initiative.

Conclusion
The findings of the present study revealed that referencing the dental caries detection results of a deep learning 
model as a second opinion may help clinicians to diagnose early dental caries more accurately. However, the 
addition of more training data is needed to achieve more stable and precise results.

Data availability
All data are included in this published article.
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