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Abstract

DNA methylation is an important epigenetic regulator of gene expression. Recent studies have revealed widespread
associations between genetic variation and methylation levels. However, the mechanistic links between genetic variation
and methylation remain unclear. To begin addressing this gap, we collected methylation data at ,300,000 loci in
lymphoblastoid cell lines (LCLs) from 64 HapMap Yoruba individuals, and genome-wide bisulfite sequence data in ten of
these individuals. We identified (at an FDR of 10%) 13,915 cis methylation QTLs (meQTLs)—i.e., CpG sites in which changes
in DNA methylation are associated with genetic variation at proximal loci. We found that meQTLs are frequently associated
with changes in methylation at multiple CpGs across regions of up to 3 kb. Interestingly, meQTLs are also frequently
associated with variation in other properties of gene regulation, including histone modifications, DNase I accessibility,
chromatin accessibility, and expression levels of nearby genes. These observations suggest that genetic variants may lead to
coordinated molecular changes in all of these regulatory phenotypes. One plausible driver of coordinated changes in
different regulatory mechanisms is variation in transcription factor (TF) binding. Indeed, we found that SNPs that change
predicted TF binding affinities are significantly enriched for associations with DNA methylation at nearby CpGs.
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Introduction

Changes in gene expression levels are important contributors to

phenotypic variation in human populations [1–11]. One way in

which gene expression levels may be altered is through changes in

chromatin function [12–19]. Recent studies have focused on

identifying genetic variants that impact chromatin function

[14,20] by studying inter-individual variation in DNase I

sensitivity, a general indicator of chromatin accessibility [21], as

well as a variety of histone modifications [17–19,22]. A single

genetic variant was often found to be associated with coordinated

changes in multiple molecular phenotypes, including chromatin

accessibility, nucleosome positioning, chromatin modifications and

gene expression levels [17–19]. In many cases of coordinated

changes, the associated genetic variants seem to act through the

disruption of transcription factor binding sites [17–19]. This body

of work highlights the value of using multiple molecular

phenotypes to understand the connection between genetic

variation and gene expression. One important epigenetic mark

not considered by these recent integrated studies is DNA

methylation.

DNA methylation refers to the addition of a methyl group to

cytosine nucleotides. In vertebrates, DNA methylation primarily

affects cytosines that are immediately 59 to guanines, i.e., CpGs.

Appropriate methylation is essential for development and cellular

differentiation [23–25]. Changes in DNA methylation levels have

been linked to a number of diseases including tumorigenesis

[26,27], age-related defects [28,29] and mental disorders [30,31].

Typical array-based methylation assays provide a single measure-

ment for each CpG site, which is interpreted to reflect the

proportion of cells in which a given site is methylated. In general,

this measurement was found to have a bimodal distribution across

sites [12,32–34], which is believed to indicate that most sites are

either methylated or unmethylated in nearly all cells in a given

tissue or culture. Some measurements, however, are intermediate

[33] (we refer to these as ‘intermediate methylation levels’), which

could either reflect methylation in a subset of cells or just in a

single allele (one chromosome) in each cell. Most unmethylated
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CpGs are within CpG islands (CGIs), namely regions in the

genome in which many CpGs are located in close proximity

[33,35,36]. CGIs account for a small proportion of CpGs in the

genome but they tend to be located near transcription start sites

(TSSs). The methylation levels of CGIs are generally negatively

correlated with the expression levels of nearby genes [12,33,35–

37], an observation that led to a common early belief that DNA

methylation was primarily a repressive epigenetic mark.

A number of studies have shown that genetic variation is often

associated with quantitative changes in methylation levels

[8,12,38–40]. Early QTL studies focused on methylation data

from relatively few CpGs with a heavy bias towards promoter

regions. A more recent study that used a comprehensive array

platform considered genome-wide patterns and reported over

20,000 methylation QTLs (meQTLs [40]). A number of meQTLs

were also shown to be associated with changes in gene expression

level (namely, these meQTLs are also classified as eQTLs)

[8,12,40], although it is not clear whether the methylation changes

are a cause or consequence of the gene expression changes [40].

Interestingly, in contrast to the early belief that methylation is

primarily associated with repression, both direct and inverse

correlations between methylation and gene expression levels have

been observed. This suggests that the relationship between DNA

methylation and gene expression levels may depend on the

genomic context of the CpG [8,12,40].

In general, the mechanisms by which DNA methylation levels

are being regulated remain unclear. One likely pathway is through

coordination between DNA methylation and chromatin modifiers.

For example, H3K4 methyltransferase is recruited by CFP1,

which binds to unmethylated CpG islands [41]. In turn,

H3K27me3 and DNA methylation have been shown to have

mutually exclusive gene silencing functions, in at least some cases

[42,43]. There is also limited evidence that TF binding may be

associated with nearby changes in DNA methylation. For

example, the insertion of a CTCF binding site was shown to

cause changes in methylation levels near the insertion site

(presumably due to the binding of CTCF) [34,44]. Less direct

evidence comes from observations that TF binding sites are

enriched in differentially methylated regions (DMRs) between

individuals and cell types [45]. However, it is still unclear how

frequently changes in TF binding affect the DNA methylation

levels of nearby CpGs. It is also unclear whether this is a property

that is associated with the binding of most TFs or only a selected

few. More generally, there has not yet been a broad examination

of coordination between meQTLs and other molecular pheno-

types.

