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Abstract
Background: In temperate and subtropical climates, respiratory diseases exhibit sea-
sonal peaks in winter. In the tropics, with no winter, peak timings are irregular.
Methods: To obtain a detailed picture of influenza-like illness (ILI) patterns in the 
tropics, we established an mHealth study in community clinics in Ho Chi Minh City 
(HCMC). During 2009-2015, clinics reported daily case numbers via SMS, with a sub-
set performing molecular diagnostics for influenza virus. This real-time epidemiology 
network absorbs 6000 ILI reports annually, one or two orders of magnitude more 
than typical surveillance systems. A real-time online ILI indicator was developed to 
inform clinicians of the daily ILI activity in HCMC.
Results: From August 2009 to December 2015, 63 clinics were enrolled and 36 920 
SMS reports were received, covering approximately 1.7M outpatient visits. 
Approximately 10.6% of outpatients met the ILI case definition. ILI activity in HCMC 
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1  | INTRODUC TION

One of the most important challenges facing big-data studies in 
all fields is that the larger the data set the less precisely targeted 
each data point is in answering a specific question. Nowhere is this 
more apparent than in the big-data approaches used in infectious 
disease surveillance, where the volume of data has allowed many 
types of associations to be investigated,1-6 but the distance between 
the source data (an online search, a news story, a social media post) 
and the presupposed condition (infection with a pathogen) is large 
enough to warrant additional inquiry into the validity of the asso-
ciation. Indeed, this has been done by several research groups for 
Google’s flu prediction algorithm Google Flu Trends.7-10 Critiques 
of the algorithm included its reliance on Internet search behavior 
remaining constant, an overfitting effect that may have given too 
much weight to associations that were present in training data sets 
only, as well as specific examples of incorrect forecasts.9,11 The chal-
lenge in big-data disease surveillance is to narrow the gap between 
the infection and the data point describing it and to find a way to 
generate large data sets where the data points are grounded in the 
presence of virus, genetic material, an antibody profile, or a set of 
symptoms. This study presents an attempt at narrowing this gap, and 
like some of the early big-data studies1,12-15 is focused on respiratory 
disease and influenza virus.

In temperate countries, influenza virus is one of the most studied 
disease systems, exhibiting a predictable wintertime transmission 
season and a robust relationship between syndromic and molecu-
lar surveillance. Little is known about the epidemiology of influenza 
virus in the tropics despite a renewed research interest in tropical in-
fluenza over the past decade resulting from increased availability of 
influenza surveillance and sequence data.16-20 To date, research on 
tropical influenza has concentrated on whether influenza epidemics 
exhibit annual seasonality21-29 and whether influenza viruses show 
patterns of year-round persistence.30-34 A third question that has 
received less attention is whether syndromic influenza-like illness 
(ILI) surveillance has the same peaks and troughs as molecular sur-
veillance for influenza virus in these regions. In temperate countries, 
public health agencies are able to rely on ILI reporting to signal the 
onset of the influenza season,1,35,36 but it is not known whether ILI 
and influenza correlate in tropical countries.37,38

The majority of epidemiological studies looking at influenza and/
or respiratory disease in the tropics have two major drawbacks. The 
first is ignoring absolute case counts and reporting only the per-
centage of samples (nose/throat swabs) that test positive for influ-
enza.26,29,38-41 Ignoring case counts makes it impossible to determine 
whether samples are being taken during an influenza season or out-
side of it. The second drawback is underpowering the analysis using a 
short time series or monthly data or both.37-40,42-46 Monthly data are 
normally too coarse to infer the presence of an annual transmission 
season or other periodic trends (if these exist) unless the time series 
is very long. In fact, this is one of the reasons for disagreement in the 
current literature as some studies on respiratory disease in the trop-
ics claim support for an annual transmission season21,26,29,39,40,42,47-49 
while others show mixed or no evidence.22,27,46,50-54 Among these, 
some of the more weakly supported results are being used in public 
health policy to advocate for particular vaccination timings based on 
incorrectly identified seasonal signals.29,49 For influenza virus spe-
cifically, studies with sufficient data27,28,55 have generally found that 
annual seasonal signals are not supported in the tropics.

Understanding the dynamics of respiratory disease and influ-
enza in the tropics—especially the presence or absence of annual 
seasonality—may allow the forecasting methods currently deployed 
in temperate countries56-59 to be used for tropical influenza. Current 
forecasting methods rely on mechanistic susceptible-infected-
recovered (SIR) models and known/inferred climate associations 
to accurately predict increases in influenza virus infections. In the 
tropics, it is not known whether influenza dynamics obey classic SIR 
models, whether they are characterized by low-level persistence, 
or a combination of the two. It is also not known which climate-
influenza associations are expected to be present in tropical coun-
tries despite accumulating evidence that absolute humidity may be 
the most influential climate factor.28,60 Essentially, the absence of 
winter in tropical countries makes respiratory disease forecasting 
much more difficult than in temperate or subtropical climates. If the 
intrinsic epidemiological dynamics and the presence/absence of cli-
mate associations can be understood in the tropics, forecasting of 
influenza epidemics may be possible. Thus far, the only attempt at 
influenza forecasting for the subtropics reported that the majority 
of forecast attempts (lead time >2 weeks before epidemic peak or 
onset) had accuracies below 50% when predicting the timing, onset, 

