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Synopsis Fish gastro-intestinal system harbors diverse microbiomes that affect the host’s digestion, nutrition, and immu- 
nity. Despite the great taxonomic diversity of fish, little is understood about fish microbiome and the factors that determine its 
structure and composition. Damselfish are important coral reef species that play pivotal roles in determining algae and coral 
population structures of reefs. Broadly, damselfish belong to either of two trophic guilds based on whether they are planktivo- 
rous or algae-farming. In this study, we used 16S rRNA gene sequencing to investigate the intestinal microbiome of 5 planktiv- 
orous and 5 algae-farming damselfish species ( Pomacentridae ) from the Great Barrier Reef. We detected Gammaproteobacteria 
ASVs belonging to the genus Actinobacillus in 80% of sampled individuals across the 2 trophic guilds, thus, bacteria in this 
genus can be considered possible core members of pomacentrid microbiomes. Algae-farming damselfish had greater bacterial 
alpha-diversity, a more diverse core microbiome and shared 35 ± 22 ASVs, whereas planktivorous species shared 7 ± 3 ASVs. 
Our data also highlight differences in microbiomes associated with both trophic guilds. For instance, algae-farming damselfish 
were enriched in Pasteurellaceae, whilst planktivorous damselfish in Vibrionaceae . Finally, we show shifts in bacterial commu- 
nity composition along the intestines. ASVs associated with the classes Bacteroidia , Clostridia, and Mollicutes bacteria were 
predominant in the anterior intestinal regions while Gammaproteobacteria abundance was higher in the stomach. Our results 
suggest that the richness of the intestinal bacterial communities of damselfish reflects host species diet and trophic guild. 

Brazilian Portuguese O sistema gastro-intestinal de peixes abriga microbiomas diversos que afetam a digestão, nutrição e 
imunidade do hospedeiro. Apesar da grande diversidade taxonômica dos peixes, entende-se pouco sobre o microbioma dos 
peixes e fatores que determinam sua estrutura e composição. Peixes-donzela são espécies importantes em recifes de coral que 
exercem papéis pivotais na determinação da estrutura de algas e corais dos recifes. De forma geral, peixes-donzela pertencem à
uma de duas guildas tróficas dependendo se são planctívoros ou algívoros. Nesse estudo, usamos sequenciamento do gene 16S 
rRNA para investigar o microbioma intestinal de cinco espécies planctívoras e cinco espécies algívoras de peixes-donzela (Po- 
macentridae) da Grande Barreira de Corais. Detectamos ASVs de Gammaproteobacteria pertencendo ao gênero Actinobacil- 
lus em 80% dos indivíduos amostrados nas duas guildas tróficas, logo, bactérias desse gênero podem ser consideradas como 
possíveis membros essenciais do microbioma dos pomacentrídeos. Peixes-donzela algívoros apresentaram uma maior alpha- 
diversidade bacteriana, um microbioma essencial mais diverso e compartilharam 35 ± 22 ASVs, e espécies planctívoras com- 
partilharam 7 ± 3 ASVs. Nossos dados também ilustram diferenças nos microbiomas associados com ambas guildas trófi- 
cas. Por exemplo, peixes-donzela algívoros estavam enriquecidos em Pasteurellaceae , enquanto peixes-donzela planctívoros, 
em Vibrionaceae . Finalmente, demonstramos mudanças na composição da comunidade bacteriana associada com as classes 
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Bacteroidia, Clostridia e Mollicutes foram predominantes nas regiões intestinais anteriores enquanto a abundância de 
Gammaproteobacteria foi maior no estômago. Nossos resultados sugerem que a riqueza das comunidades bacterianas intesti- 
nais de peixes-donzela refletem a dieta da espécie do hospedeiro, bem como a sua guilda trófica. 

Chinese � � �� � �� � ���������� � ����� � ������ ��� �� � ����� � �

�, � ������ � ����� ������ �� �������� � �� ������� � � ������

� �� � , � ���� �� ��� ��� ����� �� � � � � �����, ���� �	�( 
� ��� � ��


�� � �), ���� � �� �� �� �� ��� � �� � , ��� � 16S rRNA ������� � ���
� 

� �� � ������
�� ������� �� ��� �� �� �� �80% �� � � , ������� �� �

��� Actinobacillus �Gammaproteobacteria ����������� , ������������������� 

����������������α��� , ����������������, ���35 ± 22 �� ����

�� , ��� ���� ���� ���� �������7 ± 3 � ������� ����� � ��	�� �� � 

� ��� ��� �	 ����, ��� ������Pasteurellaceae , ��������������Vibrionaceae �
��, ����������������������, Bacteroidia , Clostridia �Mollicutes 
 �� �� � ; �� �� , 
Gammaproteobacteria �� ����������� � �� ���� �� �� �� � �� ��� �� �� ��

