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Purpose: To develop a convolutional neural network (CNN) for the robust and
fast correction of velocity aliasing in 4D-flow MRI.
Methods: This study included 667 adult subjects with aortic 4D-flow MRI
data with existing velocity aliasing (n = 362) and no velocity aliasing (n = 305).
Additionally, 10 controls received back-to-back 4D-flow scans with systemi-
cally varied velocity-encoding sensitivity (vencs) at 60, 100, and 175 cm/s. The
no-aliasing data sets were used to simulate velocity aliasing by reducing the venc
to 40%–70% of the original, alongside a ground truth locating all aliased voxels
(153 training, 152 testing). The 152 simulated and 362 existing aliasing data sets
were used for testing and compared with a conventional velocity antialiasing
algorithm. Dice scores were calculated to quantify CNN performance. For con-
trols, the venc 175-cm/s scans were used as the ground truth and compared with
the CNN-corrected venc 60 and 100 cm/s data sets
Results: The CNN required 176± 30 s to perform compared with 162± 14 s for
the conventional algorithm. The CNN showed excellent performance for the
simulated data compared with the conventional algorithm (median range of
Dice scores CNN: [0.89–0.99], conventional algorithm: [0.84–0.94], p < 0.001,
across all simulated vencs) and detected more aliased voxels in existing veloc-
ity aliasing data sets (median detected CNN: 159 voxels [31–605], conventional
algorithm: 65 [7–417], p < 0.001). For controls, the CNN showed Dice scores
of 0.98 [0.95–0.99] and 0.96 [0.87–0.99] for venc = 60 cm/s and 100 cm/s,
respectively, while flow comparisons showed moderate-excellent agreement.
Conclusion: Deep learning enabled fast and robust velocity anti-aliasing in
4D-flow MRI.
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1 INTRODUCTION

Four-dimensional flow MRI allows for the comprehen-
sive assessment of aortic hemodynamics by acquiring time
resolved 3-directional blood flow velocities with full vol-
umetric coverage of the aorta.1,2 However, 4D-flow MRI
requires the preselection of a maximum expected velocity
(or velocity sensitivity, venc) before scan execution, which
determines the maximum velocity of the blood flow.3 If the
venc is set too low, velocity aliasing (or phase wrapping)
can occur with the flow velocity exceeding the prescribed
venc, making accurate flow measurement and interpreta-
tion challenging.4 As the maximum expected velocity is
rarely known before the scan, the venc tends to be set
conservatively high in order to avoid velocity aliasing, or
additional 2D phase-contrast scout images are acquired to
estimate the maximum expected velocity. However, veloc-
ity noise is proportional to the selected venc, and a high
venc can consequently result in low velocity-to-noise ratio,
and thus poor signal in low-flow regions.5 This can be par-
ticularly challenging for various pathologies of the aorta,
which can result in a high dynamic range of aortic flow
velocities. For example, in patients with aortic valve steno-
sis, peak systolic flow jet velocities can be as high as
4–6 m/s (normal aortic peak velocities are on the order of
1.5 m/s), presenting challenges in selecting the most opti-
mal venc in order to obtain accurate velocity data and avoid
velocity aliasing.1,6–8

To address these limitations, velocity-unwrapping
algorithms have been used to correct flow regions with
velocity aliasing and to retrieve the true (unaliased)
velocity value. However, detecting aliased regions can be
challenging, particularly when large regions are affected
or when velocity aliasing with multiple wraps (n > 1)
has occurred.9 Many velocity-unwrapping techniques
have therefore attempted to implement an optimization
approach, either through a region-merging strategy or a
graph cuts approach.10,11 However, these methods are not
robust in the presence of high noise and/or require ini-
tial (manual) seeding, to accurately identify regions for
velocity unwrapping. Other attempts have focused on tak-
ing advantage of the spatial and temporal incongruities
present in velocity wrapping of 2D or 3D phase contrast
MRI as a strategy to correct for velocity aliasing.12–15 These
techniques detect velocity jumps larger than venc across
the spatial and temporal domains and have been widely
used to correct velocity aliasing across all velocity direc-
tions and slices in 4D-flow MRI data.13–15 However, sig-
nificant velocity jumps can be difficult to detect when
the acquired venc is too low, resulting in severe aliasing
across large regions of the data, preventing effective phase
unwrapping.14

Recently, deep learning concepts such as convolutional
neural networks (CNNs) have demonstrated their util-
ity for the automation and acceleration of preprocessing
and reconstruction of large medical imaging data.16 Con-
volutional neural networks have been shown to perform
accurate segmentation of cardiovascular MRI data sets,
such as 3D aortic, bi-ventricular, and whole-heart segmen-
tation.17–19 Additionally, CNNs have been used for MRI
denoising, reconstruction, and image restoration, such as
artifact detection and the removal of ghosting artifacts.20–22

The goal of this study was to develop a CNN to auto-
matically detect and correct velocity aliasing in 4D-flow
MRI studies of the thoracic aorta. In this study, we ret-
rospectively leveraged a large database of 4D-flow MRI
data and used both simulated velocity aliasing (to gen-
erate labeled ground-truth data with known location of
all velocity-aliased voxels) as well as data sets with exist-
ing real velocity aliasing. The performance of the resulting
CNN-based velocity anti-aliasing technique was subse-
quently evaluated in a study with 10 prospectively enrolled
healthy controls who underwent a series of 4D-flow MRI
scans at different venc levels. Our goal was to test the
hypothesis that the CNN can detect and correct more
velocity-aliased image voxels compared with a conven-
tional velocity anti-aliasing algorithm.