exhibited strong nonannual dynamics with a dominant periodicity of 206 days. This 
was confirmed by time series decomposition, stepwise regression, and a forecasting 
exercise showing that median forecasting errors are 30%-40% lower when using a 
206-day cycle. In ILI patients from whom nasopharyngeal swabs were taken, 31.2% 
were positive for influenza. There was no correlation between the ILI time series and 
the time series of influenza, influenza A, or influenza B (all P > 0.15).
Conclusion: This suggests, for the first time, that a nonannual cycle may be an essen-
tial driver of respiratory disease dynamics in the tropics. An immunological interfer-
ence hypothesis is discussed as a potential underlying mechanism.
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magnitude, or duration of an influenza epidemic,61 and no forecasts 
have been developed for tropical regions.

An accurate description of the basic epidemiology of tropical in-
fluenza is critical for inferring the likely routes of viral seeding from 
the tropics to temperate zones and vice versa.17,62 Although there 
is abundant phylogeographic evidence linking tropical and temper-
ate influenza sequences,20 very few analyses have investigated the 
epidemiological characteristics of tropical influenza and how these 
affect epidemics in temperate zones. Two exceptions can be seen 
in Brazil and China, both of which span multiple climatic zones. In 
Brazil, a pneumonia and influenza mortality time series dating back 
to 1979 shows an annual influenza epidemic progressing from trop-
ical to temperate parts of Brazil.30 A second example can be seen 
in a study published using sentinel surveillance data from in China, 
showing the transition from large wintertime influenza peaks in the 
north to smaller less predictable peaks in the subtropics.63 Beyond 
these two examples, epidemiological links between the tropics and 
other regions are hard to demonstrate due to the paucity of long-
term consistent surveillance data in tropical regions.

To investigate the fine-scale epidemiology of respiratory disease 
dynamics in the tropics and evaluate the potential for forecasting, in 
August 2009, we set up a real-time community-based participatory 
epidemiology network in Ho Chi Minh City, Vietnam. Our hypothesis 
was that ILI trends in Ho Chi Minh City would not be annual. Enrolled 
outpatient clinics across the city reported daily case numbers of ILI 
by standard mobile phone SMS messages. A subset of the clinics 
provided molecular confirmations of influenza virus to assess the 
relationship between ILI and influenza. Our goals were to make daily 
reporting of ILI as simple as possible in order to encourage frequent 
reporting and wide participation and to create a real-time ILI surveil-
lance system that could be used by health professionals in Ho Chi 
Minh City. Our study is most similar to the clinic-centered mHealth 
system setup in Senegal45 and Madagascar,64 and the benefits of this 
type of real-time, big-data epidemiology can be seen in the dengue 
hotline system recently described by Rehman et al.65 The purpose 
of our study was to build a long-term consistent time series of both 
ILI reports and influenza molecular confirmations. We analyzed the 
data with traditional time series decomposition to detect periodic 
signals, with stepwise regression analyses to determine the impor-
tance of climate and other covariates, and with regression-based 
forecasting to determine the predictability of ILI trends in Ho Chi 
Minh City.

2  | MATERIAL S AND METHODS

2.1 | ILI data

In August 2009, a participatory epidemiology study was established 
in Ho Chi Minh City, Vietnam, in collaboration with the Hospital for 
Tropical Diseases in Ho Chi Minh City (HCMC) and with permission 
from the Ho Chi Minh City Department of Health. Participating out-
patient clinics report the daily number of total patients seen, the 

daily number of patients meeting the European CDC definition of 
ILI,66 and the number of hours each clinic was open. To meet the 
ECDC definition of ILI, a patient must present with (a) sudden onset 
of symptoms within the past 3 or 4 days; (b) one or more of the fol-
lowing general symptoms (i) fever with axillary temperature above 
37.5°C, (ii) malaise, (iii) headache, and (iv) myalgia; and (c) one or 
more of the following respiratory symptoms (i) cough, (ii) rhinorrhea, 
(iii) sore throat, and (iv) dyspnea. To encourage enrollment and re-
duce dropout, clinics are advised to send daily reports by standard 
mobile phone short messaging system (SMS) text messages; report-
ing with log books and email is also available. SMS messages are au-
tomatically passed to a text-parsing and data-cleaning system that 
was set up and is still actively managed by the Oxford University 
Clinical Research Unit (OUCRU) in HCMC. Every day, ILI reports are 
manually approved by a qualified project team member at OUCRU; 
on approval, they are automatically entered into a mySQL database 
that holds all data points for the study. A small number of clinics 
(about 8%) did not use SMS reporting (by their request) and instead 
emailed ILI numbers to the project team or wrote them down in a 
daily logbook provided by OUCRU. As part of the data processing 
pipeline, reports by email or logbook were regularly merged into the 
main mySQL database. There was no obviously apparent difference 
in ILI numbers when comparing clinics that used SMS, email, and log-
book reporting.

