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ABSTRACT The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is
both a threat to global food security and a model for plant pathology. Molecular pa-
thologists need an accurate understanding of the origins and line of descent of
M. oryzae populations in order to identify the genetic and functional bases of patho-
gen adaptation and to guide the development of more effective control strate-
gies. We used a whole-genome sequence analysis of samples from different
times and places to infer details about the genetic makeup of M. oryzae from a
global collection of isolates. Analyses of population structure identified six lin-
eages within M. oryzae, including two pandemic on japonica and indica rice, re-
spectively, and four lineages with more restricted distributions. Tip-dating calibration
indicated that M. oryzae lineages separated about a millennium ago, long after the
initial domestication of rice. The major lineage endemic to continental Southeast
Asia displayed signatures of sexual recombination and evidence of DNA acquisition
from multiple lineages. Tests for weak natural selection revealed that the pandemic
spread of clonal lineages entailed an evolutionary “cost,” in terms of the accumula-
tion of deleterious mutations. Our findings reveal the coexistence of multiple en-
demic and pandemic lineages with contrasting population and genetic characteris-
tics within a widely distributed pathogen.

IMPORTANCE The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is
a textbook example of a rapidly adapting pathogen, and it is responsible for one of
the most damaging diseases of rice. Improvements in our understanding of Magna-
porthe oryzae’s diversity and evolution are required to guide the development of
more effective control strategies. We used genome sequencing data for samples
from around the world to infer the evolutionary history of M. oryzae. We found that
M. oryzae diversified about 1,000 years ago, separating into six main lineages: two
pandemic on japonica and indica rice, respectively, and four with more restricted
distributions. We also found that a lineage endemic to continental Southeast Asia
displayed signatures of sexual recombination and the acquisition of genetic material
from multiple lineages. This work provides a population-level genomic framework
for defining molecular markers for the control of rice blast and investigations of the
molecular basis of differences in pathogenicity between M. oryzae lineages.

KEYWORDS clonality, deleterious mutations, indica rice, introgression, japonica rice,
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Fungal plant pathogens provide many examples of geographically widespread, often
clonal, lineages capable of adapting rapidly to anthropogenic changes, such as the

use of new fungicides or resistant varieties, despite extremely low levels of population
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genetic diversity (1, 2). An accurate characterization of the population biology and
evolutionary history of these organisms is crucial to an understanding of the factors
underlying their emergence and spread and to provide new, powerful, and enduring
solutions to control these factors. Knowledge of the origins and lines of descent
connecting extant pathogen populations provides insight into the pace and mode of
disease emergence and subsequent dispersal (2, 3). By inferring the history and
structure of pathogen populations, we can also identify disease reservoirs and improve
our understanding of the transmissibility and longevity of populations (4, 5). Finally,
quantification of the amount and distribution of genetic variation across space and
time provides a population-level genomic framework for defining molecular markers
for pathogen control and for investigations of the molecular basis of differences in
phenotype and fitness between divergent pathogen lineages.

Rice blast is one of the most damaging rice diseases worldwide (6–8). It is caused by
the ascomycete fungus Magnaporthe oryzae (syn., Pyricularia oryzae), which has be-
come a model for plant pathology in parallel with the development of rice as a model
crop species (7, 9–11). The rice-infecting lineage of M. oryzae coexists with multiple
host-specialized and genetically divergent lineages that infect other cereals and grasses
(12–14). The lineage infecting foxtail millet (Setaria italica, referred to hereafter as
Setaria) is the closest relative of the rice-infecting lineage, and rice blast was thus
thought to have emerged following a host shift from Setaria about 2,500 to 7,500 years
ago (15), at a time when Setaria was the preferred staple in East Asia (16, 17).
Magnaporthe oryzae infects the two major subspecies of rice, Oryza sativa subsp. indica
and Oryza sativa subsp. japonica (referred to here as indica and japonica, respectively).
Population genomics studies have provided support for a model in which de novo
domestication occurred only once, to generate the japonica lineage, which subse-
quently diverged into temperate and tropical japonica, with introgressive hybridization
from japonica leading to domesticated indica (18–20). Using microsatellite markers,
Saleh et al. (21) identified multiple endemic and pandemic genetic pools of rice-
infecting strains, but they were unable to resolve the evolutionary relationships be-
tween them. Rice blast has proved able to adapt rapidly to varietal resistance and is
thus a dynamic threat to such resistance in rice agrosystems (22). This ability to adapt
is surprising given the low level of diversity in M. oryzae and its infertility or asexual
mode of reproduction in most rice-growing areas (22, 23). This pathogen may thus be
particularly exposed to the “cost of pestification” (by analogy with the cost of domes-
tication [24–27]), according to which the combination of a small effective population
size, strong selection on pestification genes, and a lack of recombination lead to the
accumulation of deleterious mutations (28). Potential limitations to adaptation could be
counterbalanced by boom-and-bust cycles in M. oryzae, with adaptation occurring
during the boom phases, when the short-term effective population size is large (2, 29).
Adaptive mutations may also be introduced by cryptic genetic exchanges with con-
specifics or heterospecifics (30–33), but these mechanisms remain to be investigated in
natural populations of M. oryzae (34). An accurate understanding of the population
genetics of successful clonal fungal pathogens, such as M. oryzae, can provide impor-
tant insights into the genomic and eco-evolutionary processes underlying pathogen
emergence and adaptation to anthropogenic changes.

We used pathogenicity data and whole-genome resequencing data for M. oryzae
samples distributed over time and space to address the following questions. What
population structure does M. oryzae display? Does this species consist of relatively
ancient or recent clonal lineages? What is the history of temperate japonica, tropical
japonica, and indica japonica rice colonization by M. oryzae? Do M. oryzae lineages
display differences in pathogenicity toward rice subspecies? Can we identify genetic
exchanges between rice-infecting lineages and the genomic regions that have been
exchanged? Is there evidence for a cost of pestification in terms of the accumulation of
deleterious mutations?
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RESULTS
Genome sequencing and SNP calling. We elucidated the emergence, diversifica-