In the current study, we therefore examined associations and

correlations between genetic variation, DNA methylation, and

multiple additional cellular regulatory phenotypes. We focused on

a panel of Yoruba HapMap lymphoblastoid cell lines (LCLs),

which have been extensively characterized in previous work. In

addition to the methylation data we collected for the present study,

genomic sequences are available for the majority of these lines

[21], as well as RNA sequencing data and DNase I sensitivity

profiles [21]. Histone modification data (profiles for H3K4me1,

H3K4me3, H3K27ac, H3K27me3P) and PolII ChIP-seq data are

also available for a subset of these lines [19].

Results

We measured methylation levels in 64 Yoruba LCLs using the

Illumina Infinium HumanMethylation450 array, which assays

methylation levels at roughly 450,000 cytosines, the majority of

which are in CpGs. Probes on this array particularly target CpGs

near transcription start sites, including CpG islands and CpG

shores. As a first step in our data processing, we excluded array

probes that did not uniquely map to the human genome as well as

probes that overlapped a known sequence variant (see Methods).

After these filtering steps we retained methylation measurements

from 329,469 probes. As was suggested in previous studies

[40,46,47], we quantile-normalized the data to a standard normal

within each individual and across probes (though we considered

the effects of alternative normalization approaches; see Methods).

To account for unobserved confounders we performed principal

component analysis. We found that removing four principal

components maximized our power to identify meQTLs. Further

details on the data processing, normalization, and tests for the

effect of confounders are provided in the Methods. In addition to

the array data from 64 individuals, we also collected low-coverage

whole-genome bisulfite sequencing data from a subset of ten

individuals (median genomic coverage 2.46; see Methods).

Mapping methylation QTLs
We first examined the association between genetic variation and

differences in methylation levels across individuals. For this

analysis, we considered only the array data (because we performed

whole-genome bisulfite sequencing in only ten individuals). We

used previously collected and imputed [21] genotype data for the

64 individuals from the HapMap and 1000 Genomes Projects

[48,49]. We focused on proximal (putatively cis) associations

between genotypes and DNA methylation levels by considering, in

each case, genetic variation within a 6 kb region centered on the

genomic location of a methylation probe on the array. This

window size was chosen because smaller and larger windows

yielded fewer significant associations at a given FDR. At an FDR

of 10% we identified 13,915 CpG sites with at least one cis
meQTL (Fig. 1A). When multiple SNPs were significantly

associated with methylation levels at a given site, we only

considered (for the purpose of counting the overall number of

meQTLs) the single most significant association. Since the

methylation data measured by nearby pairs of probes are

frequently correlated, we wondered whether this analysis might

overstate the number of independent meQTL signals. To address

this, we examined pairwise correlations of data from all probes

located within 5 kb of each other. We found that data from only

203 or 520 of the associated probes (normalized or untransformed

data, respectively) are significantly correlated (Pearson Correlation

Author Summary

DNA methylation is an important epigenetic mark that
contributes to many biological processes including the
regulation of gene expression. Genetic variation has been
associated with quantitative changes in DNA methylation
(meQTLs). We identified thousands of meQTLs using an
assay that allowed us to measure methylation levels at
around 300 thousand cytosines. We found that meQTLs
are enriched with loci that is also associated with
quantitative changes in gene expression, DNase I hyper-
sensitivity, PolII occupancy, and a number of histone
marks. This suggests that many molecular events are likely
regulated in concert. Finally, we found that changes in
transcription factor binding as well as transcription factor
abundance are associated with changes in DNA methyl-
ation near transcription factor binding sites. This work
contributes to our understanding of the regulation of DNA
methylation in the larger context of gene regulatory
landscape.

meQTLs Exhibit Coordinated Change with Other Regulatory Phenotypes
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and a T-test; P,0.05) suggesting that the reported number of

independent meQTL is not substantially inflated by correlation of

the methylation data across nearby probes.

We next used the genome-wide bisulfite sequencing data to

provide a general validation of meQTL associations that were

identified using the array data (Fig. 1B), as well as to investigate

whether meQTLs are generally associated with changes in

methylation at a single CpG or a larger region. In general, we

observed a high correlation between the estimates of methylation

levels based on the array data and the estimates of methylation

levels based on the whole genome bisulfite sequencing (R = 0.93;

Fig. S1). We note that the read depth and sample size of the

bisulfite sequencing data set are insufficient to allow for validation

of individual meQTL. Instead, we aggregated the sequence data

by considering the centers of probe locations whose methylation

data are associated with meQTLs (see Methods for more details).

Using that approach, we found a clear difference in methylation

level across meQTL genotypes. In addition, we observed a broad-

scale association of meQTL genotypes with methylation levels

over a region extending between 1.5 and 2 kb in either direction

from the methylation loci originally probed by the array. This

result indicates that multiple CpGs within a local region are often

associated with a single meQTL.

We sought to estimate the typical distance between meQTLs

and the location of associated methylated sites (based on the

genomic location of the array probes). This analysis is complicated

by the fact that, due to LD, it is often unclear which site is causal

for any given meQTL. We thus focused on a subset of associations

that are more likely to be causal, namely on 409 meQTLs that are

the only strongly associated loci within 5 kb of the methylated site

(see Methods). Our approach does not provide direct evidence that

these are indeed causal sites, but without additional experimental

data (namely, using only the meQTL mapping framework), it is

likely the best approach to obtain a subset of loci that is enriched

with true causal associations [7,11]. These 409 meQTLs are

generally located very near the associated methylation site (the

median distance is 76 bp; Fig. 1C), with only 52 (13%) of the

putatively causal meQTLs located more than 3 kb away from the

methylated site.