Community engagement meetings were run for the first sev-
eral years of the study to distribute and explain the study protocol, 
and a basic leaflet outlining the goals of the study and the report-
ing methodology was distributed to interested physicians. All 
documents were translated into Vietnamese, and annual reports 
and ILI trends were fed back to the clinics on a regular basis. A 
total of 63 clinics were enrolled in the initial study period (August 
2009-December 2015). Clinics that reported frequent zeros (>50%), 
or withdrew too early (contributed <200 reports), were not consid-
ered for the analysis. The clinics included mostly single-doctor clin-
ics, some that were open early morning and late evening only (to 
accommodate a full-time working schedule for that doctor at a city 
hospital) and some that were open day-time hours as that clinician’s 
primary source of income. A few of the clinics were larger polyclin-
ics with several doctors (three to five) and several nurses (five to 
ten) on staff, a waiting area, one or two patient beds for day-time 
only inpatient stay, and the ability to see between 100 and 200 pa-
tients per day. The presenting symptoms for patients attending the 
clinics in this study included ILI, fever, rash, skin infections, nausea, 
diarrhea, dehydration, conjunctivitis, muscle ache, joint pain, and 
physical cuts/scrapes/injuries from motorbike (or other) accidents.

In May 2012, a new study component was launched for 24 clin-
ics that agreed to periodic collection of nasopharyngeal (NP) swabs 
so that a subset of ILI patients could be molecularly confirmed as 
positive or negative for influenza virus. A swabbing schedule was 
made at random every year, so that each clinic would be visited an 
approximately equal number of times, with two clinics selected for 
swabbing each week. In other words, each clinic was visited two or 
three times per year, and each week (excepting holidays and the 
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early months of the swabbing substudy), there were two clinic visits 
lasting 3 days each; the schedule was designed in this way so that 
no single clinic would have too many visits, as some doctors viewed 
these as disruptive to the clinic’s normal patient flow. Numbers of 
NP swabs collected each week depended on the numbers of ILI 
cases presenting at the clinics as well as patient consent.

The research protocol was approved by the Oxford Tropical 
Research Ethics Committee at the University of Oxford and by 
the Scientific and Ethical Committee of the Hospital for Tropical 
Diseases in Ho Chi Minh City.

2.2 | Molecular confirmation

Respiratory specimens (nasal/throat swabs) were collected from ILI 
patients at outpatient clinics, transported the same day on ice to 
OUCRU, and stored in −80°C freezers for a maximum of 3 months 
before RNA extraction and influenza A and B PCR testing. All speci-
mens were tested by real-time PCR using primers, probes, and rea-
gents recommended by the World Health Organization (WHO) and 
the Centers for Disease Control and Prevention (CDC). Sequences of 
probes and primers used can be referred to in Table S1.

Viral RNA was extracted from 140 μL of a patient’s specimen to 
attain a final elution volume of 50 μL. The extraction was carried out 
using a MagNA Pure 96 automated system (Roche Applied Science, 
Penzberg, Germany) with the MagNA Pure 96 DNA and viral NA 
Small Volume Kit (Roche; Cat ID. 06543588001) and the MagNA 
Pure 96 System Fluid (Roche; Cat ID. 05467578001).

Template RNA from the viral extract was used for cDNA synthe-
sis using the LightCycler 480 RNA Master Hydrolysis Probes (Roche; 
Cat ID. 04991885001). The cDNA products were then amplified in 
a real-time RT-PCR procedure carried out by a LightCycler instru-
ment (Roche Applied Science). Each reaction had a total volume of 
20 μL containing 5 μL of the viral RNA extract, 1× of RNA Master 
Hydrolysis Probes, 3.25 mmol/L of Mn(OAc)2, 1× of enhancer solu-
tion, 0.2 μmol/L of Influenza A/B probes, 0.8 μmol/L of Influenza 
A/B forward primers, 0.8 μmol/L of Influenza A/B reverse primers, 
and water. Equine arteritis virus (EAV) was used as an internal con-
trol and included in each reaction with 0.04 μmol/L of EAV probes, 
0.2 μmol/L of EAV forward primers, and 0.2 μmol/L of EAV reverse 
primers. Thermal cycling conditions were set up as follow: reverse 
transcription at 58°C for 20 minutes, enzyme inactivation at 95°C 
for 5 minutes, and 45 cycles of 95°C for 15 seconds, 55°C for 30 sec-
onds, and 72°C for 20 seconds. Fluorescent signals were measured 
by LightCycler software, at wavelengths between 465 and 510 nm 
for influenza A and B.

2.3 | Climate data

Data on daily mean temperature (T) and relative humidity (RH) were 
collected from Weather Underground for Ho Chi Minh City, Vietnam 
(http://www.wunderground.com), from the beginning of 2000 until 
the end of 2015. Absolute humidity (AH) was calculated using rela-
tive humidity and temperature: 

The series of daily climate data were smoothed with a 15-day 
moving average before being used in our analyses.

2.4 | Time series detrending and standardization

A total of 28 regularly reporting clinics (those who reported at least 
200 reports from 2010 to 2015 and reported positive ILI numbers 
at least half of the time) were included in the time series analysis. A 
29th clinic that met these inclusion criteria was removed for quality 
control reasons. The ILI data of 2009 were not used in the analysis 
due to the small number of reporting clinics during the first 5 months 
of the study. Each clinic’s time series was converted to a z-score 
scale by computing the z-score of each ILI percentage inside a 12-
month moving window (centered at the calculated data point), thus 
removing long-term trends in the data; we verified that window sizes 
of 6, 9, 15, and 18 months did not have any qualitative effects on the 
overall ILI trends. The daily z-scores were averaged across clinics and 
smoothed using a 15-day window to construct the ILI z-score time 
series that we used in our subsequent analysis (see Figure S1 for ef-
fects of different smoothing windows).