tion, and spread of M. oryzae in rice agrosystems by studying genome-wide variation
across geographically widespread samples. We used 25 and 18 genomes sequenced by
Illumina single-end and paired-end read technologies, respectively, with 7 published
genome sequences obtained via Solexa and mate-pair titanium methods (10, 12). We
thus had a total of 50 genomes available for analysis (see Table S1 in the supplemental
material). Forty-five of the isolates concerned originated from cultivated rice (Oryza
sativa), four from cultivated barley (Hordeum vulgare), and one from foxtail millet
(Setaria italica). The sample set included multiple samples from geographically sepa-
rated areas (North and South America, South, Southeast, and East Asia, sub-Saharan
Africa, Europe, and the Mediterranean), and the reference laboratory strain 70-15 and
its parent GY11 were from French Guiana. Nine samples were collected from tropi-
cal japonica rice, 7 from temperate japonica, 15 from indica, and 3 from hybrid elite
varieties. Sequencing reads were mapped onto the 41.1-Mb reference genome of strain
70-15. Mean sequencing depth ranged from 5� to 64� for genomes sequenced with
single-end reads and from 5� to 10� for genomes sequenced with paired-end reads
(Table S1). Single-nucleotide polymorphism (SNP) calling identified 182,804 biallelic
SNPs distributed over seven chromosomes. The data set consisted of 95,925 SNPs,
excluding the Setaria-infecting lineage, 61,765 of which had less than 30% missing data
and 16,370 of which had no missing data.

Population subdivision, genealogical relationships, and levels of genetic vari-
ation. We used a multivariate analysis of population subdivision method, rather
than model-based clustering algorithms, because multivariate methods require no
assumptions about outcrossing, random mating, or linkage equilibrium within
clusters, and previous studies have shown that, in many populations, M. oryzae has
lost its sexual recombination capacity (references 21 to 23 and references therein).
We used a discriminant analysis of principal components (DAPC) to determine the
number of lineages represented in our data set. When we progressively increased
the number of clusters (K) from 2 to 5, we identified the four lineages previously
described by Saleh et al. in Asia (21) on the basis of microsatellite data, and we also
identified a cluster of three strains collected from the Yunnan and Hunan provinces
of China (Fig. 1). Further increases in K led to the subdivision of this Yunnan-Hunan
cluster. Barley-infecting isolates clustered within rice-infecting lineage 1, which
confirmed findings of previous phylogenetic studies (12, 13). Barley is “universally
susceptible” to rice-infecting isolates, at least under laboratory conditions. How-
ever, the barley isolates included in this study were collected in Thailand, and no
major blast epidemic has since been reported on this host in this area, indicating
that barley is a minor host for rice-infecting populations.

We investigated whether the clusters observed at K values of �4 in the DAPC
represented new independent lineages or subdivisions of the main clusters by using
RAxML to infer a genome genealogy (35). We based the analysis on a data set
combining the full set of SNPs and monomorphic sites, rather than just SNPs, to
increase topological and branch length accuracy (36). The total evidence genealogy
revealed the existence of four lineages, corresponding to lineages 1 to 4 described by
Saleh et al. (21), and two new lineages (named lineages 5 and 6) corresponding to the
three-individual cluster observed at K � 5 in the DAPC (Fig. 1). With the 41-Mb data set,
including missing data, the most basal divergence within the rice-infecting lineage was
that between lineage 1 and the other five lineages (Fig. 1). If positions with missing data
were excluded (15 Mb), the most basal divergence was that between a group com-
posed of lineages 1, 2, and 6 and a group composed of lineages 3, 4, and 5 (data not
shown).

Absolute divergence (dxy) between pairs of lineages was on the order of 10�4

differences per base pair and was highest in comparisons with lineage 6 (Table S2).
Nucleotide diversity within lineages was an order of magnitude lower than divergence

Diversification History of Rice Blast ®

March/April 2018 Volume 9 Issue 2 e01806-17 mbio.asm.org 3

http://mbio.asm.org


3.0E-43.0E-44

US0098

Lineage 1
French Guyana, 
Thailand,
China, Laos

Membership probabilities

MC0016

LA5

CH689

CH999

HN001

TH17

GY11

TH12

PR0009

CH860

BR0026

TH16

JP0010

CH0052

NP52

SP0005

TH14

CH0063

LA21

CH0092

CH1019

70 -15

US71

FR13

IN008
IN007

NP3
US003

US71

IN008
IN007

NP3
US003

Setaria millet, USA

Lineage 2
China, Brasil,
USA, Burundi, 
Morocco, Portugal,
France, Japan, Spain,
Hungary

Lineage 6 China
Lineage 5 China

Lineage 3
Nepal, China,
Philippines, Burundi, 
Madagascar, Mali
Côte d’Ivoire, Colombia

Lineage 4
Nepal, USA, 
India, China

K=2 K=3 K=4 K=5 K=6 K=7 K=8 K=9 K=10
(A)

(B)

lineage 1
lineage 2
lineage 3
lineage 4
lineage 5
lineage 6
Setaria

IND
ND
TRJ
IND
IND
ND
IND
IND
HYB
HYB
ND
IND
IND
IND
ND
IND
IND
ND
IND
IND
IND
IND
ND
IND
TRJ
TRJ
HYB
TRJ
TRJ
TEJ
TEJ
TEJ
TEJ
TRJ
ND
TRJ
TEJ
TEJ
TEJ
ND
ND
BAR
BAR
BAR
TRJ
TRJ
ND
ND
BAR

FIG 1 Population subdivision in the sample set analyzed. (A) Total evidence maximum-likelihood genome genealogy and discriminant
analysis of principal components. (B) Geographic distribution of the six lineages identified, based on results presented in panel A. In panel
A, all nodes had more than 95% bootstrap support (100 resamplings), except for the node carrying isolates BR0026, US0098, PR0009, and
MC0016 (support, 72%). On the bar plot, each isolate is represented by a thick horizontal line divided into K segments, indicating the isolate’s
estimated probability of belonging to the K assumed clusters. In panel B, diameters are proportional to the number of isolates collected per
site (the smallest diameter represents 1 isolate). TRJ, tropical japonica; TEJ, temperate japonica; IND, indica; HYB, hybrid; BAR, barley; ND,
no data.
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in lineages 2 to 4 (�w per site, 5.2e�5 to 7.2e�5; � per site, 4.5e�5 to 4.9e�5) and was
highest in lineage 1 (�w per site, 2.3e�4; � per site, 2.1e�4) (Table 1). Tajima’s D was
negative in all lineages, indicating an excess of low-frequency polymorphisms, and
values were closer to zero in lineages 1 and 4 (D � �0.56 and �0.82, respectively) than
in lineages 2 and 3 (D � �1.45 and �1.72, respectively). The same differences in levels
of variability across lineages, and individual summary statistics of the same order of
magnitude, were observed if missing data were excluded from computations.