Hindi

Italian Il sistema gastro intestinale dei pesci ospita un microbiota che influenza la digestione, nutrizione e sistema immuni- 
tario dell’ospite. Nonostante l’enorme diversità taxonomica dei pesci, la nostra comprensione del microbiota di questi animali 
ed i fattori che determinano la sua struttura e composizione è ancora scarsa. I pesci damigella includono specie importanti 
per le barriere coralline che forniscono servizi in grado che influenzare la struttura delle popolazioni di alghe e coralli. In gen- 
erale, i pesci damigella appartengono a due gruppi funzionali basati sul loro tipo di dieta, e vengono divisi in consumatori di 
plankton o alghe. In questo studio abbiamo sequenziato il gene 16S rRNA per investigare il microbiota intestinale di cinque 
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ishes represent the greatest taxonomic diversity of ver- 
ebrates, and despite our understanding of the impor- 
ance of intestinal microbiota of terrestrial vertebrates, 
e still lack an understanding of fish microbiome di- 
ersity and functioning ( Clements et al. 2014 ). Largely, 
sh microbiome studies have centered around species 
ith commercial value, including trout, salmon, and 

arp ( Wang et al. 2018 ). For example, gastrointestinal 
sh microbiomes are known to be important in in- 
estinal cell proliferation ( Rawls et al. 2004 ; Cheesman 

t al. 2011 ), nutrition ( Ray et al. 2012 ; Clements et al. 
014 ), and immunity ( Bates et al. 2006 ; Bates et al. 2007 ; 
alindo-Villegas et al. 2012 ). These studies show that 
he intestines of fishes harbor a large abundance and di- 
ersity of bacteria ( Nayak 2010 ) and the regulation of 
his diversity is important in the maintenance of host 
ealth through a complex set of microbe-microbe and 

icrobe-host interactions ( Neish 2009 ; Foster et al. 
017 ). 
There are many factors that affect the structure of 

sh gastrointestinal microbiomes ( Clements et al. 2014 ; 
ang et al. 2018 ). These include host-related factors 

uch as genetic attributes, size, age, sex ( Bolnick et al. 
014 ; Li et al. 2016 ; Stephens et al. 2016 ), host phy- 
ogeny ( Sullam et al. 2012 ; Li et al. 2014 ; Miyake et al. 
015 ), environmental factors (such as water quality) 
 Hagi et al. 2004 ; Sullam et al. 2012 ; Neuman et al. 
016 ), and host diet ( Miyake et al. 2015 ; Neuman et al. 
016 ). Studies that investigated intestinal microbiome 
hanges have mostly focused on the impact of fish 

oods on species of aquaculture importance ( Ringø
t al. 2006 ; Martin-Antonio et al. 2007 ), although a few 

tudies have investigated wild fish populations ( Miyake 
t al. 2015 ; Zhang et al. 2018 ). For instance, bacte- 
ial symbionts diversification in wild herbivorous sur- 
eonfish intestines is thought to be an important driver 
f host niche-partitioning ( Miyake et al. 2016 ; Ngugi 
t al. 2017 ), suggesting that intestinal microbiomes can 

influence the trophic ecology of coral reefs and facili-
tate resource partitioning in these hyper-diverse ecosys-
tems. However, the involvement of intestinal bacteria in
wild fish physiology remains largely unknown. 

There is increasing evidence that herbivorous fishes
have distinct microbiomes as compared to omnivorous
and carnivorous fishes ( Givens et al. 2015 ). Herbivorous
and carnivorous diets are known to cause shifts in in-
testinal fish microbiomes; fishes with plant-based diets
have intestinal microbiomes dominated by Firmicutes ,
such as Clostridium , while fishes with fat-based diets
have microbiomes dominated by protease-producing
Proteobacteria ( Desai et al. 2012 ; Ingerslev et al. 2014 ;
Liu et al. 2016 ). In addition, the diversity of herbivo-
rous fish intestinal microbiomes is higher than omniv-
orous and carnivorous host species under similar envi-
ronmental conditions ( He et al. 2013 ), suggesting that
host feeding behavior has a significant effect on fish in-
testinal microbiomes. 