2 METHODS

2.1 Study cohort

A total of 915 adult participants who underwent 4D-flow
MRI of the thoracic aorta between 2011 and 2019, includ-
ing 786 patients with standard-of-care cardiothoracic MRI
for aortic dilation and/or aortic valve disease and 129
healthy volunteers were retrospectively included in this
study. This same cohort was used and published in a
previous study of aortic phase-contrast MRA segmenta-
tion.17 The objective was to identify patients who under-
went aortic 4D-flow MRI and contained complete data
sets that were manually analyzed and postprocessed. Of
the 915, 76 were excluded because the settings used
in manual postprocessing (eddy current correction and
noise masking thresholds) were not saved, and 172 were
excluded because DICOM data were not readily avail-
able. A final total of 667 adult subjects (19–91 years,
median = 51 years) were identified. The final cohort in
this study includes 116 subjects who had been excluded
in the prior study due to poor segmentation quality; these
exams were reprocessed using the segmentation algorithm
described in the prior study and manually reviewed for
accuracy. Of the final 667 subjects, 568 patients underwent



BERHANE et al. 451

T A B L E 1 Summary of demographics and scan parameters (age is reported as the median [interquartile range])

Total number (N = 667) Age, years 51 [19–91]

Sex 490 M/177F

Venc range 150–500 cm/s

Spatial resolution 1.6–2.2 × 1.6–2.2 × 2.0–5.0 mm3

Temporal resolution 36.0–42.4 ms

4D-flow MRI with velocity aliasing (N = 362) Age 51 [19–84]

Sex 287/85F

Venc range 150–500 cm/s

Spatial resolution 1.7–3.1 × 1.7–3.1 × 2.2–3.8 mm3

Temporal resolution 32.8–41.6 ms

4D-flow MRI without velocity aliasing (N = 305) Age 51 [19–91]

Sex 217 M/ 88F

Venc range 150–350 cm/s

Spatial resolution 1.7–2.8 × 1.7–2.8 × 2.2–5.0 mm3

Temporal resolution 36.0–43.2 ms

Controls with multiple 4D-flow MRI scans (N = 10) Age 36 [28–70]

Sex 9 M/1F

Venc range 60–175 cm/s

Spatial resolution 2.4–2.5 × 2.4–2.5 × 2.4–2.8 mm3

Temporal resolution 45.28–45.36 ms

Abbreviations: F, female; M, male.

standard-of-care cardiothoracic MRI, while 99 healthy
adult controls underwent research cardiothoracic MRI
exams. This HIPAA-compliant study was approved by the
institutional review board. An additional cohort of 10
healthy controls were prospectively recruited. Each sub-
ject underwent three back-to-back 4D-flow MRI scans at
different venc levels: 175 cm/s, 100 cm/s, and 60 cm/s dur-
ing a single MRI session. Patients were retrospectively
enrolled with a waiver of consent, whereas controls pro-
vided written informed consent per institutional review
board requirement.

2.2 Magnetic resonance imaging

All retrospectively enrolled subjects underwent
4D-flow MRI with full coverage of the thoracic
aorta (sagittal-oblique 3D volume) using either 1.5T
(N = 566; Aera, Avanto, or Espree; Siemens Health-
ineers, Erlangen, Germany) or 3T (N = 111; Skyra;
Siemens Healthineers) MRI systems. The 4D-flow MRI
pulse-sequence parameters were as follows: spatial res-
olution = 1.2–3.1 × 1.2–3.1 × 1.2–5.0 mm3, temporal
resolution = 32.8–44.8 ms, FOV = 124–406 × 180–500

× 38–176 mm3, TE = 2.1–3.0 ms, TR = 4.1–5.4 ms, flip
angle = 7◦–25◦, and venc = 60–500 cm/s. Data for all sub-
jects were acquired during free breathing with respiratory
navigator and electrocardiogram gating. For N = 536 sub-
jects, the 4D-flow scan was acquired after standard-of-care
administration of contrast agent: Gadavist, Magnevist
(Bayer Healthcare, Berlin, Germany), Multihance (Bracco
Diagnostic, Cranbury, NJ), Dotarem (Guerbet, Raleigh,
NC), or Ablavar (Lantheus Medical Imaging, Billerica,
MA).

The cohort of 10 prospectively enrolled controls
underwent a research MRI including three aortic
4D-flow MRI scans with the following parameters: spa-
tial resolution = 2.35–2.5 × 2.35–2.5 × 2.4–2.8 mm3,
TE = 2.93–2.94 ms, TR = 3.86–3.87 ms, flip angle = 7◦,
and venc = 60–175 cm/s. Subject demographics and scan
parameters are summarized in Table 1.

2.3 Standard 4D-flow MRI
preprocessing

All 4D-flow data underwent noise masking and correc-
tions for phase offset errors (eddy currents, Maxwell
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F I G U R E 1 Flowchart of convolutional
neural network (CNN) training and testing.
The entire cohort of 667 subjects (A) was
classified into either 4D-flow MRI data with no
velocity aliasing (B, N = 305) or data sets with
real velocity aliasing present in the scan (C,
N = 362). The data sets with no velocity
aliasing were randomly divided into training
(D, N = 153) and testing cohorts (E, N = 152).
After CNN training, the data sets with real
velocity aliasing were used for additional
testing. Abbreviations: BAV, bicuspid aortic
valve; TAV, tricuspid aortic valve

terms) as described previously.3 Next, the preprocessed
4D-flow data were used to generate 3D phase-contrast
angiogram MRA,23 which was used to perform manual
3D segmentation of the aorta using commercial software
(Mimics, Materialize, Belgium) or automated 3D segmen-
tation using a deep learning algorithm developed previ-
ously.17 All 667 4D-flow MRI data sets (Figure 1A) were
visually assessed across all slices, time frames, and veloc-
ity directions by two observers for the presence of velocity
aliasing inside the aorta. Both observers needed to agree if
the 4D-flow data set contained at least one velocity-aliased
voxel in the thoracic aorta in order to be labeled as contain-
ing velocity aliasing. A total of 362 data sets (Figure 1C)
were found to have at least one voxel showing velocity
aliasing, whereas 305 data sets (Figure 1B) had no velocity
aliasing present.