Footprints of natural selection and the cost of pestification. We tested for
standard neutral molecular evolution by using the McDonald-Kreitman method, based
on genome-wide patterns of synonymous and nonsynonymous variations (Table 2).
The null hypothesis could be rejected for all four lineages (P � 0.0001). The neutrality
index, which quantifies the direction and degree of departure from neutrality, was
greater than 1, indicating an excess of amino acid polymorphisms. This pattern sug-
gests that lineages 1 to 4 accumulated slightly deleterious mutations during divergence
from the Setaria-infecting lineage. Under near-neutrality, the ratio of nonsynonymous
to synonymous nucleotide diversity (�N/�S) provides an estimate of the proportion of
effectively neutral mutations that are strongly dependent on the effective population
size, Ne (37). The �N/�S ratio ranged from 0.43 in lineage 1 to 0.61 in lineage 4 and was
intermediate in lineages 2 and 3 (�N/�S � 0.49), and the ratio of nonsense (i.e.,
premature stop codons) to sense nonsynonymous mutations (Pnonsense/Psense) followed
the same pattern. Overall, the �N/�S and Pnonsense/Psense ratios obtained suggest a
higher proportion of slightly deleterious mutations segregating in lineage 4 and, to a
lesser extent, in lineages 2 and 3, than in lineage 1. Assuming identical mutation rates,
we can estimate that the long-term population size of lineage 1 (�S � 0.00018/bp) was
2.5 to 3 times greater than that of the other lineages, consistent with the effect of Ne

on the efficacy of negative selection predicted under near-neutrality.
Distribution and reproductive biology of M. oryzae lineages. The strains of

lineages 1 and 2 originated from rain-fed upland rice, including rice grown in experi-
mental fields. Lineage 2 was exclusively associated with tropical and temperate ja-
ponica, whereas lineage 1 was sampled from barley, tropical japonica, and hybrid rice
varieties (Fig. 1; Table S1). Lineage 1 was restricted to continental Southeast Asia (Laos,
Thailand, Yunnan). The reference laboratory strain GY-11 (also referred to as Guy11) was

TABLE 1 Summary of population genomic variations in nonoverlapping 100-kb windowsa

Lineage n S K He �w � D

1 10 57.6 3.6 0.31 2.25E�04 2.11E�04 �0.558
2 14 19.7 7.2 0.20 6.94E�05 4.92E�05 �1.454
3 16 21.5 7.9 0.17 7.24E�05 4.53E�05 �1.718
4 6 10.5 4.3 0.38 5.15E�05 4.52E�05 �0.824
aLineages 5 and 6 were not included in calculations because the sample sizes for these lineages were too
small (n � 2 and n � 1, respectively). n, sample size; �w, Watterson’s � per base pair; �, nucleotide diversity
per base pair; He, haplotype diversity; K, number of haplotypes; D, Tajima’s neutrality statistic.

TABLE 2 Results of McDonald-Kreitman tests based on genome-wide patterns of synonymous and nonsynonymous variation and
measurements of the genome-wide intensity of purifying selectiona

Lineage �N/�S Pnonsense/Psense Pn/Ps Dn/Ds NI

1 0.43 (0.00041/0.00018) 0.011 (49/4,244) 1.23 (4,293/3,492) 0.70 (16,444/23,656) 1.77*
2 0.49 (0.00012/0.00006) 0.022 (36/1,622) 1.52 (1,658/1,088) 0.72 (15,565/21,745) 2.13*
3 0.49 (0.00015/0.00007) 0.018 (32/1814) 1.17 (1,846/1,578) 0.97 (14,789/15,293) 1.21*
4 0.61 (0.00012/0.00007) 0.034 (31/914) 1.59 (945/593) 0.72 (15,302/21,347) 2.22*
aDivergence was measured against predicted gene sequences of the Setaria-infecting Magnaporthe oryzae isolate US71. �N/�S is the ratio of nonsynonymous to
synonymous nucleotide diversity. Under near-neutrality, �N/�S provides an estimate of the proportion of effectively neutral mutations strongly dependent on
effective population size, Ne. �S is a proxy for Ne. Pnonsense/Psense is the number of nonsynonymous nonsense mutations (e.g., a “premature” stop codon) divided by
the number of nonsynonymous sense mutations. The neutrality index (NI) � (Pn/Ps)/(Dn/Ds) and determines the direction and degree of departure from neutrality; *,
P � 0.0001, chi-square test of independence. NI is equal to 1 if nonsynonymous mutations are neutral or strongly deleterious. NI is �1 when amino acid
substitutions have occurred and implies that advantageous mutations have become fixed. NI is �1 when there is an excess of amino acid polymorphisms, as
expected in a context of slightly deleterious mutations.
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collected in French Guiana, from fields cultivated by Hmong refugees who fled Laos in
the 1970s. Lineage 2 was pandemic and included all the European samples.

Lineage 3 and 4 samples originated from irrigated or rain-fed upland/lowland rice.
They were mostly associated with indica rice, with two samples collected from hybrid
varieties and one collected from tropical japonica (Fig. 1; Table S1). Lineage 3 was
pandemic and was found in all sub-Saharan Africa samples, whereas lineage 4 was
found on the Indian subcontinent, in Zhejiang (China), and the United States. Lineages
5 and 6 were collected from indica and tropical japonica varieties of rain-fed upland rice
in Yunnan and Hunan, China, respectively.

Lineages 2, 3, and 4 displayed low rates of female fertility (20%, 0%, and 0%,
respectively) and a significant imbalance in mating type ratio (frequency of Mat-1,
100%, 14.3%, and 100%, respectively; chi-square test, P � 0.001), whereas lineage 1 had
a female fertility rate of 88.9% and a nonsignificant imbalance in mating type ratio
(frequency of Mat-1, 33.3%; chi-square test, P � 0.083). Lineage 5 was Mat-1, and only
one of the two strains was female fertile (no data for lineage 6).