We then explored the distribution of methylated sites that are

associated with meQTLs in the context of other cis-regulatory

annotations. Using the chromatin state annotations from Ernst

et al. [50], we classified the genomic regions containing the

assayed methylated sites as insulators, enhancers, or promoters (see

Methods). Compared to the distribution of all assayed methylation

sites, we found a relative depletion of sites associated with

meQTLs at promoters (chi-square test; P,10215), and an

enrichment of such sites at insulators (chi-square test; P,1025)

and enhancers (chi-square test; P,1029; Table S1), consistent

with previous work [8,40].

QTLs for other regulatory phenotypes are often meQTLs
as well

Our group has previously collected a number of genomic

datasets from the same panel of Yoruba LCLs, pertaining to

different regulatory mechanisms. We analyzed our methylation

data in the context of these other data sets. We first performed a

joint analysis of the methylation data with previously mapped

eQTL data from the same LCLs [21]. We found that 146 (25%) of

595 eQTLs (classified at an FDR = 10%) within 3 kb of the

genomic location of a methylation probe are also significantly

associated with variation in DNA methylation (measured by the

proximal probe; classified at an FDR = 10%). In other words,

these SNPs are classified, using relatively stringent criteria, as both

eQTLs and meQTLs (Fig. 2A). This represents a very strong

enrichment of SNPs that are both eQTLs and meQTLs: the mean

overlap expected by chance alone is 2.8% (P,1025; see Methods).

Although we are unable to infer causality in this case (namely, to

determine whether methylation patterns underlie gene expression

levels or the other way around, or alternatively both phenotypes

are responding to a third underlying factor), our observations

indicate a substantial degree of coordination between methylation

levels and gene expression.

Interestingly, roughly half of the sites classified as both eQTLs

and meQTLs (70 of the 146 sites) are associated with positively

correlated gene expression and methylation levels; namely, we

observe a pattern whereby the genotypes that are associated with

high expression levels are also quite often associated with high

Figure 1. A) QQ plot of –log10 p-values for testing the null of no association between methylation levels measured by all probes that passed our
quality filters, and all SNPs within 3 kb of these probes. Data for SNPs within the candidate window are in black; negative control SNPs for which we
chose a random 6 kb window elsewhere in the genome are in green; SNPs with the genotype labels permuted are in blue. B) Average methylation
levels estimated using the bisulfite sequence data at meQTL probes, segregated by meQTL genotype. C) Histogram showing the distribution of
distances between meQTL SNPs and the associated methylated sites in base pairs, for meQTLs where there is a single most likely causal site.
doi:10.1371/journal.pgen.1004663.g001

meQTLs Exhibit Coordinated Change with Other Regulatory Phenotypes
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methylation levels. This pattern was observed both for methylation

sites located within and outside gene bodies, yet we found that the

CpG sites whose methylation levels are positively correlated with

the expression levels of nearby genes are further from the gene’s

TSS (median distance of 6,680 bp) than CpG sites whose

methylation levels are negatively correlated with the expression

levels of nearby genes (median distance of 1,020 bp; P = 0.018;

Fig. S2). We were concerned that the more distal loci may be

enriched for false positives. However, this observation remains

significant (P = 0.027) even when we add effect size as a covariate

in our model.

Next, we considered a joint analysis of the methylation data

with QTL data for four histone modifications, PolII occupancy

[19] and DNase I hypersensitivity profiles [21]. We found that

QTLs associated with changes in any of these regulatory

features are significantly more likely to also be associated with

changes in methylation levels than expected by chance alone

(by permutations; P,1024; Table 1; Fig. 2B, C). For example,

48% and 40% of QTLs associated with variation in H3K4me3

and H3K27ac, respectively, are also classified as meQTLs (at

FDR = 10%). One particularly striking example of concerted

changes in regulatory mechanisms that are associated with

genetic variation at one locus is shown in Figure 3. The

genotypes of a SNP located on chromosome 6, in an intron of

the HLA-DQB1 gene, are strongly associated with changes in

DNase I hypersensitivity (P,1029), H3K4me3 (P,1024),

H3k27ac (P,1024), gene expression levels (P,10215), and

DNA methylation (P,10210).

Previous work has demonstrated that DNA methylation levels

are generally negatively correlated with nearby levels of chromatin

modifications associated with active transcription [12,41,51]. Yet,

we found that methylation levels and chromatin features

associated with active transcription are often positively correlated

when variation in all features is associated in concert with a single

QTL (Table 1; Fig. 2B, Fig. 3). It is important to note that often

these regulatory regions, while proximal to each other, are not

overlapping (eg. Fig. 4), suggesting a complex coordination across

extended genomic regions.

Transcription factor binding may affect nearby patterns
of DNA methylation

A major limitation of most genomic studies, including ours, is

the difficulty of identifying casual mechanisms. However, we

reasoned that we might be able to gain better insight about

causality, or at least the likely order of events, if we focused on

SNPs disrupting TF binding sites. It is reasonable to assume that

the most direct outcome associated with such genetic variation is

the disruption of TF binding. If these SNPs are also associated

with changes in additional regulatory mechanisms, it might

therefore be reasonable to further assume that changes in TF

binding resulted in concerted changes in other regulatory

phenotypes. Recent work has provided some measure of support

for this rationale by suggesting that changes in TF binding can

play causal roles in driving changes in histone marks [17–19] as

well as DNase I hypersensitivity [21]. These results, in conjunction

with previous examples of transcription factor binding altering

methylation levels [34,44], led us to hypothesize that we could

identify novel associations between TF binding and DNA

methylation profiles. To do so, we examined the association of

SNPs within TF binding with DNA methylation at nearby

genomic regions.