2.4 Ground-truth data: simulated
velocity aliasing

As shown in Figure 1, 305 4D-flow MRI scans with no
velocity aliasing were used to generate data for CNN train-
ing and testing with known ground truth (location and
number of aliased voxels). For each data set, velocity alias-
ing was generated by retrospectively reducing the venc to
simulate aliasing. Given the known unaliased true velocity
field of a 4D-flow MRI scan, velocity aliasing was simu-
lated as follows:

VA = VT − 2 ∗ vencsim, if VT > vencsim (1)

where VA is the new aliased velocity; VT is the known
velocity value of the scan; and vencsim is the simulated,
reduced velocity sensitivity (Figure 2). The simulated
velocity aliasing was applied to the entire 4D-flow data set
across all timepoints and velocity directions. In addition, a
binary mask of the location of all aliased voxels in the data
set was generated, which served as the ground truth for
CNN training (Figure 2, bottom right). Figure 3 provides
an example of the velocity aliasing simulation. The original
venc was randomly reduced twice to induce two differ-
ent patterns of velocity aliasing in the data. In Figure 3B,
the simulated venc (0.62 m/s) was 41% of the original venc
(1.5 m/s), resulting in significant velocity aliasing through-
out all three velocity directions. In Figure 3C, the sim-
ulated venc (0.79 m/s) was 53% of the original venc and
resulted in less overall velocity aliasing, primarily concen-
trated around the ascending aorta near the aortic root. The
corresponding 3D ground truth to the right in Figure 3
indicates the location of each of the aliased voxels (i.e.,
ground truth of number and location of aliased voxels) in
pink for the aorta.

2.5 Convolutional neural network
training and testing

The 305 4D-flow MRI ground-truth data (ie, simulated
velocity aliasing) were randomly divided into 153 training
(Figure 1D) and 152 testing data sets (Figure 1E). To sys-
tematically conduct CNN training across a wide dynamic
range of velocity-aliased data (Figure 2), the venc of each
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F I G U R E 2 Simulated velocity aliasing for CNN training and testing. Velocity aliasing was simulated for 4D-flow MRI data with no
velocity aliasing present by reducing the venc. In this example, the original venc was 1.5 m/s, and aliasing was induced by reducing it to
0.68 m/s across all cardiac time frames, the Z-direction, and the three velocity directions (Vx, Vy, Vz). A binary mask of the location of all
aliased voxels in the 4D-flow MRI data was used as ground truth for CNN training (bottom right: white = velocity-aliased voxels).
Abbreviations: Aao, ascending aorta; Dao, descending aorta



454 BERHANE et al.

F I G U R E 3 Examples of simulated velocity-aliasing 4D-flow MRI data. The original data set (A) was acquired with a venc of 1.5 m/s.
The segmentation of the aorta (gray) was overlaid onto the data set to indicate the location of the vessel. Aliasing was simulated by lowering
the venc to either 0.62 m/s (B) or 0.79 m/s (C). Each column displays a different velocity direction, and, in turn, a different pattern of velocity
aliasing. To the right of each example is a 3D depiction of all aliased voxels (pink) within the aorta (gray)

scan was randomly reduced to 40%–70% of the original
venc, with each data set undergoing simulated aliasing at
least four times for each epoch. For the testing data set,
velocity aliasing was simulated at regulated intervals by
lowering the venc to 40%, 50%, 60%, and 70% of the origi-
nal venc. The 362 4D-flow MRI data with velocity aliasing
present were used as a separate testing data set.

Additionally, 10 controls with three back-to-back
4D-flow MRI scans at vencs 175 cm/s, 100 cm/s, and
60 cm/s were used to compare the unwrapping perfor-
mance of the CNN for the venc = 60 cm/s and 100 cm/s
4D-flow MRI data with true (nonsimulated) in vivo ground
truth (4D-flow MRI data with no velocity aliasing for
venc = 175 cm/s). Both CNN-based velocity anti-aliasing
and the conventional algorithm were applied to 4D-flow
data with venc = 100 cm/s and 60 cm/s, and their
results were compared against the 4D-flow scan with
venc = 175 cm/s.

2.6 Convolutional neural network
architecture

The CNN used was a U-Net network with dense blocks
replacing the traditional convolutional layers as previously

described.17 Briefly, the CNN used a series dense blocks, a
collection of small convolution layers and concatenation,
providing an efficient use of feature maps and CNN param-
eters, while retaining the encoder-decoder design of the
U-Net network.24,25 A composite loss function composed
of a softmax cross entropy loss and a dice loss function was
used for training. The CNN output was a binary mask of all
detected voxels with velocity aliasing. Based on this mask,
the detected wrapped voxels were then unwrapped using
Eq. 1.

The CNN training was performed with a learning rate
of 10−4, a dropout rate of 0.1, and a batch size of 1. These
hyperparameters were determined using a separate vali-
dation data set in our previous work.26 Training occurred
for 400 epochs. The input to the CNN was a 3D array of
dimensions [X, Y, Z]. All inputs were centered cropped
to dimensions [128, 96, Z], with the range of Z being
22–48, in order to reduce the number of noisy voxels in
the data. All cardiac time frames and the three velocity
directions of each 4D-flow data set were treated as sepa-
rate inputs to the CNN and compiled as a final output. The
CNN was coded in Python 3.6.8 (Python Software, Beaver-
ton, Oregon) using TensorFlow 1.12.0 (Google, Mountain
View, California), and all training and testing was per-
formed on an Intel i7-8700K processor with a Nvidia GTX
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1080-Ti GPU. Code is provided here: https://github.com/
hberhane/4D-flow-Velocity-Aliasing-CNN.

2.7 Conventional velocity anti-aliasing
algorithm

The velocity anti-aliasing CNN was compared with a fully
automatic conventional phase-unwrapping algorithm.14

The conventional algorithm used a 3D input [X,Y,time]
from the 4D-flow data set to calculate a difference array of
each voxel to nearest neighbor. This difference array was
then used in determining regions with velocity jumps >

venc across the spatial and temporal dimensions. The loca-
tion of the velocity jump was then unwrapped using Eq. 1
to obtain the voxel’s true velocity value. The algorithm was
repeated for all slices and the three velocity directions, to
apply anti-aliasing across the entire 4D-flow data set.