The time series was validated by verifying that it was not white 
noise (P-value <10−15, Box-Ljung test) and by showing that the major-
ity of individual clinics had a higher correlation to the aggregate time 
series than would be expected if reporting were random (Figure S2).

2.5 | Statistical analysis and forecasting

Periodicity and frequency decomposition in the smoothed 6-year 
ILI trend were assessed with a standard autocorrelation function 
(ACF) and a discrete Fourier transform (DFT). The ILI z-score time 
series was regressed (linear link function) onto linear and nonlinear 
variants of the climate variables (T, RH, AH, √T, √RH, √AH, T2, RH2, 
and AH2) to determine which nonlinear effects were present, as 
there is some evidence of nonlinear effects of climate on ILI.67 In 
addition, a time-dependent fixed effect αj mimicking the dominant 
periodicity identified by the ACF (here, 206 days) was included on 
the right-hand side of the regression equation. Twenty-one αj were 
allowed for in the model, meaning that periodicity in the system 
is modeled with a piecewise constant function taking 21 different 
values during a full period of 206 days. This is equivalent to hav-
ing 21 fixed-effect terms in a regression, each multiplied by an 
indicator variable describing whether that data point belongs to 
that period, ensuring that only one fixed-effect term is added at a 
time. The piecewise constant function has an advantage over the 
sinusoidal approach traditionally used in epidemiological analyses 
because the stepwise nature of the αj allows the periodicity in the 
system to take any shape determined by the data and does not 
require that the forcing function to be sinusoidal or continuous. In 
exploring the shape of this function, it was found that more than 

(1)AH=

6.112×exp
(

17.67×T

243.5+T

)

×2.1674×RH

273.15+T

http://www.wunderground.com
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seven pieces are needed to prevent the model forecasts from ap-
pearing too step-like.

The nonannual cycle, T, √RH, and RH were the explanatory 
terms according to the Akaike information criterion (AIC) using 
the stepwise regression approach in R (step() function). The ILI 
z-scores were then regressed onto the nonannual cycle, T, √RH, 
and RH, and lagged versions of these climate variables, extending 
back 5 weeks in the past. The same stepwise regression approach 
(step() function in R) using the AIC was used to remove regression 
terms that did not add explanatory power. The selected regression 
equation is 

To determine whether the regression approach offers any pre-
dictability in the system, we inferred the regression coefficients and 
the time-dependent fixed effects using the first 3 years of data from 
January 1, 2010 to December 31, 2012, and we compared the pre-
dicted and real ILI trends for 2013-2015. The median prediction error 
was defined simply as the median of the absolute differences be-
tween the predicted z-score time series and the real z-score time 
series. We varied the size of the training set to determine how many 
years of data would be needed to achieve robustness in predictabil-
ity (Figure S4).

2.6 | Bootstrapping climate data

To test the robustness of this prediction to changes in the annual cli-
mate cycle and the system’s intrinsic (dominant) cycle identified by the 
ACF (206 days), we removed the annual trend in the climate cycle with 
a smoothing-by-bootstrapping approach and we artificially varied 
the length c of the intrinsic nonannual cycle. To create a bootstrap-
smoothed climate time series, we defined the climate variables for 
each time point at tbss in 2010-2015 as a random sample taken during 
2000-2015 and within d calendar days of tbss (see Figure S5). As d in-
creases, the annual structure of the climate cycle gradually vanishes. 

Two hundred bootstrapped time series were created (for each climate 
variable), for each cycle length c, and for each climate subsampling 
window d. For each (c, d) pair, regression (onto each of the 200 boot-
strapped time series separately) and prediction (using each boot-
strapped series of 2013-2015 separately) were re-performed, and the 
median prediction error was plotted to determine whether changing 
assumptions about the length of the intrinsic cycle or the strength/
amplitude of the climate data had a detrimental effect on predictabil-
ity in our system. Mean prediction errors are shown in Figure S7.

All sampling, bootstrapping, and statistical analyses were per-
formed in R (version 3.2.1; Vienna, Austria).