To identify SNPs that are likely to directly affect TF binding we

used DNase-seq data and the Centipede algorithm [52] to infer

sites that are putatively bound by TFs in our LCLs. We next

identified SNPs disrupting these putative binding sites and

calculated a position weight matrix (PWM) score for each allele.

We used SNPs that are in DNase I hypersensitive sites (DHSs) but

not in known TF binding sites as a set of matched controls.

Considering the data for all TFs together, we found that alleles

with lower predicted TF binding affinity (i.e., lower PWM scores)

are frequently associated with increased DNA methylation within

500 bp of the binding site. The association was stronger than that

observed for the control DHS SNPs (by permutations; P = 1025;

Fig. 4A). Considering binding sites for each TF separately, we

identified three TFs (CTCF, PAX9, and ESE1; Fig. 4B), where a

change in PWM score is significantly associated with the

methylation level of probes within 500 bp of the binding site

Figure 2. A) QQ plot of –log10 p-values for testing the null of no association between eQTL SNPs and methylation levels in sites within 3 kb. Positive
correlations between expression and methylation levels are in red; Negative correlations are in blue, Data for random SNPs within the candidate
window are in green; and data for a set of permuted genotype labels are in black. B) A plot of similar structure considering the associations of dsQTL
SNPs [21] and with methylation levels at sites within 3 kb. C) A plot of similar structure considering the QQ plots of associations between histone
modification QTLs [19] and methylation levels at sites within 3 kb.
doi:10.1371/journal.pgen.1004663.g002

meQTLs Exhibit Coordinated Change with Other Regulatory Phenotypes

PLOS Genetics | www.plosgenetics.org 4 September 2014 | Volume 10 | Issue 9 | e1004663



(Table 2). Changes in the predicted binding efficiency of ESE1
and PAX9 are negatively associated with methylation levels, while

changes in the predicted binding efficiency of CTCF are positively

associated with methylation levels at some loci and negatively

associated at others.

Our observations indicate that the level of predicted TF binding

is associated with variation in methylation levels near the binding

site. Given this, changes in TF abundance (approximated by the

estimated expression level of that TF) might also be associated with

variation in methylation levels around the TF binding sites. To test

this, we considered previously collected gene expression (RNA-seq)

data from the same LCLs [21]. We found that the inter-individual

variation in the expression levels of two TFs (STAT5A and

ZNF274) is significantly correlated with variation in methylation

levels around the TF binding sites (Fig. 4C/D). Specifically, an

increase in STAT5A expression is associated with lower levels of

DNA methylation and, interestingly, an increase in the expression of

ZNF274 is associated with increased levels of DNA methylation.

meQTLs are enriched with loci associated with complex
disease

Previous work has suggested links between DNA methylation,

QTLs, and complex traits [31,53]. To further explore this in our

data we used the NHGRI’s catalog of published genome-wide

associations [54] to identify SNPs associated with complex diseases

Figure 3. Read counts segregated by meQTL genotype for multiple regulatory phenotypes. The green line denotes the meQTL and the
location of the probe measuring methylation data associated with the meQTL is identified by the black rectangle. The different colored data series
indicate mean read depths segregated by genotype at the meQTL site: blue shows the homozygous genotype associated with low methylation level,
orange shows the heterozygote, and purple the homozygous genotype associated with high methylation level. In this example, all of the regulatory
phenotypes are negatively associated with DNA methylation levels.
doi:10.1371/journal.pgen.1004663.g003

Table 1. Associations between QTLs for other regulatory phenotypes and DNA methylation.

Regulatory
phenotype

Number of
SNPs tested

Proportion of
SNPs significant
at 10% FDR

Mean proportion
from permutation P-value

Positive correlation
with methylation

Negative correlation
with methylation

H3K4me3 570 48% 4% ,1025 61 215

H3K4me1 164 41% 7% ,1025 38 29

H3K27ac 700 40% 5% ,1025 78 201

PolII 586 33% 3% ,1025 47 147

DHS 3858 31% 5% ,1025 413 801

H3K27me3 150 13% 8% 0.02 7 12

For each regulatory phenotype we randomly sampled a matched number of SNPs, within 3 kb of a DNA methylation probe, 100,000 times. We calculated proportion of
these tests significantly associated with methylation at an FDR of 10%. This was used to calculate the mean proportion from the subsample and the P-value columns.
doi:10.1371/journal.pgen.1004663.t001

meQTLs Exhibit Coordinated Change with Other Regulatory Phenotypes
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that were within 3 kb of a methylation probe. We found that

GWAS SNPs are significantly enriched among meQTLs (P,

1025; Fig. S3); of the 2676 SNPs tested, 153 are also significantly

associated with variation in methylation levels at an FDR of 10%.