2.8 Comparative methods and statistics

To quantify CNN performance, dice scores and Hausdorff
distances between the mask of detected aliased voxels from
either the CNN or conventional algorithm and the ground
truth for the simulated data were calculated as follows:

Dice score = 2|X ∩ Y |
|X| + |Y | (2)

Hausdorff Distance = max
(

maxy∈Y (minx∈X (d[x, y])) ,
maxx∈X

(
miny∈Y (d[y, x])

))
(3)

where X is the binary mask of detected aliased voxels from
either the CNN or conventional algorithm; Y is the ground
truth; and d is the Euclidian distance. The background
noise was masked out by a segmentation of the thoracic
aorta, and only the phase-wrapped voxels in the aorta were
considered for dice score and Hausdorff distance calcula-
tions.

For 4D-flow MRI data with real velocity aliasing, the
numbers of aliased voxels found by the CNN or con-
ventional method in the thoracic aorta were compared.
p-Values were calculated using a paired t-test for normally
distributed data or a Mann–Whitney U-test test for non-
parametric data. For all comparisons, only aliased voxels
within the 3D segmentation of the thoracic aorta were
counted.

Additionally, a subgroup analysis was performed to
compare the performance of the CNN and the conven-
tional algorithm in patients with varying degrees of aortic
valve stenosis. The aortic stenosis was graded clinically
by the peak velocity from the 2D phase-contrast MRI

(normal: <2.5 m/s; mild: 2.6–2.9 m/s; moderate:
3.0–4.0 m/s; severe: > 4.0 m/s).

For the 10 controls with multiple venc 4D-flow MRI
scans, the ground truth was determined by identifying vox-
els showing a difference greater than the venc (100 or
60 cm/s) between the 175-cm/s venc (nonaliased) scan and
the 100-cm/s or 60-cm/s venc scan. Dice scores were cal-
culated between a mask of detected aliased voxels from
the CNN or the conventional algorithm, and the ground
truth in the thoracic aorta. In addition, flow quantification
at the ascending aorta (Aao), aortic arch, and descend-
ing aorta (Dao) were compared between the ground truth
(4D-flow MRI with venc = 175 cm/s and no velocity) and
the 4D-flow data corrected for velocity aliasing. Three 2D
analysis planes were placed at the Aao, arch and Dao, and
from these planes, peak flow and net flow were obtained.
Peak velocity was obtained based on regions of interest
drawn at the Aao, arch, and Dao. Bland–Altman analy-
sis was used to compared these flow and velocity metrics.
Bland–Altman limits of agreement (LOA) percent differ-
ence was defined as LOA divided by the mean of the
reference values of the non-aliased, 175 cm/s venc data
flow and velocity values.

Dice scores were assessed for normality using a
Sharpiro-Wilk test and were reported as either the
mean± SD if normally distributed or the median
(interquartile range) if nonparametric. Likewise, an
unpaired t-test or Mann–Whitney U-test was performed
depending on the normality of the data for comparing
the CNN performance with the conventional algorithm
and the presence of contrast agent. Linear regression was
used to assess the impact of spatial resolution on CNN
performance.

3 RESULTS

3.1 Study cohort

The cohort of 667 4D-flow MRI data sets consisted of 317
bicuspid aortic valve (BAV) patients, 251 tricuspid aortic
valve (TAV) patients, and 99 healthy controls. Further-
more, our cohort contained 49 patients with severe aortic
valve stenosis (AS), 17 with moderate to severe AS, 25 with
moderate AS, 9 with moderate to mild AS, 24 with mild AS,
and 419 patients with no AS. A total of 124 patients did not
have AS grading. For the scans with no velocity aliasing
present (N = 305), 46 BAV, 74 TAV, and 33 controls were
used for CNN training, and 47 BAV, 80 TAV, and 25 controls
were used for CNN testing. Finally, our cohort of data sets
with real velocity aliasing consisted of 222 BAV patients,
95 TAV patients, and 45 as well as 44 patients with severe
AS, 14 patients with moderate to severe AS, 20 patients

https://github.com/hberhane/4D-flow-Velocity-Aliasing-CNN
https://github.com/hberhane/4D-flow-Velocity-Aliasing-CNN
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F I G U R E 4 Example of a patient with simulated velocity aliasing for CNN testing. (A) On the left is the original 4D-flow MRI scan with
a venc of 1.5 m/s, showing the velocity in the head–foot (Vy) direction. (B) The 3D segmentation of the aorta (shaded surface) is overlaid on
the data. Velocity aliasing was simulated by reducing the venc by 60% to 0.6 m/s. On the right is a 3D depiction of the performance of the
CNN (C) and conventional algorithm (D) in detecting aliased voxels. Pink voxels indicate where the CNN or conventional algorithm correctly
located velocity aliasing; blue denotes missed aliased voxels; and red shows regions where either method incorrectly identified velocity
aliasing. The CNN-based velocity anti-aliasing was superior compared with the conventional algorithm with fewer (blue) missed and
incorrectly (red) identified voxels

with moderate AS, 6 patients with mild to moderate AS,
17 patients with mild AS, and 191 patients with no AS. For
the 10 healthy controls with multiple 4D-flow scans with
different vencs, 1 subject was found to show significant
movement between scans, preventing an accurate compar-
ison between the high-venc (175 cm/s) and low-venc (100,
60 cm/s) scans. As such, only 9 subjects were available for
analysis.

3.2 Convolutional neural network
performance

The CNN training time was 143± 12 min per epoch, and
the total training time was over 800 h. Application of the
trained CNN for 4D-flow velocity unaliasing resulted in
processing times of 176± 30 s per 4D-flow MRI data set,
while the conventional algorithm took 162± 14 s per data
set.