Damselfishes ( Pomacentridae ) are a diverse and
abundant group of coral reef fishes ( Cooper et al.
2009 ; Campbell et al. 2018 ), and they are among the
most widely studied families ( Choat 1991 ; Emslie et al.
2019 ). Broadly, damselfishes are grouped into either
planktivorous or algae-farming trophic guilds, although
some herbivorous species may also feed on zooplank-
ton ( Eurich et al. 2019 ). Planktivorous damselfishes
play a key role in transferring energy from the plank-
ton to higher tiers of the food chain, while algae-
farming damselfishes influence sediment and algae dy-
namics on coral reefs and may increase the presence
of coral disease-associated pathogens within their ter-
ritories ( Casey et al. 2015 ; Casey et al. 2015 ; Emslie
et al. 2019 ; Randazzo Eisemann et al. 2019 , Tebbett
et al. 2020 ; Blanchette et al. 2019 ). Algae-farming
species can be differentiated based on the algal com-
position within their territories, and they are divided
into several behavioral guilds, including indeterminate
grazers, extensive grazers, and intensive grazers ( Hata
ue che consumano alghe provenienti dalla Grande Barriera 
n entrambi i gruppi funzionali avevano ASVs di Actinobacil- 
amo che batteri appartenenti a questo genere possono essere 
pesci damigella che consumano alghe avevano una maggiore 
ano 35 ± 22 ASVs, mentre le specie che consumano plank- 
enze nel microbiota associato con pesci appartenenti ai due 
alghe avevo un maggior numero di ASVs di Pasteurellaceae , 
ceae . In fine, riportiamo variazioni nella composizione delle 
si batteriche Bacteroidia , Clostridia e Mollicutes erano più ab- 
nello stomaco. I nostri resultati suggeriscono che la diversità
e la dieta ed il gruppo funzionale dell’ospite. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Kato 2004 ; Emslie et al. 2012 ; Casey et al. 2015 ; 
esci damigella (Pomacentridae) che consumano plankton e cinq
orallina. Abbiamo rilevato che l’80% degli individui analizzati i
us appartenenti al phylum dei Gammaproteobatteri , così, suggeri
onsiderati membri essenziali del microbiota dei Pomacentridi. I 
iversità (alpha), un microbiota essenziale più vasto e condividev
on condividevano 7 ± 3 ASVs. I nostri dati evidenziano differ
ruppi funzionali. Per esempio, pesci damigella che consumano 
entre le specie che consumano plankton avevano più Vibriona
omunità batteriche lungo l’intestino. ASVs appartenenti alle clas
ondanti nell’intestino anteriore mentre i Gammaproteobacteria 
elle comunità batteriche dell’intestino dei pesci damigella riflett
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Emslie et al. 2019 ). Indeterminate and extensive grazers 
feed both on macroalgae and turf, while intensive graz- 
ers maintain distinct areas of turf algae through selec- 
tive grazing and weeding of unpalatable algae ( Gibson 

et al. 2001 ; Emslie et al. 2012 ). Intensive grazing dam- 
selfish are also referred to as algae farmers. Research on 

intensive grazers has focused on competition ( Eurich 

et al. 2018 ), patterns of co-existence ( Eurich et al. 2018 ; 
Eurich et al. 2018 ; Eurich et al. 2019 ), behavioral in- 
teractions ( Kasumyan 2009 ; Weimann et al. 2018 ), and 

their role in structuring algae and coral communities 
( Klumpp et al. 1987 ; Ceccarelli et al. 2005 ; Ceccarelli 
2007 ; Gochfeld 2010 ; Casey et al. 2014 ; Casey et al. 
2015 ). 

In this study, we investigated and described the in- 
testinal microbial diversity of ten species of planktiv- 
orous and algae-farming damselfishes, two guilds that 
significantly impact coral reef trophic dynamics. We hy- 
pothesized that differences in intestinal microbial com- 
munities will reflect the differences between these two 
trophic guilds. Specifically, across the different host 
species and trophic guilds, we examined (1) differences 
in bacterial communities across fish species and trophic 
guilds, (2) core microbial members, and (3) changes in 

microbial community structure along the length of the 
intestinal tract. 