Pathogen compatibility range. Gallet et al. (38) analyzed the range of compati-
bility, in terms of the qualitative success of infection, between 31 M. oryzae isolates and
57 rice genotypes. Analyses of variance revealed a pattern of host-pathogen compat-
ibility strongly structured by the host of origin of the isolates (i.e., the rice subspecies
from which samples were collected). We investigated whether the compatibility be-
tween rice hosts and M. oryzae isolates was also structured by the lineage of origin of
the isolates, by supplementing the data set published by Gallet et al. (38) with
pathotyping data for 27 isolates. We added microsatellite data to the SNP data, to
overcome the absence of sequence data for 28 isolates, and we used clustering
methods to confidently assign 46 of the 58 isolates with pathotyping data to identified
lineages (no isolates could be assigned to lineage 5 or 6 [see Materials and Methods]).
The final pathogenicity data set included 46 isolates from lineages 1 to 4, inoculated
onto 38 tropical japonica, temperate japonica, and indica varieties and 19 differential
varieties with known resistance genes (Table S3).

Infection success (binary response) was analyzed with a generalized linear model. An
analysis of the proportion of compatible interactions revealed significant effects of rice
subspecies, pathogen lineage, and the interaction between them (Table S4). The
lineage effect could be explained by lineage 2 having a lower infection frequency than
lineage 1 (comparison of lineages 1 and 2: z � �2.779, P � 0.005) and by lineage 3
having a higher infection frequency than lineage 1 (comparison of lineages 3 and 1: z �

2.683, P � 0.007), whereas the infection frequency of lineage 4 was not significantly
different from that of lineage 1 (comparison of lineages 4 and 1: z � 1.121, P � 0.262).
The rice subspecies effect could be attributed to tropical japonica varieties having a
wider compatibility range than indica varieties (comparison of tropical japonica and
indica: z � 1.793, P � 0.073) and temperate japonica having a wider compatibility
range than indica varieties (comparison of temperate japonica and indica: z � 1.830,
P � 0.067). The significant interaction between rice subspecies and pathogen lineage
indicates that the effect of the lineage of origin of the isolate on the proportion of
compatible interactions differed between the three rice subspecies. This interaction
effect can be attributed to pathogen specialization on indica and tropical japonica, with
lineage 1 (mostly originating from tropical japonica or from areas in which tropical
japonica is grown) infecting tropical japonica varieties more frequently than indica
varieties, lineage 2 (the lineage sampled from temperate japonica) infecting temperate
japonica varieties more frequently than other varieties, lineages 3 and 4 (mostly
originating from indica varieties) infecting indica varieties more frequently than tropical
japonica varieties, and all four lineages infecting temperate japonica varieties at
relatively high frequencies (Fig. 2A; Table S4).

Major resistance (R) genes can be a major determinant of pathogen host range, and
they promote divergence between pathogen lineages by exerting strong divergent
selection on a limited number of pathogenicity-related genes (39–41). We investigated
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the possible role of major resistance genes in the observed differences for compatibility
between rice subspecies and pathogen lineages by challenging 19 differential varieties
with the 46 isolates assigned to lineages 1 to 4. An analysis of the number of R genes
overcome revealed a significant effect of pathogen lineage (Table S5). This effect was
driven mostly by lineage 2, which overcame fewer R genes than the other lineages
(Fig. 2B; Table S5).

Recombination within and between lineages. We visualized evolutionary rela-
tionships while taking into account the possibility of recombination within or between
lineages by using the phylogenetic network approach Neighbor-Net, as implemented
in Splitstree 4.13 (42). Neighbor-Net is an agglomerative method that generates planate
split graph representations. A split is a partitioning of the data set, and a collection of
splits is considered compatible if they fall within the set of splits of a tree. Gene
genealogies represent compatible collections of splits, whereas Neighbor-Net can be

FIG 2 Proportion of compatible interactions between 46 isolates from lineages 1 to 4 of M. oryzae and
38 varieties representing three rice subspecies (A) and the proportion of R genes overcome by 36 isolates
from lineages 1 to 4 of M. oryzae used to inoculate 19 differential lines of rice (B).
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used to visualize conflicting phylogenetic signals, represented by network reticulation,
through a condition weaker than compatibility. The Neighbor-Net network inferred
from the set of 16,370 SNPs without missing data presented a non-tree-like structure of
the inner connections between lineages, consistent with genetic exchanges between
unrelated isolates or incomplete lineage sorting (Fig. 3). Greater network reticulation
was observed between lineages 1, 5, or 6 and the other lineages than between these
other lineages themselves. Lineages 2 to 4 had long interior branches and star-like
topologies, consistent with long-term clonality.

We evaluated the amount of recombination within lineages by estimating the
population recombination parameter (rho � 2 Ner) and testing for the presence of
recombination with a likelihood permutation test implemented in the Pairwise pro-
gram in LDHat. Recombination analyses confirmed the heterogeneity between lineages
of the contribution of recombination to genomic variation, with recombination rates
averaged across chromosomes of more than 2 to 3 orders of magnitude higher in
lineage 1 (10.57 crossovers/Mbp/generation) than in other lineages (lineage 2, 0.28;
lineage 3, 0.01; lineage 4, 0.33 crossovers/Mbp/generation) (Table 3). SplitsTree analy-
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FIG 3 Neighbor-Net networks showing relationships between haplotypes identified on the basis of the
full set of 16,370 SNPs without missing data in the whole sample set (A), in lineage 1 (B), in lineage 2 (C),
in lineage 3 (D), and in lineage 4 (E).

TABLE 3 Estimates of the population recombination rate (�), tests of recombination
based on homoplasy and linkage disequilibrium, and the proportion of homoplastic SNPs

Lineage

� (no. of crossovers/Mbp/generation) on chromosomea
%
homoplastic
SNPs

phi test
P value1 2 3 4 5 6 7 Mean

1 8.6* 3.8* 15.1* 1.4 8.5* 10.6* 13.5* 10.57 34.56 0.0000
2 0.0 0.2 0.2* 0.3 0.6 0.5 0.3 0.28 0.09 0.0944
3 0.4* 0.2* 0.0 0.0 0.0 0.0 0.0 0.01 0.47 0.0535
4 0.2 0.2* 0.3 0.4 0.4 0.4 0.4 0.33 0.40 0.0014
a*, P � 0.05. The phi test assesses pairwise homoplasy. The null hypothesis of no recombination was tested,
with the phi test and for �, using random permutations of the positions of the SNPs based on the
expectation that sites are exchangeable if there is no recombination. For the � test, significance was
determined from the distribution of maximum composite likelihood values calculated from permuted data.
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ses, producing the reticulations within each lineage and testing for recombination with
the phi test, were consistent with this pattern (Table 3 and Fig. 3; Fig. S1). The null
hypothesis of no recombination was rejected only for lineages 1 and 4 (43).