Figure 4 provides an example of a side-by side compar-
ison of a 4D-flow data set with simulated velocity aliasing
next to the original (nonaliased) ground-truth data with
venc = 1.5 m/s for an adult patient with BAV disease
(Figure 4A). To simulate aliasing, the venc was reduced

by 60% to 0.60 m/s (Figure 4B). A 3D representation of
the detected aliased voxels within the segmented aorta for
both the CNN and the conventional algorithm is shown in
Figure 4C,D respectively. Correctly identified regions with
velocity aliasing are shown in pink, voxels that were incor-
rectly identified as velocity-aliased are shown in red, and
voxels that were missed are marked in blue. Improved per-
formance of CNN-based velocity anti-aliasing compared
with the conventional algorithm can clearly be appreci-
ated. Misidentified voxels from the CNN were located near
the walls of the aorta, while the conventional algorithm
had incorrectly identified voxels throughout the vessel.

These findings are corroborated by findings across
the entire testing cohort of 152 4D-flow MRI data sets
with simulated velocity aliasing. The CNN-based veloc-
ity anti-aliasing outperformed the conventional algorithm
as indicated in Table 2. There was a significant differ-
ence in performance between the two methods (median
dice scores for CNN: 0.89 [0.62–0.97] for 0.7*venc, 0.97
[0.90–0.99] for 0.6*venc, 0.99 [0.97–0.99] for 0.5*venc, and
0.99 [0.99–0.99] for 0.4*venc; for conventional algorithm:
0.84 [0.48–0.97] for 0.7*venc, 0.93 [0.78–0.98] for 0.6*venc,
0.94 [0.85–0.98] for 0.5*venc, and 0.90 [0.79–0.95] for
0.4*venc; p < 0.001 across all vencs). Additionally, CNN
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T A B L E 2 Summary of Dice scores and Hausdorff distance for the CNN and conventional algorithm across all testing data sets with
simulated velocity aliasing (N = 152)

Number of
aliased voxels

CNN Dice
score

Hausdorff
distance
CNN (mm)

Conventional
algorithm
Dice score

Hausdorff
distance
conventional
algorithm (mm) p-Value

vencsim = 0.4 ∗ venc 11 710 [5550–22 131] 0.99 [0.99–0.99] 2.13 [0.93–4.75] 0.90 [0.79–0.95] 9.08 [3.60–13.64] <0.001

vencsim = 0.5 ∗ venc 3519 [1302–6610] 0.99 [0.97–0.99] 2.15 [0.80–4.04] 0.94 [0.85–0.98] 7.5 [2.13–14.0] <0.001

vencsim = 0.6 ∗ venc 725 [245–2152] 0.97 [0.90–0.99] 3.56 [1.06–10.7] 0.93 [0.78–0.98] 7.42 [3.01–20.5] <0.001

vencsim = 0.7 ∗ venc 194 [69–615] 0.89 [0.62–0.97] 8.60 [4.75–29.9] 0.84 [0.48–0.97] 13.5 [4.93–45.6] <0.001

Note: The median number of aliased voxels, and the Dice scores of the CNN and conventional algorithm are provided. The CNN showed significantly improved
Dice scores and Hausdorff Distance compared with the conventional algorithm. All values are reported as the median [interquartile range].
Abbreviation: vencsim, simulated venc.

performance improved as the number of aliased voxels in
the data set increased (as the simulated venc was reduced).
The CNN and conventional algorithm both performed
worst on 4D-flow MRI data with the fewest aliased vox-
els (70% of the original venc), where the CNN had a
median Dice score of 0.89 [0.62–0.97] and the conventional
algorithm had a median Dice score of 0.84 [0.48–0.97].
Additionally, we found no significant difference in CNN or
conventional algorithm performance and the administra-
tion of contrast agent. Furthermore, the CNN or conven-
tional algorithm performance was not found to be sensitive
to voxel size.

3.3 Convolutional neural network
application to 4D-flow MRI data
with existing velocity aliasing

Figure 5 provides an example of a 4D-flow MRI data
set with real velocity aliasing (Figure 5A; head–foot [Vy]
velocity direction at peak systole) and the correction pro-
vided by the conventional algorithm (Figure 5B,D) and the
CNN (Figure 5C,E). The CNN-based velocity anti-aliasing
identified more aliased voxels at the Aao and near the edge
of the vessel compared with the conventional algorithm
(CNN: 3335 voxels vs conventional: 2394). These observa-
tions were confirmed across all 362 data sets with existing
velocity aliasing in the original 4D-flow MRI scan. The
median number of detected aliased voxels for the CNN was
159 voxels [31–605], whereas the conventional algorithm
detected a median of 65 [7–417] aliased voxels (p < 0.001).
A comparison of the conventional algorithm and CNN is
shown in Figure 6. Here, each blue dot represents a data
set and is located along the axis of how many aliased voxels
were detected by the CNN or the conventional algorithm.
The orange line represents the same number of voxels
detected by both methods (slope of 1). The CNN-based
velocity anti-aliasing detected at least as many or more

aliased voxels as the conventional algorithm in 360 of 362
4D-flow MRI data sets.

Additionally, data sets with real velocity aliasing
of patients with severe, moderate–severe, moderate,
moderate–mild, and mild AS were used to further explore
the CNN performance, and the results are summarized
in Supporting Information Table S1. Across all AS patient
groups, we found that the CNN continued to detect more
aliased voxels than the conventional algorithm, showing
a significant difference in performance (p < 0.001). The
largest disparities between the two methods were found
for 4D-flow MRI in patients with moderate–mild or higher
severity of AS, with the CNN detecting > 150% more
aliased voxels than the conventional algorithm (p < 0.001).
For patients with mild or no AS, the CNN was able to
detect 130% and 100%, respectively, more voxels than the
conventional algorithm (p < 0.001 for both).