Given that LCLs are derived from B-lymphocytes and that DNA

methylation exhibits tissue specificity, we hypothesized that the

GWAS results would be enriched for genes pertaining to immune

system functions. Using data from the original GWA studies we

obtained a list of putatively affected genes associated with each of

the 153 GWAS/meQTL SNPs. These genes are indeed enriched

Figure 4. A) Two-sided QQ-plots describing the effect of TF binding on DNA methylation. For each SNP in a predicted TF binding site [52] we tested
whether the SNP was associated with methylation at sites within 500 bp. Positive associations (upper right quadrant) indicate that the allele
associated with increased PWM score for the TF in question is associated with increased methylation; negative associations (lower left quadrant)
indicate that increased PWM score is associated with decreased methylation. We used a random set of SNPs in DNase I hypersensitive sites (DHSs) to
indicate the expected baseline. When considering the control DHS SNPs, the direction of the effects was chosen randomly for the purpose of plotting.
Panel B) additionally highlights four TFs that show particular strong association with changes in methylation levels. C) Two-sided QQ-plot of
associations between Stat5 expression and DNA methylation at sites within 500 bp of Stat5 binding sites. D) QQ-plot of associations between
ZNF274 expression and DNA methylation near ZNF274 binding sites. In both C and D, the grey shading indicates a region that would contain the
data 95% of the time when the null hypothesis is true for all tests, obtained based on permutation of the expression data while holding the
methylation data constant.
doi:10.1371/journal.pgen.1004663.g004

meQTLs Exhibit Coordinated Change with Other Regulatory Phenotypes
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(FDR,1.2%; Table 3) for KEGG pathways pertaining to immune

function (eg. type 1 diabetes, antigen processing, autoimmune

thyroid disease) and GO terms for immune function (eg. antigen

processing and MHC class II receptor activity). We further found

that genes implicated in the GWAS/meQTL analysis tend to be

up regulated in peripheral blood leukocytes, compared to a

background of multiple tissues (Table 3).

Discussion

Our study considered inter-individual variation in methylation

profiles using LCLs. The LCL model is a somewhat artificial

system, and indeed it has been previously demonstrated that the

Epstein-Barr virus transformation of primary B cells into LCLs

results in widespread DNA methylation changes [55,56]. Howev-

er, it is also clear that a large number of B cell-specific

characteristics remain in LCLs and, in general, important and

insights regarding gene regulatory processes have been learned

from studies in LCLs in particular, often by using a QTL mapping

approach [55].

We have identified nearly 14 thousand CpG sites at which

methylation levels are associated with genetic variation. The

number and magnitude of associations are consistent with other

recent meQTL studies of similar scale [40]. We took advantage of

the fact that the LCLs we worked with are well studied (a clear

advantage of the renewable LCL resource) to analyze the

methylation data in combination with data on other regulatory

mechanisms. We found strong evidence that DNA methylation is

regulated in concert with other cellular phenotypes. Though the

inference of causality is problematic for most genomic studies,

including ours, we provided some indication that transcription

factor binding may result in changes in DNA methylation patterns

at nearby genomic regions.

Indeed, we found that, in general, SNPs disrupting TF binding

sites are more likely to be associated with DNA methylation levels

than SNPs within DNase I hypersensitive sites but not in TF

binding sites. We believe that using SNPs disrupting putative TF

binding sites provides a powerful way to re-examine the interplay

between QTLs for regulatory phenotypes. Our observations

therefore suggest that changes in the binding of CTCF, PAX9,

ESE1, STAT5, and ZNF274 result in changes in methylation

patterns in nearby CpGs. This does not necessarily mean that the

TF is directly regulating DNA methylation, but that changes in the

binding of the TF (observed through change in mRNA abundance

or PWM score) are the first step leading to a change in DNA

methylation. In other words, our approach suggests that changes

in TF binding are frequently a key early step in the regulatory

cascade that leads to concerted changes in multiple mechanisms.

Table 2. Associations between SNPs disrupting TF binding sites and DNA methylation within 500 bp of the binding site.

Name SNPs tested Proportion significant at 10% Mean proportion from permutation P-value

CTCF 370 15% 3% ,1025

PAX9 85 11% 3% ,1024

ESE1 55 15% 2% ,1024

For each TF we randomly sampled a matched number of SNPs, within any TF binding site with a CpGs less than 500 bp away, 100,000 times. We calculated the
proportion of tests significantly associated with methylation at an FDR of 10%. This was used to calculate the mean proportion from the subsample and the P-value
columns.
doi:10.1371/journal.pgen.1004663.t002

Table 3. DAVID analysis of meQTLs implicated in GWAS.

Category Term Fold Enrichment Bonferroni FDR

KEGG_PATHWAY Type I diabetes mellitus 113 2.7E-11 3.9E-10

KEGG_PATHWAY Antigen processing and presentation 101 1.9E-07 2.7E-06

KEGG_PATHWAY Graft-versus-host disease 98 2.3E-07 3.3E-06

KEGG_PATHWAY Autoimmune thyroid disease 91 3.4E-07 4.9E-06

KEGG_PATHWAY Allograft rejection 88 4.1E-07 5.8E-06

GOTERM_MF_FAT MHC class II receptor activity 190 2.0E-06 1.1E-05

KEGG_PATHWAY Cell adhesion molecules (CAMs) 42 9.6E-07 1.4E-05

KEGG_PATHWAY Viral myocarditis 69 1.4E-06 2.0E-05

GOTERM_CC_FAT MHC protein complex 34 7.8E-06 5.9E-05

UP_TISSUE Blood 10 1.0E-05 1.1E-04

UP_TISSUE Peripheral blood leukocyte 47 1.6E-05 1.8E-04

GOTERM_BP_FAT Antigen processing and presentation 25 3.8E-04 5.3E-04

KEGG_PATHWAY Asthma 88 8.2E-04 0.012

The results from a DAVID analysis [66,67] of genes near a SNP whose genotype is associated with DNA methylation levels and complex disease. These data include GO
terms, KEGG pathways, and up-regulated tissues.
doi:10.1371/journal.pgen.1004663.t003
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The functional context of meQTLs
We observed an under-representation of meQTLs at promoters.