Differences in recombination-based variation between lineages were confirmed by
analyses of homoplasy (Table 3). Homoplastic sites display sequence similarities that are
not inherited from a common ancestor; instead, they result from independent events
in different branches. Homoplasy can result from recurrent mutations or recombina-
tion, and the contribution of recombination to homoplasy is expected to predominate
in outbreeding populations. Homoplastic sites were identified by mapping mutations
onto the total evidence genome genealogy with the Trace All Characters function of
Mesquite (44), applying ancestral reconstruction under the maximum parsimony opti-
mality criterion. The resulting matrix of ancestral states for all nodes was then pro-
cessed with a python script to determine the number of mutations that had occurred
at each site within each lineage, counting sites displaying multiple substitutions across
the tree as homoplastic. Only 0.09%, 0.47%, and 0.40% of the SNPs were homoplastic
in lineages 2, 3, and 4, respectively, versus 34.6% in lineage 1 (lineages 5 and 6 were not
tested due to the small sample sizes). The very small numbers of homoplastic sites in
lineages 2, 3, and 4 suggested that these lineages are largely clonal, whereas the high
level of homoplasy detected in lineage 1 is consistent with repeated recombination
events between strains of this lineage.

We assessed the genomic impact of recombination by analyzing patterns of linkage
disequilibrium (LD), i.e., the tendency of different alleles to occur together in a non-
random manner. For lineage 1 (S � 13,000 SNPs), LD decayed smoothly with physical
distance, reaching half its maximum value at about 10 kb, whereas for lineages 2, 3, and
4 (S � 3,700, 3,200, and 2,700 SNPs), no LD decay pattern was observed (Fig. S2). These
analyses also revealed that background LD levels were no higher in lineages 2, 3, or 4,
which appeared to be largely clonal, than in lineage 1. However, both simulation work
and empirical data have shown that population history, including bottlenecks and
admixtures, strongly affects the background level of LD in a population (45).

Genome scan for genetic exchanges between lineages. We scanned the ge-
nomes for the exchange of mutations between lineages, using a method based on
lineage-diagnostic SNPs and a probabilistic method of “chromosome painting” (Fig. 4).
In the lineage-diagnostic SNP approach, each isolate is removed from the data set in
turn to identify SNPs specific to a particular lineage (i.e., biallelic sites displaying a
mutation specific to a given lineage). Each focal isolate is then added back to the data
set and scanned for the presence of lineage-diagnostic SNPs identified in lineages other
than its lineage of origin. Using this approach, we identified 515 lineage-diagnostic
singletons with 276, 96, and 140 singletons in lineages 1, 5, and 6, respectively, and only
1 singleton in each of lineages 2, 3, and 4. Putatively migrant singletons were assigned
to all other lineages for lineages 1 and 5 and to all other lineages except lineage 1 for
lineage 6 (Table S6). Chromosome painting is a probabilistic method for reconstructing
the chromosomes of each individual sample as a combination of all other homologous
sequences. We identified the migrant mutations present in each isolate, with these
mutations being defined as those having a probability greater than 90% of resulting
from being copied from a lineage other than the lineage of origin of the focal isolate.
This method uses population data from recipient populations only, and we were
therefore able to include only lineages 1 to 4 in the analysis. Chromosome painting
identified 464 migrant mutations, all of which segregated in lineage 1. Putative migrant
mutations were assigned to all five of the other lineages (92.8 mutations per lineage,
on average), with lineage 2 making the largest contribution (165 mutations) and
lineage 4 the smallest contribution (39 mutations).

The sets of putative migrant mutations identified by the two methods matched
different sets of genes enriched in NOD-like receptor (NLR) (46), HET domain (47), or the
GO term lipid catabolic process (Table S6). However, the presence of false positives due
to the random sorting of ancestral polymorphisms in lineage 1 and other lineages
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cannot be excluded. We minimized the impact of the retention of ancestral mutations
by reasoning that series of adjacent mutations are more likely to represent genuine
gene exchange events. We identified all the genomic regions defined by three adjacent
putative migrant mutations originating from the same donor lineage. We searched for
such mutations among the set of putative migrant mutations identified by the two
methods. We identified 12 such regions in total, corresponding to 1,917 genes. Func-
tional enrichment tests for each recipient isolate revealed enrichment of genes for the
GO term pathogenesis for isolate CH999, the GO term phosphatidylinositol biosynthetic
process for isolate TH17, and the GO term telomere maintenance for isolate CH1019
(Table S6).

Molecular dating. We investigated the timing of rice blast emergence and diver-
sification by performing Bayesian phylogenetic analyses with Beast. Isolates were
collected from 1967 to 2009 (Table S1), making it possible to use a tip-based calibration
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approach to estimate evolutionary rates and ancestral divergence times together. We
analyzed the linear regression of sample age against root-to-tip distance (i.e., the
number of substitutions separating each sample from the hypothetical ancestor at the
root of the tree). The temporal signal obtained in this analysis was strong enough for
thorough tip-dating inferences (Fig. S3) (48). We therefore used tip dating to estimate
the rate at which mutations accumulate (i.e., the substitution rate) and the age of every
node in the tree, including the root (i.e., time to the most recent common ancestor),
simultaneously. At the scale of the genome, the mean substitution rate was estimated
at 1.98e�8 substitutions/site/year (Fig. S3). The six rice-infecting lineages were esti-
mated to have diversified ~900 to ~1,300 years ago (95% highest posterior density
[HPD], 175 to 2,700 years ago) (Fig. 5). Bootstrap node support was strong, and similar
node age estimates were obtained when the recombining lineage 1 and the potentially
recombining lineages 5 and 6 (data not shown) were excluded, indicating the limited
effect of recombination on our inferences. We also inferred that the ancestor of
rice-infecting and Setaria-infecting lineages lived ~9,800 years ago. However, the
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credibility intervals were relatively large (95% HPD, 1,200 to 22,000 years ago), covering
the period from japonica rice domestication and Setaria domestication to the last
glacial maximum and overlapping with previous estimates suggesting that the rice-
and Setaria-infecting lineages diverged shortly after rice domestication, or even during
the period of rice domestication (range of point estimates in reference 15, 2,500 to
7,300 years ago).