3  | RESULTS

A total of 63 clinics were enrolled during the study, about half of 
which reported regularly, and 36 920 daily reports were received 
from August 10, 2009 to December 31, 2015, corresponding to 
1 727 076 outpatients and 183 596 outpatients meeting the clini-
cal definition of ILI. The median clinic saw an average of 30 pa-
tients per day (IQR: 16-50 across clinics). Approximately 10.6% of 
all patients were classified as ILI, and this percentage exhibited 
a decreasing trend during the first 6 years of the study (Table 1). 
To create a single ILI time series for Ho Chi Minh City, we de-
trended and standardized each clinic’s ILI percentages to a z-score 
scale and then aggregated these into a single z-score time series. 
Several internal validations were carried out to ensure that the 
data followed certain expected behaviors for multisite syndromic 
reporting and that arbitrary or random reports were not being 
sent during the course of the study (see Materials and Methods). 
In particular, note that individual clinic time series correlated with 
each other, and replacing a single clinic with a white noise signal 
of equal variance reduced the correlation between that clinic and 
the aggregate ILI trend (Figure S2). ILI trends in Ho Chi Minh City 
(Figure 1) suggest that there are typically multiple ILI peaks per 

(2)zi=�1T+�2RH+�3(T×RH)+�4

√

RH+�5Tlag3+�6Tlag4+�7Tlag5+�8RHlag5+�9

�

RHlag5+�j

21
�

j=1

1[day ibelongs to period j]

Year

Clinics reporting at 
least

Total patients
Reported 
ILI cases

ILI percentage

1 d 50 d 150 d Median IQR

2009a 19 10 0 35 115 10 163 24.40 19.36, 35.89

2010 27 15 7 103 396 24 922 15.42 3.82, 26.89

2011 28 24 20 275 033 35 176 14.73 4.13, 25.86

2012 35 28 25 375 077 42 373 13.30 6.25, 26.49

2013 30 28 23 385 300 30 183 9.99 2.47, 20.61

2014 32 27 20 300 223 19 461 10.64 2.67, 16.14

2015 35 26 21 252 932 21 318 11.69 6.86, 17.58

ILI, influenza-like illness.
aData collection in 2009 started on August 10th.

TABLE  1 Summary of ILI reports for 
2009-2015
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year, as has been observed in other tropical and subtropical re-
gions.28,30,61 Visually, no seasonal or annual cycle appears in these 
data.

In a subset of the clinics, molecular confirmations on nasopha-
ryngeal samples (n = 2217) were taken from May 2012 to December 
2015. Compared to other tropical settings, these clinics had a rate of 
influenza positivity (21.5% positivity for influenza A and 9.7% posi-
tivity for influenza B) in the high range of previously published stud-
ies.26,37,42,50,51,68 We compared the confirmed influenza cases to the 
ILI data and found that there was no correlation between the two 
time series (Figure 2; Pearson correlation coefficient: −0.02, P-value: 
0.86) and that this did not differ for influenza A and B individually 
(both P-values >0.15). The time series showed periods of high ILI 
activity with a low level of influenza confirmation, likely representing 
epidemic waves of other respiratory viruses, as well as periods that 
were high influenza and low ILI, suggesting that influenza may not 
drive the overall trend of ILI incidence as clearly as it does in tem-
perate regions.69-73

We identified a dominant periodicity in the data using an ACF and 
standard time series decomposition (see Materials and Methods). 
The ACF identified 206 days (ACF = 0.262; P-value <10−15), whereas 
the DFT identified 199 days as the time series’ dominant periodic sig-
nal (ACF = 0.244 for a lag of 199 days; P-value <10−15); see Figure 3. 
This nonannual signal is almost twice as strong as the annual signal, 
with the 365-day lag exhibiting an autocorrelation value of 0.153 (P-
value = 0.014); note that the large number of data points results in 
statistical significance for nearly all ACF values. A dominant nonan-
nual signal is an unusual feature in disease incidence data. We ver-
ified that this result was not an artifact of our data renormalization 
and detrending methods by applying these same methods to tem-
perate zone ILI data and showing that ILI time series in Europe and 
North America show their strongest periodic signals at 365 days, 
with no evidence of periodic signals shorter than 1 year (Figure S3).

To determine the relative influence of annual and nonannual sig-
nals on the ILI trend, we performed a stepwise regression of the ILI 
trend onto both annual climatic variables and the system’s intrinsic 

F IGURE  1 Trends in ILI z-scores 
by year. The black lines show 15-d 
moving-average smoothed z-scores 
(after detrending). The gray solid lines 
show the monthly mean z-score values. 
The horizontal dashed lines represent 
the median ILI z-score for that year. ILI, 
influenza-like illness
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nonannual cycle. Lagged variables, interactions, and nonlinear trans-
formations of the climate variables were included; the nonannual 
cycle was constructed as a step function with periodicity 206 days 
(see Materials and Methods). The stepwise regression indicated that 
the terms with explanatory power were the daily temperature, relative 
humidity (RH and √RH), the interaction term between RH and tem-
perature, lagged climate terms, and the nonannual cycle (see Table 2). 

When factoring in interactions and nonlinear terms, the effects of 
climate are not very strong. At 75% relative humidity, an increase in 
1°C is associated with a 0.085 decrease in ILI on the z-score scale. At 
28°C and 75% relative humidity, a 10% increase in relative humidity is 
associated with a 0.034 increase in the ILI z-score. The association be-
tween the nonannual cycle and the ILI trend is statistically significant, 
and the nonannual effect is identified using the Akaike information 

F IGURE  2 Time series of ILI z-score 
and influenza PCR-positivity, in 3-wk 
windows, for the period of time when 
PCR confirmations were being carried 
out in the clinics in the study. Gray region 
around flu-positive percentage is the 
95% confidence region computed using 
the exact binomial method. The Pearson 
correlation between the time series is 
shown in TableS2. ILI, influenza-like illness