We suggest two possible explanations for this observation;

unfortunately, we currently lack the ability to distinguish between

the two. First, a technical/statistical explanation: We may be

underpowered to detect changes in methylation at promoters. We

found that DNA methylation levels at promoters are, in general,

less variable and have a lower average methylation level compared

with other genomic regions, including enhancers (Fig. S4). The

alternative explanation is more intriguing: It is possible that

promoter methylation patterns are more often functional (with

respect to their regulatory outcome) than methylation in other

genomic regions. If so, promoter methylation patterns may evolve

under stronger functional constraint, leading to lower true rates of

meQTLs, as suggested previously [40].

Related to this interpretation, we have also shown that the

relationship between DNA methylation and activating marks is

more complex then previously appreciated. Negative correlations

between DNA methylation levels and the expression of nearby

genes have been observed frequently [8,12,33,35,57], but few have

explored cases where DNA methylation is positively correlated

with gene expression levels or activating chromatin marks

[8,12,40]. When we examine joint QTLs, all regulatory pheno-

types associated with active transcription exhibited an unexpect-

edly high proportion of positive correlations with methylation

levels at nearby sites (Table 1). Previous work has shown that

DNA methylation in gene bodies is often associated with activating

histone modifications and increased expression levels [58,59], yet

at least when we considered meQTLs, we did not observe a

difference in the direction of correlations between CpGs within or

outside gene bodies. Instead, we have found that when eQTL/

meQTLs are positively correlated the respective TSS and CpG

sites tend to be further from each other. These observations

suggest that DNA methylation in more distal regulatory elements

may be more likely to have an activating effect. This hypothesis is

supported by the observed enrichment of CpG associated with

meQTLs in enhancers and insulators, which are further from TSS

than promoters.

We propose two alternative hypotheses to account for the

observations of positive correlations between methylation and

expression levels at nearly half of meQTLs/eQTLs sites. First, if

the expression of a gene is tightly regulated, DNA methylation

could serve as a fine-tuning tool. For example, over-activation by

histone modifications could be suppressed using DNA methylation

or vice versa. Indeed, while DNA methylation was considered a

very stable epigenetic mark, recent work has demonstrated that

DNA methylation levels can dynamically change in vivo on very

fast (hours) time scales [60].

A second possibility is that observed positive correlations

between methylation levels and the expression of nearby genes

are due to 5-Hydroxymethylcytosine (5hMc), an additional

modification to DNA methylation that has been implicated in

the process of demethylation [61]. It has been shown that 5hMc

has activating effects on transcription [62]. The bisulfite conver-

sion approach we used does not allow us to distinguish 5hMc from

DNA methylation. It is therefore possible that positive correlations

between DNA methylation and expression or activating histone

modifications are due to 5hMc.

Summary
Our study joins a growing body of work, which indicates that

methylation levels at a large number of loci across the genome are

affected by genetic variation at nearby sites. In many cases, these

meQTLs are also associated with variation in a variety of other

types of chromatin changes, gene expression changes, and often -

changes in disease risk. Our data is consistent with the notion that

TF binding likely plays a role in altering methylation levels, but the

mechanisms underlying the vast majority of meQTLs remain

unclear. Similarly, we still do not understand in detail the

mechanistic links between DNA methylation and other epigenetic

marks and gene expression outputs, and these types of questions

will no doubt be a fruitful area for future research.

Materials and Methods

DNA methylation array
To analyze DNA methylation, we extracted DNA from LCLs of

64 adult YRI HapMap individuals. The samples were bisulphite-

converted and hybridized to the Infinium HumanMethylation450

BeadChip at the University of Chicago Functional Genomics

facility. To validate the array probe specificity, probes were

mapped to an in silico bisulfite-converted genome using the

Bismark aligner [63]. Only uniquely mapped probes were retained

(n = 459,221). We excluded probes on sex chromosomes

(n = 11,016). Next, to eliminate the potential for spurious

associations due to differences in probe hybridization affinity, we

discarded probes (n = 118,736), overlapping known SNPs segre-

gating in our panel based on our genotype data (see below).

Following this series of exclusions, we kept data from 329,469

probes for subsequent analysis. Methylation levels are reported as

b-values, which are considered estimates of the fraction of

chromosomes methylated at a given site.

Whole genome bisulfite sequencing
Bisulfite sequencing was performed using a modified version of

the Illumina whole genome bisulfite sequencing protocol. Specif-

ically, extracted DNA from LCL cell lines of 10 Yoruba HapMap

population individuals and spiked-in unmethylated lambda phage

DNA was fragmented into 100 bp fragments using a Covaris ultra-

sonicator. Fragmented DNA was blunt ended, repaired, and

standard Illumin TruSeq adapters were ligated to the DNA

fragments. DNA was then bisulfite-converted using the Invitrogen

MethylCode Bisulfite Conversion Kit. The bisulfite-converted

DNA was PCR amplified and sequenced using the Illumina HiSeq

2000. Each sample was sequenced in at least two lanes. Average

genome-wide coverage ranged from 0.46 to 7.06per sample with

a median of 2.46. Sequencing reads were trimmed for quality and

to remove the adapter sequences. PCR duplicates were removed

using the SAMtools software package. Reads were mapped using

the Bismark aligner, which maps bisulfite converted DNA to a G

to A and C to T converted human genome [63]. The bisulfite

conversion efficiency was determined using the spiked-in lambda

phage DNA. Conversion efficiency for all samples was estimated

to be greater than 99%. Locus-specific methylation levels were

estimated by obtaining the ratio of methylated to unmethylated

CpG counts.