DISCUSSION

We performed a whole-genome sequence analysis of 50 isolates with different
temporal and spatial distributions in order to elucidate the emergence, diversification,
and spread of M. oryzae as a rapidly evolving pathogen with a devastating impact on
rice agrosystems. Analyses of population subdivision confirmed the four lineages
previously identified by Saleh et al. (21). Previous analyses of microsatellite data were
unable to resolve the genealogical relationships between clusters or to capture the
phylogenetic depth of population subdivision within M. oryzae. In contrast, our popu-
lation genomic analyses of resequencing data revealed weak divergence between
clusters (absolute divergence [dxy] on the order of 10�4 differences per base pair),
consistent with recent diversification. Phylogenetic analyses using sampling dates for
calibration confirmed the recent origin of the six lineages, with estimates of divergence
times ranging from ~900 to ~1,300 years ago (95% credible intervals, 175 to 2,700 years
ago). Lineage 1 (which includes the reference strains GY11 and 70-15) was found in
mainland Southeast Asia and originates from barley, tropical japonica, or undeter-
mined varieties. All isolates from lineages 1, 5, and 6 were collected in rain-fed upland
agrosystems typical of japonica rice cultivation, and pathogenicity test results were
consistent with the local adaptation of lineage 1 to tropical japonica rice. Lineage 2 was
pandemic in irrigated fields of temperate japonica rice outside Asia, and cross-
inoculation experiments revealed specialization on this host and an ability to overcome
fewer R genes, on average, than other lineages. Lineages 3 and 4 were associated with
indica. Lineage 3 is pandemic, and cross-inoculation indicated local adaptation to this
host, relative to tropical japonica, although lineages 3 and 4 had relatively wide
compatibility ranges, consistent with generalism. One possible explanation for the wide
compatibility range of temperate japonica varieties and the narrow compatibility range
of lineage 2 is that temperate japonica varieties have smaller repertoires of R genes, as
resistance to blast is of less concern to breeders growing rice under temperate irrigated
conditions, which are less conducive to epidemics (38).

The continental Southeast Asian lineage was the most basal in total evidence
genome genealogies, reflecting a pathway of domesticated Asian rice evolution (16, 18)
in which the de novo domestication of rice occurred only once, in japonica. However,
the diversification of M. oryzae into multiple rice-infecting lineages (point estimates
ranging from ~900 to ~1,300 years ago) appears to be much more recent than the de
novo domestication of rice (8,500 to 6,500 years ago [16, 49, 50]), the spread of rice
cultivation in paddy fields, and the domestication of indica in South Asia, following
introgressive hybridization from the early japonica gene pool into “proto-indica” rice
(about 4,000 years ago [16, 51]). At the time corresponding to the upper bound of
the 95% credible interval (2,700 years ago), japonica rice and paddy field cultivation had
spread to most areas of continental and insular South, East, and Southeast Asia, and
indica rice was beginning to spread out of the Ganges plains (16, 52). The point
estimates for the splitting of M. oryzae lineages correspond to the Tang Dynasty (“the
Golden Age”) in China and the late classical period in India, during which food
production became more rational and scientific and intensive irrigated systems of
cultivation were developed, bringing about economic, demographic, and material
growth (53).

Genome scans based on polymorphism and divergence revealed heterogeneity in
the genomic and life history changes associated with the emergence and spread of the
different lineages. Using microsatellite data and a larger collection of samples, Saleh et
al. (21) identified differences in variability levels between lineages, with similar or higher
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levels of genetic variability in lineages 1 and 4 than in lineages 2 and 3. Lineages 1 and
4 were also the only lineages that displayed biological features (fertile female rates and
mating type ratios) consistent with sexual reproduction. Our genome-wide analyses of
variability and linkage disequilibrium provided clear evidence that the continental
Southeast Asian lineage 1 displays recombination and is genetically diverse, suggesting
that sexual reproduction occurs and that long-term population size is relatively high,
whereas pandemic lineages 2 and 3 are largely clonal and genetically depauperate,
suggesting a lack of sexual reproduction and demographic bottlenecks associated
with their emergence in agrosystems. However, population genomic analyses did not
confirm the previously reported high variability and capacity for sexual recombination
of the South Asia–United States lineage 4 (21), possibly due to differences in sample
sizes between studies. The null hypothesis of clonality was not rejected by phi tests for
recombination, but both total (�w) and average (�) nucleotide diversity, and also the
population recombination rate (�), were on the same order of magnitude in lineage 4
as in lineages 2 and 3, consistent with a lack of recombination and a small effective
population size.

The patterns of polymorphism and diversity at nonsynonymous and synonymous
sites indicated that deleterious mutations were particularly abundant in clonal lineages
2 to 4 of M. oryzae, with the smaller long-term population size, consistent with a higher
cost of pestification in these lineages. The introgression of genetic elements from clonal
lineages harboring greater loads of deleterious mutations may counteract the efficient
purging of deleterious mutations in the recombining lineage 1 from mainland South-
east Asia and lead to smaller differences in the proportion of nonsynonymous muta-
tions between recombining and clonal lineages. However, the extensive variabilities in
the origin and genomic distribution of the detected putative migrant mutations
suggest that most of these mutations are false positives, with only a series of adjacent
mutations of this type originating from the same donor lineage corresponding to
genuine genetic exchange events. Field-scale studies in areas in which different lin-
eages coexist should provide more detailed insights into the relative importance of
interlineage recombination and make it possible to determine whether genetic ex-
changes are driven by positive selection or are an incidental by-product of the
sympatric coexistence of interfertile lineages. We hypothesize that the accumulation of
deleterious mutations in pandemic clonal complexes and gene flow into sexual lin-
eages during disease emergence and spread are widespread phenomena, which are
not due to idiosyncrasies of M. oryzae, and we expect these patterns to hold true in
other invasive fungal plant pathogens.

An examination of additional isolates from undersampled geographic regions (in-
cluding Africa and South America), based on sequencing approaches and sampling
schemes tailored to detect adaptation from de novo mutations, will be required to
enhance our understanding of the biogeography of M. oryzae and the genetic basis of
adaptation in the different M. oryzae lineages. Nevertheless, the catalog of variants
detected in our study provides a solid foundation for future research into the popula-
tion genomics of adaptation in M. oryzae. Our work also provides a population-level
genomic framework for defining molecular markers for the control of rice blast and
investigations of the molecular basis of the differences in phenotype and fitness
between divergent lineages.