F IGURE  3 A, Autocorrelation function (ACF) for the z-score time series. Horizontal dashed lines demark the statistically significant 
regions (P < 0.05). Black dots represent the ACF values of lags of 365 and 730 d. The first peak in the ACF is at the lag of 206 d. B, Discrete 
Fourier transform (DFT) of the z-score time series. The period length of each DFT can be calculated by dividing 2191 (the number of days in 
the time series) by the corresponding number of cycles (the frequency of the DFT). Frequencies whose power is lower than 6.93 (ie, periodic 
functions whose correlation with the z-score time series is lower than their correlation with a constant signal) are shown in gray. The DFT 
reaches its highest power at 11 cycles, corresponding to a cycle length of 199 d

Au
to

co
rr

el
a�

on
 fu

c�
on

Lag (d) cycles

(A) (B)



     |  749LAM et al.

criterion as a component of the best fit model. Nevertheless, it is im-
portant to remember that the number of data points (~37 000) results 
in statistical significance for a large number of annual and nonannual 
covariates. Thus, additional robustness analyses were performed.

As a third validation of the existence of a nonannual cycle as a true 
feature of respiratory disease transmission in Ho Chi Minh City, we 
tested the sensitivity of the ILI forecast accuracy to the length of the 
nonannual cycle and to the amplitude of the trends of climate vari-
ables. The rationale is that if an intrinsic nonannual cycle truly influ-
ences respiratory disease dynamics, then (a) forecasting of respiratory 
disease should be possible using the nonannual cycle, and (b) the fore-
casts should be less accurate if the nonannual cycle is not used or if an 
artificial nonannual cycle of a different periodicity is used. Regressing 

the 2010-2012 portion of the time series onto the AIC-selected covari-
ates (including the nonannual cycle of length c = 206), we were able to 
predict the 2013-2015 ILI time series with a median absolute error of 
0.129 on a z-score scale (Figure S6A). A sensitivity analysis indicated 
that forecast accuracy is very sensitive to the intrinsic cycle length and 
that forecast accuracy is reduced substantially if the length c of the 
nonannual cycle is changed by a small amount (Figure 4); the median 
prediction error is approximately 40%-50% higher when forecasting 
is performed with a cycle length c < 195 or c > 215. The increase in 
prediction error is small or nonexistent when the climate variables are 
smoothed to reduce their correspondence with the true climate time 
series (Figure 4). Thus, the nonannual cycle is the key characteristic of 
this dynamical system that enables accurate forecasting.

TABLE  2 Estimates of coefficients from regressing the smoothed daily ILI z-scores (2010-2012) onto two climate variables, an interaction 
term, and the temporal indicator variables that were used to construct a periodic 206-d forcing function in the time series