Correlation of data from methylation array and bisulfite
sequencing

To assess the overall agreement between the methylation array

and the bisulfite-seq data we compared average methylation levels

across CpG sites. To do so, we calculated the average of the

untransformed array beta values from all 64 individuals at each

CpG site, and compared these values to the estimated locus

specific methylation level based on the sequencing data (by

dividing the number of methylated reads by the total coverage of a

given site in each individual, and calculating the mean across all

individuals with at least 5 reads at that site). Correlation (Fig. S1)
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was assessed using the Spearman rank correlation (because the

data are not normally distributed).

Genotype data
We used the genotypes from a previous study of the same

samples [21]. Briefly, genotypes were obtained by combining and

imputing genotype based on the 1000 Genomes Project and

HapMap [48,49]. A reference panel was built using all 210 YRI

individuals (excluding 1st degree relatives). If genotypes were

available from multiple datasets the dataset that was expected to

be most accurate on average was chosen (1000 Genomes high

coverage, followed by HapMap, then 1000 Genomes low

coverage, respectively). This reference panel was used to impute

missing genotypes for individuals in our cohort using the

BIMBAM software [64]. Genotype information was obtained for

roughly 15.8 million variants genome-wide. The genotypes that we

used can be found at http://eqtl.uchicago.edu/Home.html.

QTL analysis
The distribution of methylation array data is non-Gaussian.

We therefore quantile-normalized the data to a standard normal

first, across all probes within an individual, and then across all

individuals at each probe. We tested for confounders using

principal component analysis. No known confounders were

significantly correlated with a PC (Fig. S7). However, we found

that removing four PCs provided optimal power to detect

meQTLs (Table S2). We then identified meQTLs by testing

(using standard linear regression) for associations between

normalized methylation levels and genotypes at all SNPs that

were within 3 kb of an assayed CpG. We only tested SNPs with

a minor allele frequency greater than 5%. An FDR was

computed using the R-package qvalue [65]. To investigate the

overlap between QTLs for other molecular phenotypes and

meQTLs we identified SNPs previously associated with changes

in histone modifications, PolII, DHS, expression and complex

diseases (using GWAS results) [19,21,54]. The rationale for this

analysis is that the observation that a SNP is a QTL for other

traits increases the overall likelihood that the SNP may also be

associated with changes in methylation levels (in other words,

we use previous observations as priors). Significant QTLs for

any of the tested regulatory phenotypes or complex diseases,

that were located within 3 kb of a methylation probe, were then

tested for association with methylation levels. For each class of

previously identified QTLs an independent FDR [65] was

calculated to assess the significance of association with methyl-

ation levels.

To ensure that our results are not markedly impacted by the

choice of normalization procedure, we also considered two

alternative approaches. First, the data were quantile-

normalized to a standard normal across all probes within an

individual. This approach resulted in a minor excess of small p-

values in the QTL analysis of permuted data (Fig. S5). Second,

we quantile-normalized data from a given probe to a standard

normal across all individuals. This method resulted in

considerable variation in mean methylation levels across

individuals, which is not ideal since the variable means may

reflect array variation rather than true biology. Regardless of

the specific properties (and possible shortcomings) of the

alternative normalization and data processing approaches, the

majority of meQTL associations we report remained significant

(8,684 without removing PCs, 8863 when normalized by

individual, 5496 when normalized by probe, and 6283 when

the data were untransformed; Fig. S6).

Aggregation of bisulfite sequencing data
We used the bisulfite sequencing data to generally validate the

meQTLs identified using the array data, and more importantly, to

visualize the association of meQTLs with methylation levels at

CpGs that are located near each other. Since the sequence data

are sparse (because the coverage is low) and available for only a

small number of individuals, we only considered an aggregate

analysis across all individuals and across all the previously

identified meQTL associated CpGs. Specifically, for each meQTL

we separated the sequenced individuals by genotype (i.e., the

genotypes associated with high methylation levels, heterozygote, or

those associated with low methylation levels). Next, we counted the

number of methylated and unmethylated reads in 51 bp windows

sliding across a 5 kb region centered on the associated CpG for

each meQTL. The mean aggregate methylation levels for each

window position and each genotype class were calculated as the

sum of the number of methylated reads divided by the sum of total

reads for that window and genotype class. We averaged this

estimate across all meQTLs genome-wide. The result is an

aggregate plot of the average methylation levels by genotype class,

showing the spatial distribution of CpG methylation in a 5 kb

window (Figure 1B).

Identification of candidate causal SNPs from meQTL data
Due to LD, the causal site for any given meQTL is typically

ambiguous. In addition, though we used 1000 genome sequence

data and imputation, we expect that a subset of common SNPs are

missing from our data. For this reason, it is challenging to obtain

an accurate estimate of the distribution of distances between

probes and causal meQTL sites. In previous work, our group

tackled this problem using a Bayesian model [12]. Here, since we

have a much larger number of meQTLs (then eQTLs or dsQTLs,

for example), we focused on a set of meQTLs where there is a

single clear candidate variant that is likely to drive the signal.