MATERIALS AND METHODS
Genome sequencing and SNP calling. Sequencing libraries were prepared and Illumina HiSeq 2500

sequencing was performed either at Beckman Coulter Genomics (BCG; Danvers, MA, USA) or at the Iwate
Biotechnological Research Center (Table S1). Genomic DNA for sequencing at BCG was isolated from
100 mg of fresh mycelium grown in liquid medium. The mycelium was treated with enzymes degrading
the cell walls (mainly beta-glucanase) and then incubated in lysis buffer (Triton 2�–1% SDS–100 mM
NaCl�10 mM Tris-HCl�1 mM EDTA). Nucleic acids were extracted by treatment with chloroform:isoamyl
alcohol (24:1), followed by precipitation overnight in isopropanol. They were then rinsed in 70% ethanol.
The nucleic acid extract was treated with RNase A (0.2 mg/ml, final concentration) to remove RNA. The
DNA was purified by another round of chloroform:isoamyl alcohol (24:1) treatment. Genomic DNA for
sequencing at IBRC was isolated with a protocol adapted from the animal tissue (mouse tail) protocol
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available for the Promega Wizard genomic DNA purification kit. Nucleic acids were extracted from 20 mg
of fresh mycelium grown in liquid medium, which was ground into powder in liquid nitrogen with a
prechilled pestle and mortar. The centrifugation time specified for the mouse tail protocol was increased
to 15 min, and centrifugation was carried out at 4°C, after precipitation for 3 h at �20°C. Nucleic acids
were resuspended in water, treated with RNase A (0.2 mg/ml, final concentration), purified by treatment
with chloroform:isoamyl alcohol (24:1), precipitated overnight in isopropanol supplemented with 0.1
volume of sodium acetate (3 M; pH 5), and rinsed in 70% ethanol.

Sequencing reads were either paired-end reads (read length, 100 nucleotides; insert size, ~500 bp;
DNAs sequenced at IBI) or single-end reads (read length, 100 nucleotides; DNAs sequenced by BCG).
Reads were trimmed to remove barcodes and adapters and were then filtered to eliminate sequences
containing ambiguous base calls. Reads were mapped against the 70-15 reference genome, version 8
(10), with BWA (54) (subcommand alb, option -n 5; subcommand sampe option -a 500). Alignments were
sorted with samtools (55), and reads with a mapping quality below 30 were removed. Duplicates were
removed with Picard (http://broadinstitute.github.io/picard/). We used Realigner-Targetcreator, Target-
creator, and Indelrealigner within the genome analyses toolkit (GATK) (56) to define intervals to target
for local realignment and for the local realignment of reads around indels, respectively, and Unified
Genotyper to call SNPs. We used GATK’s SelectVariants to apply hard filters and to select high-confidence
SNPs based on annotation values. Numbers of reference and alternative alleles were calculated with JEXL
expressions based on the vc.getGenotype().getAD() command. Variants were selected based on the
following parameters: counts of all reads with a MAPQ of 0 below 3.0 (MQ0 in GATK), number of
reference alleles � number of alternative alleles � 15.0, and number of reference alleles/number of
alternative alleles � 0.1. With these parameters, SNP calls are limited to positions with relatively high
sequencing depths and limited discordance across high-quality sequencing reads. We used a second SNP
caller, Freebayes v0.9.10-3-g47a713e (57), to assess the impact of the SNP calling method on the sets of
SNPs detected, given the presence in our data set of isolates sequenced at relatively low depth (�10�).
We set the -min-alternate-count option to one in Freebayes. When the sample-by-sample Freebayes SNP
calls were compared with the GATK SNP calls, after filtration, Freebayes identified 1.63� (standard
deviation [SD], 0.28) more SNPs per sample on average than via analyses with GATK, and 92.3% (SD, 2.3)
of the SNPs identified with GATK were also identified with Freebayes. The size of the intersection
between the sets of SNPs identified by the two methods was negatively correlated with sequencing
depth (i.e., the concordance between SNP callers was higher for isolates sequenced less deeply),
indicating a minimal impact of isolates sequenced at lower depth on confidence in SNP calls. When the
multisample Freebayes SNP calls were compared with the GATK SNP calls, after filtration, 83% of the SNPs
identified with GATK were confirmed with Freebayes, and the GATK SNPs that were not confirmed with
Freebayes were identified in sets of isolates with a genome-wide sequencing depth of 47.8� on average
(SD, 8.2), consistent with a minimal impact of isolates sequenced at lower depth on confidence in SNP
calls. High-confidence SNPs were annotated with SnpEff v4.3 (58).

Mating type and female fertility assays. Mating type and female fertility for our lineages had
previously been determined (23) or we determined them as previously described (59).

Genealogical relationships and population subdivision. Total evidence genealogy was inferred
with RAxML from pseudoassembled genomic sequences (i.e., tables of SNPs converted into a fasta
file, using the reference sequence as a template), assuming a general time-reversible model of
nucleotide substitution with the � model of rate heterogeneity. Bootstrap confidence levels were
determined with 100 replicates. DAPC was performed with the Adegenet package in R (60). Sites
with missing data were excluded. We retained the first 20 principal components and the first six
discriminant functions.

Diversity and divergence. Polymorphism and divergence statistics were calculated with Egglib
3.0.0b10 (61), excluding sites with �30% missing data. The neutrality index was calculated as (Pn/Ps)/
(Dn/Ds), where Pn and Ps are the numbers of nonsynonymous and synonymous polymorphisms, and Dn

and Ds are the numbers of nonsynonymous and synonymous substitutions, respectively. Dn and Ds were
calculated with Gestimator (62) using the Setaria-infecting lineage as an outgroup. Pn and Ps were
calculated with Egglib.

Linkage disequilibrium and recombination. The coefficient of linkage disequilibrium (r2) (63) was
calculated with Vcftools (64), excluding missing data and sites with minor allele frequencies below 10%.
For all lineages, we calculated r2 values for all pairs of SNPs less than 100 kb apart and averaged LD values
in distance classes of 1 kb for lineages 1 and 4 and 10 kb for lineages 2 and 3, to minimize noise due to
low genetic diversity. Only sites without missing data and with a minor allele frequency above 10% were
included, to minimize the dependence of r2 on minor allele frequency (65). Recombination rates were
estimated for each chromosome with Pairwise in LDhat version 2.2 (66). Singletons and sites with missing
data were excluded.