Coefficient Estimate Standard error t statistic P-value

Intercept 63.5198 6.1223 10.3751 4.31E-24

Temperature −1.0446 0.0719 −14.5345 8.43E-44

3-wk lagged temperature 0.0004 0.0128 0.0338 9.73E-01

4-wk lagged temperature −0.0232 0.0180 −1.2894 1.98E-01

5-wk lagged temperature 0.0843 0.0120 7.0508 3.19E-12

Relative humidity −0.0584 0.0375 −1.5569 1.20E-01

Square root relative humidity −5.3047 0.7488 −7.0839 2.54E-12

5-wk lagged relative humidity (RH.lag5) 0.1656 0.0412 4.0184 6.27E-05

Square root RH.lag5 −2.8670 0.7278 −3.9393 8.70E-05

Relative humidity × Temperature 0.0128 0.0009 13.5127 1.60E-38

Temporal interval

2 0.0098 0.0275 0.3576 7.21E-01

3 −0.0963 0.0274 −3.5128 4.62E-04

4 −0.1900 0.0275 −6.9097 8.34E-12

5 −0.2111 0.0275 −7.6857 3.44E-14

6 −0.2178 0.0282 −7.7159 2.75E-14

7 −0.1105 0.0274 −4.0262 6.07E-05

8 −0.1036 0.0279 −3.7205 2.09E-04

9 −0.1442 0.0275 −5.2471 1.86E-07

10 −0.0867 0.0278 −3.1233 1.84E-03

11 −0.1811 0.0293 −6.1726 9.53E-10

12 −0.1949 0.0280 −6.9524 6.25E-12

13 −0.2311 0.0279 −8.2917 3.33E-16

14 −0.0828 0.0274 −3.0191 2.60E-03

15 0.0290 0.0275 1.0569 2.91E-01

16 −0.0563 0.0267 −2.1069 3.54E-02

17 0.0047 0.0262 0.1790 8.58E-01

18 0.0347 0.0265 1.3107 1.90E-01

19 0.0072 0.0263 0.2750 7.83E-01

20 −0.0101 0.0260 −0.3873 6.99E-01

21 0.0548 0.0268 2.0440 4.12E-02

ILI, influenza-like illness.
Temperature was measured in Celsius.
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F IGURE  4 Forecasting ILI z-scores with bootstrapped weather data. A, Annual average temperature trend (green) and relative humidity 
trend (blue) based on 2000-2015 weather data for Ho Chi Minh City. Bootstrapping is carried out in a 21-d window around each time point, 
which has the effect of smoothing the data with a 21-d window. The shaded gray area shows the inferred periodic signal from equation (2) 
using the 2010-2012 z-scores and assuming a 206-d cycle. B, Predicted daily ILI z-scores from the regression model (red) and their 75% 
prediction range (yellow) are plotted alongside with the daily ILI z-scores (black). Model parameters were estimated by regressing ILI z-scores 
of 2010-2012 on the real weather data of 2010-2012. Predictions were calculated based on bootstrapped weather data (see Materials and 
Methods). The median prediction error from January 1, 2013 to December 31, 2015 is 0.125 (z-score scale, IQR: 0.064, 0.203). C, Median 
prediction errors when varying both the width of the bootstrapping window d for the weather data and the duration of the intrinsic cycle c 
in the system (see Methods). The minimum prediction error is achieved with a weather bootstrapping window of 199 d and an intrinsic cycle 
of 202 d. ILI, influenza-like illness
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Several robustness tests were performed. Figure S6 shows that 
forecasting using a 202-day intrinsic nonannual cycle in combination 
with bootstrapped climate data gives the most accurate forecasts 
and that a 211-day cycle was optimal when forecasting ILI trends 
using real weather data. These results are robust to whether mean or 
median prediction error is used as an evaluation criterion (Figure S7). 
Using a simpler regression model with no lags and no nonlinear 
climate terms, a 201-day cycle gave the lowest prediction errors 
(Figures S8 and S9). All analyses provided support for the existence 
of a nonannual cycle with periodicity of approximately 200 days.

Our decomposition, stepwise regression, and prediction analyses 
provide strong evidence that an intrinsic nonannual cycle of around 
200 days exists for respiratory disease transmission in Ho Chi Minh 
City. This cycle is either unique to the dynamics of respiratory infec-
tions in tropical climates, or it is a natural part of respiratory disease 
epidemiology in all regions but not detectable in temperate countries 
as a result of being overwhelmed by the strong winter seasonality of 
respiratory disease transmission. An ILI indicator, showing whether 
ILI percentages are above or below the mean trend, is updated daily 
and publicly available (www.ili.vn) providing a real-time surveillance 
system for patients and clinical providers.

4  | DISCUSSION

Our study demonstrates the value of community epidemiology 
studies for describing fine-scale dynamics of ILI in tropical settings 
where respiratory disease dynamics are nonannual and difficult to 
predict. We were able to show that a network of community clinics 
can generate a high-quality syndromic time series that can be used 
to understand local transmission patterns of respiratory disease 
and that such a network can generate a significantly larger data set 
(~6000 data points per year) than traditional surveillance systems 
that report weekly or monthly measures of incidence. This volume 
of data increases statistical power to detect ILI associations as well 
as the presence of nonannual forcing in the system. The present 
study does not achieve the data volume seen in “big-data” study 
designs1,4,5,74 which can have tens of millions of observations per 
year, but the specificity of our data signal is higher than in the afore-
mentioned studies as each data point in our study corresponds to a 
patient, seen by a physician, determined to have met or not met the 
clinical criteria for ILI.

The major quality control challenge we encountered was account-
ing for long-term trends in ILI (we had a downward trend in our data). 
In a multisite time series, detrending must be carried out carefully, and 
changes in a site’s reporting patterns must be investigated individu-
ally. From discussions with the reporting physicians in our study, the 
putative causes of the decreasing trend in ILI were likely to have been 
(a) a more than doubling of patient visit costs that would have reduced 
the likelihood of reporting a minor respiratory illness, (b) increased 
clinical specialization at some sites, or (c) more conservative interpre-
tation of ILI guidelines after molecular diagnostics were introduced in 
May 2012. In addition, during 2011 and 2012, a few large clinics were 

enrolled in the study, and some of these had higher patient volumes 
but lower ILI percentages. All of these features of community-based 
syndromic reporting systems need to be considered for both study 
design and surveillance purposes. Detrending with a 12-month mov-
ing average appears to be the simplest way to detrend and preserve 
any potential annual structure in the data.

The lack of correlation between influenza trends and ILI trends sug-
gests that the transmission dynamics of respiratory disease differ be-
tween tropical and temperate zones, consistent with the past decade’s 
literature on this topic.24,27,28,30,60,63 Given the observed pattern of mul-
tiple ILI peaks in our data, some of which are influenza epidemics and 
some of which are not, the natural hypothesis explaining this pattern is 
that multiple respiratory pathogens cocirculate and cause asynchronous 
epidemics. It is unknown whether in such a system multiple respiratory 
pathogens should circulate independently or not. The putative mech-
anism that would create dependence or interference among waves of 
different cocirculating respiratory viruses would be postinfection raised 
antibody or cytokine concentrations75-77 generated by one viral epidemic 
preventing an epidemic of a different virus from taking off immediately 
thereafter. Epidemiological interference among respiratory viruses has 
been observed in long-term time series in temperate78,79 and tropical80 
regions, but there is still little direct evidence showing that near-term 
postinfection immune responses to one respiratory pathogen can affect 
the outbreak potential of another respiratory pathogen. In our commu-
nity study, additional molecular confirmations for a range of respiratory 
pathogens are now underway to further describe this phenomenon.