Specifically, we identified meQTLs for which the p-value of the

most significant SNP is at least two orders of magnitude lower than

that of the next most significant SNP (within a slightly larger,

10 kb window). Previously, we used simulations to show that these

stringent criteria provide strong enrichment for causal sites [7]. In

reality, we consider these sites as putatively causal because the

evidence supporting their role is circumstantial.

Inclusions of previous data collected from the same
samples

DNase-seq data for 70 individuals, ChIP-seq data for 10

individuals and RNA-seq data for 69 individuals were obtained

from previous studies performed in our labs [2,19,21]. In Figure 3,

mapped fragments are reported as fragments per kilobase per

million mapped reads (FPKM) and are smoothed using a 21 bp

Savitzky-Golay filter.

Association between transcription factor binding and
DNA methylation

We performed analysis that focused on SNPs that disrupt TF

biding sites. To do so, we used inferences of TF binding based on

DNase I sequencing data that were obtained from a previous study

[21], which applied the Centipede algorithm [52] to DNase-seq

data from the same LCLs. We identified putative binding sites

overlapping genetic variants and calculated a position weight

matrix (PWM) score for both alleles at each locus. Linear

regression was then performed to identify associations between

the PWM scores of each genotype and the methylation levels of

CpGs within 500 base pairs of the motif position.
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Association between transcription factor expression
levels and DNA methylation at CpGs near the TF binding
sites

RNA-seq data for 56 of the 64 individuals with methylation

array data were obtained from Degner et al. [21]. The mRNA

levels of the transcription factors were standardized to RPKM

and then quantile normalized. We used ChIP-seq broad-peak

calls for 100 TFs, measured by the ENCODE project in the

lymphoblastoid cell line GM12878, to identify TF binding sites

[14]. (These data were downloaded from the ENCODE website

(http://encodeproject.org/ENCODE/) in July 2013). If the TF

ChIP-seq was performed in multiple replicates, only the peaks

found in all replicates were considered as binding sites. A Pearson

correlation test was performed between the TF expression and

DNA methylation levels measured by probes within 500 base

pairs of TF binding sites. Given our expectation that TF

expression would have a trans effect on DNA methylation

genome-wide, we anticipated removing PCs from the methylation

data would diminish our ability to identify associations. Indeed

we find that using data with PCs removed reduces our power to

identify associations. As such, we used methylation data that had

only been normalized (first by individual then by probe) for this

analysis.

Pathway analysis of GWAS associated genes
We performed a pathway analysis of GWAS associated genes

using the DAVID program [66,67]. DAVID allows the user to

input a custom ‘‘background’’ set of genes from which the

program computes a null hypothesis. Since there is a known bias

toward immune system genes in GWA studies we used all genes

implicated in GWA studies as our ‘‘background’’. Thus, observed

significant enrichments are beyond the bias in GWAS results.

Accession numbers
Data from the methylation array and bisulfite sequencing are

available at the GEO database (accession number GSE57483). A

summary table of the meQTLs is available at the Gilad lab website

http://giladlab.uchicago.edu/Data.html.

Supporting Information

Figure S1 Scatterplot of CpG methylation levels estimated from

the Illumina array and from whole genome bisulfite sequencing.

(EPS)

Figure S2 A boxplot of distances from methylation probe to

transcription start site for eQTL/meQTLs. The boxplot on the

left represents QTLs where methylation and expression are

negatively correlated. The boxplot on the right represents QTLs

where methylation and expression are positively correlated.

(EPS)

Figure S3 QQ-plot of associations between SNPs implicated in

GWAS studies and DNA methylation. The red points are all SNPs

from GWAS studies within 3 kb of a methylation probe. The black

points are a subsample of all the SNPs within 3 kb of a

methylation probe.

(EPS)

Figure S4 Distributions of methylation levels at array probes in

promoters and enhancers, respectively, and the full distribution

across all probes. Promoters have reduced variability compared to

all probes and to enhancers.

(EPS)

Figure S5 QQ-plot of all SNPs within 3 kb of a methylation

probe normalized by either A) individual or B) probe. Visible

inflation of associations is observed when normalizing by

individual.

(EPS)

Figure S6 The T-statistics of meQTLs identified in this study

when regression is performed using other array normalization

strategies. The histograms show the absolute T-statistic for A)

untransformed data, B) data normalized by individual only, C)

data normalized by probe only, and D) normalized by individual

then probe. The blue histogram represents permuted genotypes

(controls) and the red histogram represents the meQTLs.

(EPS)

Figure S7 PCA plots showing the first two PCs separated by A)

sex, B) bisulfite conversion batch, or C) array batch. None of the

known potential confounders are associated with PC1 or PC2.

PC1 explains roughly 8% of the variance.

(EPS)

Table S1 The data used to test for enrichments/depletions of

probes measuring methylation levels meQTL associated CpGs.

The first column is the number of meQTLs associated CpGs

within the specified genomic feature (eg. promoter). The second

column is the total number of probes within the specified genomic

feature. To calculate the chi-square statistic a two by two

contingency table was created using the first two columns

(described above), the total number of meQTL associated CpGs,

and the total number of probes on the array.

(XLSX)

Table S2 This table shows the differing number of meQTLs

identified (at an FDR of 10%) after removing varying numbers of

PCs.

(XLSX)
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