3.4 Convolutional neural network
application in healthy controls
with 4D-flow MRI data with multiple vencs

Figure 7 provides an example of the velocity-aliasing cor-
rection from the CNN and the conventional algorithm
for 4D-flow data set at a venc of 100 cm/s, showing mild
velocity aliasing, and at a venc of 60 cm/s, showing severe
velocity aliasing. The CNN showed Dice scores of 0.98
and 0.99 for 60 cm/s and 100 cm/s venc data sets, respec-
tively. Additionally, the conventional algorithm showed
Dice scores of 0.75 and 0.98 for the 60-cm/s and 100-cm/s
venc data sets, failing to correct aliasing in the Dao of
the 60-cm/s venc scan. Across all nine control data sets,
CNN-based velocity antialiasing showed excellent per-
formance with a median Dice score of 0.96 [0.87–0.99]
and median Hausdorff distance of 2.93 [1.04–8.5] mm at
venc = 100 cm/s and 0.98 [0.95–0.99] and 2.39 [1.43–3.83]
mm at venc = 60 cm/s. The conventional algorithm
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F I G U R E 5 Example of a patient with real velocity aliasing for CNN testing. (A) The original velocity image is shown at left at peak
systole and in the Vy direction (A). (B) The same slice after undergoing velocity anti-aliasing with the conventional algorithm. (C) The slice
after undergoing velocity anti-aliasing using the CNN. On the bottom row are 3D visualizations of the aorta with all aliased voxels detected by
each method in the Vy direction and magnified regions of the ascending aorta (pink, conventional algorithm [D] and CNN [E]). The 2D slices
show that the CNN was better able to correct the aliased voxels at the edge of ascending aorta better than the conventional algorithm. (F) The
3D images provide a difference map highlighting the region in which both methods detected aliased voxels (pink), where the CNN did not
detect aliased voxels but the conventional algorithm did (red), and where the CNN detected aliased voxels but the conventional algorithm did
not (blue). As seen in the figure, the conventional algorithm failed to detect many voxels in the aortic root region, which the CNN was able to

performed equally well for correcting mild velocity alias-
ing at venc = 100 (median Dice score of 0.97 [0.88–0.98]
and median Hausdorff distance of 2.51 [1.31–6.81] mm),
but performance was impaired for venc = 60 cm/s (Dice
score of 0.76 [0.62–0.98], 11.0 [5.10–20.9] mm). For

comparison, the median number of aliased voxels in the
60-cm/s venc data was 18 950 [11 405–22 185], whereas the
median number of detected aliased voxels for the CNN and
the conventional algorithm were 18 544 [11 348–19 707]
and 10 227[6234–12 589], respectively. For the 100-cm/s
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F I G U R E 6 Comparison of velocity anti-aliasing performance
between CNN and conventional algorithm across all data sets with
real velocity aliasing present (N = 362). Each 4D-flow MRI data set
is represented as a blue data point. The orange line represents
identical performance of both methods (ie, same number of aliased
voxels identified by both CNN and the conventional algorithm). The
CNN based velocity anti-aliasing detected as many or more aliased
voxels than the conventional algorithm in 360 of 362 4D-flow MRI
data sets. Abbreviation: CA, contrast agent

data, the median number of aliased voxels was 787
[81–1740], whereas CNN detected 770[73–1710] and con-
ventional algorithm detected 771[75–1680].

The results of Bland–Altman analysis for flow quan-
tification are summarized in Table 3. For peak veloc-
ity comparisons between the 60-cm/s venc data sets to
the ground-truth 175-cm/s data sets, the CNN showed a
low bias (−0.01 to −0.07 m/s) and LOA between 11.2%
and 12.7% mean difference, whereas the conventional
algorithm showed a bias between −0.03 and −0.1 m/s and
LOA between 11.9% and17.1% mean difference. For net
flow comparisons in the same data sets, the CNN showed
a bias between 0.7 ml and1.5 ml and LOA between 10.6%
and 11.8% mean difference, whereas the conventional
algorithm showed a bias between −15.1 ml and 2.7 ml and
LOA between 9.9% and 69.9% mean difference. For peak
flow comparisons, the CNN showed a bias between −2.6
ml/s and 4.3 ml/s and LOA between 8.1% and12.2% mean
difference, whereas the conventional algorithm showed a
bias between −66.0 ml/s and 1.7 ml/s and LOA between
10.1% and 60.3% mean difference. Bland–Altman plots
are provided for the CNN and conventional algorithm in
Supporting Information Figure S1.

For the 100-cm/s venc data sets, the CNN and the
conventional algorithm showed similar performances in
flow quantification comparisons with the 175-cm/s venc

data sets (Table 3, Supporting Information Figure S2). For
peak velocity, the CNN had a bias between −0.04 m/s and
0.05 m/s and LOA between 10.6% and11.6% mean differ-
ence, whereas the conventional algorithm showed bias of
−0.03 m/s to 0.01 m/s and LOA between 10.5% and 12.0%
mean difference. For net flow, the CNN had a bias of
−2.0–0.61 ml and LOA between 8.4% and 11.5% mean dif-
ference, and the conventional algorithm showed similar
performance with a bias of −2.2–1.3 ml and LOA between
7.9% and 11.2% mean difference. And for peak flow, the
CNN had a bias between 3.0 ml/s and 5.3 ml/s and LOA
between 7.2% and 10.7% mean difference; likewise, the
conventional algorithm showed a bias of 1.9–5.8 ml/s and
LOA between 5.2% and 10.6% mean difference. Addition-
ally, we assessed the time-resolved performance of CNN
and conventional algorithm across the cardiac cycle for the
60-cm/s and 100-cm/s venc data (Supporting Information
Figures S3 and S4). Generally, the CNN performed well
for both data sets especially at systole (Dice scores > 0.9);
however, performance was reduced during diastole (Dice
scores < 0.7) due to the limited number of aliased vox-
els present Supporting Information (Figures S3 and S4).
For the conventional algorithm, it showed strong perfor-
mance in systole for the 100-cm/s venc data (Dice scores
> 0.9), but failed to detect any voxel in diastole (Supporting
Information Figure S4), while showing moderate-to-poor
performance in the 60-cm/s venc data across the cardiac
cycle (Supporting Information Figure S3).

4 DISCUSSION

Our study found that our CNN performed velocity
anti-aliasing in comparable speed to a conventional
anti-aliasing algorithm; CNN-based velocity anti-aliasing
showed excellent performance on 4D-flow MRI data sets
with simulated velocity aliasing compared with a con-
ventional algorithm; the CNN was able to detect more
aliased voxels than the conventional algorithm in data sets
with real velocity aliasing. When analyzing patients with
different AS status, the CNN was able to detect and cor-
rect significantly more aliased voxels across all patients,
and the CNN showed excellent performance in correcting
velocity anti-aliasing in a cohort of subjects with 4D-flow
MRI scans with multiple vencs.