The second major question that arises from the basic correlational 
analysis between ILI and influenza is why high influenza periods should 
be observed when ILI is low. To the best of our knowledge, this pat-
tern has not been observed in other surveillance systems, as a wave 
of influenza infections is normally sufficient to generate a substantial 
uptick in the ILI signal. The likely explanation for a high-influenza low-
ILI period is a larger than expected prevalence of other respiratory 
viruses among the reported ILI cases; this is possible as the commu-
nity clinics in our study are almost exclusively outpatient and likely 
to see many mild cases of respiratory disease. If influenza infection 
represents only a small fraction of respiratory disease among these 
outpatients, a wave of influenza alone would not generate an ILI peak. 
In general, community-based studies of respiratory disease should 
aim to characterize the contribution of all respiratory viruses to the ILI 
trend to determine whether it is a particular pathogen’s dominance or 
synchrony among certain pathogens that generates an ILI peak.

The major finding in our study is that the dominant periodicity ob-
served in our ILI time series is nonannual. This is the first report of a 
nonannual disease cycle in temperate or tropical respiratory disease 
data. The existence of an intrinsic nonannual cycle in the dynamics is 
supported by traditional time series decomposition, by a regression of 
the time series onto both annual and nonannual covariates, and by an 
analysis of the system’s predictability showing that accurate forecasts 
of ILI trends are highly dependent on the system’s nonannual cycle of 
~200 days. The presence of nonannual periodicity is consistent with 
a mechanism of postinfection immunity conferred by one respiratory 
virus that affords near-term protection (3-6 months) against infection 

http://www.ili.vn
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with other respiratory viruses. Data on the rate of antibody decay 
after acute influenza infection are consistent with this hypothesis,75,76 
but unfortunately, no such data exist for other respiratory viruses. If 
the short-term immunity hypothesis can be shown to be true, then 
immunological interference among viruses may be the fundamental 
driver of the immuno-epidemiology of respiratory disease transmis-
sion in the tropics. In temperate countries, where strong wintertime 
seasonality synchronizes respiratory disease transmission, the inter-
ference hypothesis may not be testable due to the short transmis-
sion season. In the tropics, where there is no winter to structure the 
dynamics of respiratory virus transmission, individual viral epidemics 
may create postepidemic niches—unfavorable to other respiratory 
pathogens—by generating temporary waves of immunity.

Although a complete forecasting evaluation will require a separate 
analysis, we can already detect one clear limitation of ILI forecasting 
methods: that they must be based on future weather predictions which, 
in our analysis, were bootstrapped from past weather data. Nevertheless, 
this proved to be a small obstacle in our analysis as, for Ho Chi Minh City, 
the bootstrapped climate variables yielded accurate predictions of aver-
ages for temperature and relative humidity (Figure S5). In other words, 
it is more likely that higher levels of ILI during a particular period are af-
fected by the average climate behavior during that period and not by 
any particular days that have extremes in temperature or relative humid-
ity. This contrasts with the climate mechanisms proposed in temperate 
zones where it is postulated that the onset of abnormally low absolute 
humidity is closely associated with the onset of the influenza season.57 
The larger question on climate effects and influenza—why AH, RH, and 
temperature appear to have different transmission effects in temperate 
and tropical regions28,60,81—remains to be answered. In addition, the 
lagged effects found in our study (for temperature and relative humidity) 
should be investigated in other locations to determine whether a period 
with particular climatic features can result in an increase or decrease 
in viral transmission that is detected by larger case numbers several 
weeks later. Much work remains to be done before respiratory disease 
outbreaks in the tropics can be forecast accurately; our hope is that the 
nonannual signal identified in this study will help in this endeavor.

A second limitation in the current study design is the lack of 
age information. We experimented with several different report-
ing methods (SMS, email, log books) for this study, but only the 
logbook method was able to capture age information consistently. 
Unfortunately, this method was adopted by a minority of the clin-
ics in our study, and it was not compatible with real-time reporting. 
The age distribution of ILI cases represents a critical data gap in our 
study and in other mHealth studies that aim at real-time reporting, 
as the age distribution could tell us whether the major disease bur-
den skews toward childhood respiratory diseases or general respira-
tory diseases like influenza. As tropical countries have younger age 
distributions than temperate countries, this difference may have a 
profound epidemiological effect on differences in ILI dynamics be-
tween temperate and tropical zones, as well as the proportion of ILI 
cases that are caused by influenza vs other respiratory viruses.

The public health value of our mHealth reporting system is that 
ILI results can be fed back in real time to participating physicians and 

the community of health professionals in Ho Chi Minh City. Real-time 
ILI trends from our study are publicly available and updated daily. The 
two key questions raised by our study are (a) to what extent the trans-
mission of noninfluenza respiratory viruses in the tropics is a potential 
driver of complex multipathogen transmission system and (b) whether 
it is useful to attempt the timing of influenza vaccination in an epide-
miological scenario where influenza epidemics occur irregularly. We 
aim to investigate the first of these questions by introducing more re-
spiratory virus diagnostics into our study. The second question can be 
evaluated with a mathematical model of influenza epidemiology, but 
will necessitate a longer influenza time series and a better understand-
ing of the key drivers of influenza virus dynamics in tropical settings.
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