Pathogenicity tests. We used pathotyping data for 31 isolates previously described by Gallet et al.
(38). We supplemented this data set with pathotyping data for 27 isolates produced by the same authors,
using the same protocol but not included in their publication due to uncertainty in the nature of the rice
subspecies of origin. We used a combination of multilocus microsatellite and SNP data to assign the 58
pathotyped isolates to the six lineages, because SNP data were available for only 30 pathotyped isolates
(20 of the 31 isolates from Gallet et al. and 10 of the 27 additional isolates). Multilocus microsatellite
genotypes at 12 loci were obtained from the Saleh et al. (21) data set or were produced as described by
Saleh et al. (21). We improved the accuracy of assignment tests by adding to the full data set the 19
isolates that had been sequenced but for which no pathotyping data were available, which included 77
multilocus genotypes in total (58 pathotyped isolates and 19 additional nonpathotyped isolates). For 49
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of the 77 isolates for which genomic data were available, we retained 1% of the SNP loci with no missing
data (i.e., 164 SNPs). Missing data were introduced at SNP and microsatellite loci for the 28 nonsequenced
isolates and the four sequenced isolates without microsatellite data.

The Structure 2.3.1 program was used for determining assignments (67–69). The model implemented
allowed admixture and correlation in allele frequencies. Burn-in length was set at 10,000 iterations, and
the burn-in period was followed by 40,000 iterations. Four independent runs were performed to check
for convergence. At K � 6, the four main clusters identified with the full genomic data set were
recovered, although 15 of the 77 genotypes could not be assigned due to admixture or a lack of power.
Finally, 46 of the 58 isolates inoculated could be assigned to lineages 1 to 4; the other 12 isolates could
not be assigned to a specific lineage among lineages 1, 5, and 6 and were not analyzed further (Fig. S4).
Infection success was analyzed with a generalized linear model with a binomial error structure and logit
link function. Treatment contrasts were used to assess the specific degrees of freedom of main effects
and interactions.

Genome scan for genetic exchanges. Probabilistic chromosome painting was carried out with
Chromopainter version 0.0.4 (70). This method “paints” individuals in “recipient” populations as a
combination of segments from “donor” populations, using linkage information for probability compu-
tation and assuming that linked alleles are more likely to be exchanged together during recombination
events. All lineages were used as donors, but only lineages 1 to 4 were used as recipients (sample sizes
were too small for lineages 5 and 6). We initially ran the model using increments of 50 expectation-
maximization iterations, starting at 10 iterations, and we examined the convergence of parameter
estimates to determine how many iterations to use. Hence, the recombination scaling constant Ne and
emission probabilities (�) were estimated in lineages 1 to 4 by running the expectation-maximization
algorithm with 200 iterations for each lineage and chromosome. Estimates of Ne and � were then
calculated as averages weighted by chromosome length (Ne � 8,160 for all lineages; lineage 1, � �
0.0000506; lineage 2, � � 0.0000171; lineage 3, � � 0.000021; lineage 4, � � 0.000011). These parameter
values and the per chromosome recombination rates estimated determined with LDhat were then used
to paint the chromosome of each lineage, considering the remaining lineages as donors and using 200
expectation-maximization iterations. We used a probability threshold of 0.9 to assign mutations in a
recipient lineage to a donor lineage.

Tip-calibrated phylogenetic analysis. Tip-calibrated phylogenetic inferences were performed
with only the 48 isolates for which sampling date were recorded, i.e., all isolates except the reference
strain 70-15 and strain PH0018, with the exclusion of missing data. We investigated whether the
signal obtained with our data set was sufficiently high for thorough tip-dating inferences by
building a phylogenetic tree with PhyML (71), without constraining tip heights on the basis of isolate
sampling time, and then fitting root-to-tip distances (a proxy for the number of substitutions
accumulated since the most recent common ancestor [TMRCA]) to collection dates with TempEst
(70). We observed a significant positive correlation (Fig. S3), demonstrating that the temporal signal
was sufficiently strong for thorough tip-dating inferences at this evolutionary scale. The tip-
calibrated inferences were then carried out using Markov chain-Monte Carlo sampling in beast 1.8.2
(72). The topology was fixed as the total-evidence genome genealogy inferred with RAXML. We used
an annotation of the SNPs with SNPEff (57) to partition Bayesian inference (i.e., several substitution
models and rates of evolution were fitted to the different sets of SNPs during a single analysis). The
optimal partitioning scheme and the best-fit nucleotide substitution model for each partitioning of
the genome were estimated with PartitionFinder software (73). The best partitioning was obtained
for K � 3 schemes (synonymous: HKY, non-synonymous: GTR and non-exonic SNPs: GTR) and was
used for subsequent analyses. Node age was then estimated with this optimal partitioning scheme.
Rate variation between sites was modeled with a discrete gamma distribution, with four rate
categories. We assumed an uncorrelated lognormal relaxed clock, to account for rate variation
between lineages. We minimized prior assumptions about demographic history, by adopting an
extended Bayesian skyline plot approach, to integrate data over different coalescent histories. The
tree was calibrated using tip-dates only. We applied flat priors (i.e., uniform distributions) for
substitution rate (1 � 10�12 � 1 � 10�2 substitutions/site/year) and for the age of any internal node
in the tree (including the root). We ran five independent chains, in which samples were drawn every
5,000 MCMC steps, from a total of 50,000,000 steps, after a discarded burn-in of 5,000,000 steps. We
checked for convergence to the stationary distribution and for sufficient sampling and mixing by
inspecting posterior samples (effective sample size, �200). Parameter estimation was based on
samples combined from the different chains. The best-supported tree was estimated from the
combined samples and using the maximum clade credibility method implemented in TreeAnnotator.

Functional enrichment. Gene enrichment analysis was conducted with the R package TopGO for GO
terms and Fisher’s exact test for enrichment in HET domain genes, NLRs, small secreted protein genes,
and MAX-effector genes. MAX-effector genes were those reported by de Guillen et al. (71), NLRs were
those identified by Dyrka et al. (46), and small secreted proteins and HET domain proteins were identified
with Ensembl’s Biomart.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/mBio
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