In the testing data set with simulated velocity aliasing,
we found that the results for the highest simulated venc
(0.7*venc) showed the lowest Dice scores compared with
the other simulated vencs. This is likely due to the very
few aliased voxels present in the data set at this simulated
venc. As such, if a few aliased voxels were missed or if a few
false positives were detected, there would be a significant
impact on the Dice score. Clinically, the preselected venc
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F I G U R E 7 Example of real velocity anti-aliasing comparison with CNN and conventional algorithm with known ground truth. The
top row shows the results for a venc of 60 cm/s, while the bottom row is from a venc of 100 cm/s. As seen in the difference map for 60-cm/s
venc, the conventional algorithm failed to correctly identify velocity-aliased voxels in the descending aorta, whereas the CNN was successful.
However, the CNN failed to correct aliased voxels at the edge of vessel, which may be due to the partial volume effect. The Dice score for the
CNN in this data set was 0.98 for venc of 60 cm/s and 0.99 for a venc of 100 cm/s, and for the conventional algorithm it was 0.75 for venc of
60 cm/s and 0.98 for venc of 100 cm/s

tends to be about 10%–20% higher than the expected peak
velocity in the data, and at a simulated venc of 0.7*venc, it
may still be close to the peak velocity in the data.

Data in 10 prospectively enrolled healthy control sub-
jects with back-to-back 4D-flow MRI scan at three dif-
ferent vencs (60 cm/s, 100 cm/s, and 175 cm/s) confirmed
the robust performance of our velocity-antialiasing CNN.
Scans obtained at 175 cm/s, which had no velocity alias-
ing, were used as the ground truth to test the perfor-
mance of the CNN in detecting and correcting the velocity
aliasing of the data sets with real severe velocity aliasing
(venc of 60 cm/s) and low to moderate aliasing (venc of
100 cm/s). Subsequent quantification of peak velocity, net
flow, and peak flow comparisons between the CNN veloc-
ity aliasing–corrected data with the ground truth (venc of
175 cm/s) demonstrated moderate to excellent agreement.

Prior attempts at velocity aliasing correction in 4D-flow
MRI have generally focused on attempting to apply tech-
niques initially developed for 2D phase-contrast MRI
methods.12–14 However, our CNN was able to perform
equally or better in feature extracting for the detection
of aliased voxels. Alternatively, the Laplacian method
was designed for 4D-flow MRI using Laplacian operators

to unwrap all three spatial directions and temporal
domains.27 However, the algorithm fails when large
regions of the data are aliased, preventing the true phase
gradient from being detected.27 For heavily aliased data
sets, our CNN demonstrated its capabilities in accurately
correcting them; however, it was not directly compared
against the Laplacian method.

Furthermore, our anti-aliasing CNN was able to be
effectively incorporated into a standard clinical workflow
for 4D-flow postprocessing. The CNN is fully automated,
does not require any user inputs, and can be implemented
directly on the scanner or a clinical workstation. Addi-
tionally, our anti-aliasing CNN can easily be incorporated
with our prior work using a CNN for aorta segmenta-
tion, providing an efficient automated 4D-flow processing
pipeline.

There are a number of limitations of our study. Our
CNN was not implemented to correct velocity aliasing
that occurs due to multiple phase wraps. The CNN was
trained using data sets with simulated aliasing, where the
aliasing was simulated with one phase wrap. As such,
the CNN, in its current implementation, has difficulty
in detecting voxels wrapped two or more times. In the
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T A B L E 3 Summary of the CNN and conventional algorithm hemodynamic comparisons with the ground truth across all (N = 9) controls

Aao

Flow quantifications:
Mean± SD

CNN (venc
60 cm/s)

Conventional
algorithm (venc
60 cm/s)

CNN (venc
100 cm/s)

Conventional
algorithm (venc
100 cm/s)

Ground truth
(venc 175 cm/s)

Peak velocity (m/s) 1.23 ± 0.21 1.22 ± 0.26 1.26 ± 0.22 1.26 ± 0.21 1.30 ± 0.24

Net flow (ml) 104.4 ± 16.9 90.5 ± 22.6 101.8 ± 17.7 101.7 ± 17.5 103.8 ± 19.6

Peak flow (ml/s) 402.3 ± 91.6 331.7 ± 99.2 402.4 ± 92.9 402.7 ± 93.3 398.0 ± 86.2

Bland–Altman: bias (LOA)

Peak velocity (m/s) 0.07 (12.7%) 0.08 (14.1%) 0.04 (10.6%) 0.03 (10.5%)

Net flow (ml) 0.7 (10.6%) 13 (23.7%) 2.0 (10.1%) 2.2 (11.2%)

Peak flow (ml/s) 4.3 (8.5%) 66.0 (39.1%) 4.4 (9.2%) 4.6 (9.52%)

Flow quantifications: Mean± SD Arch

Peak velocity (m/s) 1.04 ± 0.22 1.01 ± 0.19 1.1 ± 0.25 1.05 ± 0.22 1.05 ± 0.22

Net flow (ml) 73.5 ± 13.5 74.7 ± 14.8 72.6 ± 14.9 73.3 ± 16.3 72.0 ± 15.8

Peak flow (ml/s) 251.2 ± 66.2 256.3 ± 68.1 257.6 ± 64.6 260.4 ± 69.4 254.6 ± 64.6

Bland–Altman: bias (LOA)

Peak velocity (m/s) 0.01 (11.2%) 0.03 (11.9%) 0.05 (10.9%) 0.01 (11.4%)

Net flow (ml) 1.5 (10.7%) 2.7 (9.9%) 0.61 (11.5%) 1.3 (11.1%)

Peak flow (ml/s) 2.6 (8.07%) 1.7 (10.1%) 3.0 (10.7%) 5.8 (10.6%)

Flow quantifications: Mean± SD Dao

Peak velocity (m/s) 1.1 ± 0.17 1.06 ± 0.12 1.15 ± 0.23 1.14 ± 0.23 1.16 ± 0.29

Net flow (ml) 78.9 ± 15.0 62.7 ± 35.7 76.3 ± 13.7 76.1 ± 13.7 77.8 ± 13.0

Peak flow (ml/s) 262.3 ± 73.3 201.7 ± 86.5 267.0 ± 64.3 263.4 ± 59.4 261.6 ± 61.7

Bland–Altman: bias (LOA)

Peak velocity (m/s) 0.06 (11.2%) 0.1 (17.1%) 0.02 (11.6%) 0.03 (12.0%)

Net flow (ml) 1.2 (11.8%) 15.1 (69.9%) 1.5 (8.43%) 1.8 (7.89%)

Peak flow (ml/s) 0.65 (12.1%) 60.0 (60.3%) 5.3 (7.16%) 1.9 (5.24%)

Note: For peak velocity, regions of interest were drawn at the ascending, arch, and descending aorta, while three planes at the same regions were used for the net
and peak flow quantifications. Bland–Altman results are provided with the bias and the limits of agreement as the percent difference from the reference mean.
The ground truth used was the venc of 175 cm/s 4D-flow MRI data sets.
Abbreviations: Aao, ascending aorta; LOA, limits of agreement.

future, we hope to implement a multilabeled CNN with
training data consisting of data sets with multiwrapped
aliasing. This would provide a mapping of all aliased vox-
els as well as a value indicating how many phase wraps
to correct it. Similarly, data sets with real velocity alias-
ing lack a proper ground truth to properly quantify the
performance of the anti-aliasing methods. Instead, a con-
ventional velocity anti-aliasing technique was used as a
basis of comparison as a surrogate for accuracy. Further-
more, although we did not see an impact on the CNN
performance as a result of the different velocity-to-noise
ratio between the 100-cm/s and 60-cm/s venc scans, the
CNN was found to have difficulty in unwrapping aliased

voxels on the vessel wall (Figure 7). This is likely due to
the partial volume effect at the vessel wall, resulting in the
voxels not experiencing full wraps (by 2π) but instead par-
tial wrapping (<2π). Additionally, the 4D-flow sequence
used in this study is based on 4-point encoding, consist-
ing of a reference scan and three independent velocity
sensitive scans (Vx, Vy, Vz). As such, the velocity aliasing
present in the data are independent for each velocity direc-
tion, and consequently, the CNN was trained based on that
assumption. Another limitation of this study is that the
CNN was only compared against one velocity anti-aliasing
algorithm, and, in the future, we hope to assess the CNN’s
performance against various other algorithms.
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5 CONCLUSIONS

A CNN was developed for velocity anti-aliasing in 4D-flow
MRI, demonstrating excellent performance on data sets
with simulated low venc aliasing and the ability to detect
and correct more aliased voxels compared with a conven-
tional algorithm. Future studies should extend its applica-
tion to other vasculature beds, multiple centers, and MRI
vendors.
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Figure S1: Bland–Altman plots for peak velocity (A), net
flow (B), and peak flow (C) for the convolutional neu-
ral network CNN (top row) and conventional algorithm
(bottom row) performance on the 60-cm/s venc data set
compared with the ground truth of 175 cm/s venc. Values
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for peak velocity are obtained from manual regions of
interest (ROIs), while net and peak flow are from manu-
ally placed planes. Red dots indicate the ascending aorta
(AAo); blue dots indicate the arch; and green dots indicate
the descending aorta (DAo). Bland–Altman bias and limits
of agreement are for all of the measurements together
Figure S2: Bland–Altman plots for peak velocity (A), net
flow (B), and peak flow (C) for the CNN (top row) and
conventional algorithm (bottom row) performance on the
100-cm/s venc data set compared with the ground truth of
175 cm/s venc. Values for peak velocity are obtained from
manual ROIs, while net and peak flow are from manu-
ally placed planes. Red dots indicate the ascending aorta
(AAo); blue dots indicate the arch; and green dots indicate
the descending aorta (Dao). Bland–Altman bias and limits
of agreement are for all of the measurements together
Figure S3: The time distribution of Dice scores and the
number of aliased voxels in the ground truth for the
60-cm/s venc data. During systole (time frames 3–11), the
CNN performed well (median Dice score> 0.9), although
showed a decline in performance in diastole (time frames
> 11; Figure S5A). This is likely due to the small number of
aliased voxels present in the data during diastole (Figure
S5B), which could result in a huge impact on the Dice
score as a result of missing a few voxels. The conventional
algorithm showed moderate to poor performance across
the cardiac cycle. The dots show the median Dice score,
and the bars indicate the interquartile range. For instances
in which the ground truth was empty (no velocity aliasing),
we calculated the Dice scores by adding a small constant
(1e-5) at both the numerator and denominator, to avoid
dividing by zero

Figure S4: The time distribution of Dice scores and the
number of aliased voxels in the ground truth for the
100-cm/s venc data. During systole (time frames 3–11), the
CNN performed well (median Dice score> 0.9), although
showed a decline in performance in diastole (time frames
> 11; Figure S5A). This is likely due to the small num-
ber of aliased voxels present in the data during diastole
(Figure S5B), which could result in a huge impact on the
Dice score as a result of missing a few voxels. The conven-
tional algorithm, likewise, showed performance during
systome but failed to detect any aliased voxels during. The
dots show the median Dice score, and the bars indicate
the interquartile range. For instances in which the ground
truth was empty (no velocity aliasing), we calculated the
Dice scores by adding a small constant (1e-5) at both the
numerator and denominator, to avoid dividing by zero
Table S1: Summary of the CNN and conventional
algorithm comparison for stenosis patients with real veloc-
ity aliasing. Note: The patients were divided into groups
based on the stenotic grading. The median number of
detected velocity-aliased voxels and the interquartile range
are provided. There was a significant difference between
the two methods across all patient groups, with the CNN
consistently detecting more aliased voxels than the con-
ventional algorithm.
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