Methods 
Species collections and dissections 

Fishes were collected from the Heron Island lagoon in 

the southern Great Barrier Reef, Australia (23°26 ′ 53 ′′ S, 
151°56 ′ 52 ′′ E) in January and February 2015. Collec- 
tions occurred at a depth of 1–8 m adjacent to the 
Heron Island Research Station. Three individuals 
of ten sympatric damselfish species ( Abudefduf sex- 
fasciatus, A.whitleyi, Acanthochromis polyacanthus, 
A. polyacanthus, Chromis atripectoralis, Dischistodus 
pseudochrysopoecilus, D. perspicillatus, Pomacentrus 
moluccensis, P. wardi, Stegastes apicalis, and S. nigri- 
cans ) of similar lengths were randomly collected across 
the two trophic guilds planktivorous and algae-farming. 
Each trophic guild was represented by 5 species and 15 
individuals. Collections were conducted on SCUBA, 
and the planktivorous species were collected using 
a barrier net, while the algae-farming species were 
collected using a speargun. Following collections, the 
fishes were immediately placed on ice and transported 

to Heron Island Research Station. In the laboratory un- 
der sterile conditions, fishes were weighed, measured 

and photographed, then the gastrointestinal tract was 
removed, and the gut length was recorded and pho- 
tographed. The entire gut was fixed in 4% DNA/RNA 

free paraformaldehyde and sterile phosphate-buffered 

saline for 12 h, then it was stored in DNA/RNA free 
water. 

DNA extraction, amplification, and sequencing 

Samples were transported to James Cook University for 
subsampling along each intestinal tract and DNA ex- 
traction. Under sterile conditions, standardized biopsy 
cores (3 × 3 mm) were taken from four locations along 
the intestinal tract: the stomach, the anterior intestine, 
the mid-intestine, and the posterior intestine. DNA 

was extracted from tissue biopsies using a QIAamp 
DNA Micro Kit (Qiagen, Hilden, Germany) following 
the manufacture’s guidelines. A nanodrop was used to 
record the quality (260/280 ratio) and quantity (ng/ μL) 
of DNA from each extraction. 

Amplification of the 16S V1-V3 rRNA gene 
region was done using the primers 27F (5 ′ - 
AGRGT T TGATCMTGGCTCAG-3 ′ ) ( Ludwig 2007 ) 
and 519R (5 ′ -GTNTTACNGCGGCKGCTG-3 ′ ) ( Lane 
et al. 1985 ) with barcodes on the forward primer. These 
16S rRNA genes were amplified using the HotStarTaq 
Plus Master Mix Kit (Qiagen, USA) under the following 
conditions: 94°C for 3 min, followed by 28 cycles of 
94°C for 30 s, 53°C for 40 s and 72°C for 1 min, after 
which a final elongation step at 72°C for 5 min was 
performed. After amplification, PCR products were 
checked in 2% agarose gel to determine the success of 
amplification and the relative intensity of bands. Multi- 
ple samples were pooled together (e.g., 100 samples) in 

equal proportions based on their molecular weight and 

DNA concentrations. Pooled samples were purified 

using calibrated Ampure XP beads. Then the pooled 

and purified PCR products were used to prepare a 
DNA library by following Illumina TruSeq DNA li- 
brary preparation protocol. Sequencing was performed 

at the Molecular Research LP (MR DNA; Texas, USA) 
on a MiSeq V2 System following the manufacturer’s 
guidelines. 

Amplicon sequence data were sorted by the sample 
and demultiplexed using demux for QIIME 2 (version 

2018.11; ( Bolyen et al. 2018. )). Sequences were screened 

for quality, trimmed at 450 bp after removal of primer 
sequences, and assigned as amplicon sequence variants 
(ASVs) using DADA2 ( Callahan et al. 2016 ). Taxon- 
omy of the ASVs was determined using a pre-trained, 
na ї ve Bayes classifier ( Pedregosa F ) and the q2-feature- 
classifier plugin ( Bokulich et al. 2018 ). The classifier was 
trained on the target 480 bp region of sequences in the 
Greengenes 13_8 99% database. ASV clusters were ar- 
ranged in a phylogenetic tree using FastTree ( Price et al. 
2010 ) and visualized using Interactive Tree of Life 3.6.1 
( Letunic and Bork 2016 ). The feature table, metadata, 
and taxonomic classifications were exported from QI- 
IME 2 in .biom format and the rooted phylogenetic tree 
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Table 1 Sequence abundance and taxonomy for each ASVs representing more than 1% of total sequences. Accession numbers for closest 
GenBank sequences (similarity given in brackets) are supplied. 

ASV Phylum Lowest taxonomic division Number of sequences Proportion of total (%) GenBank accession number 

b727 Proteobacteria Actinobacillus sp. 124,499 9.9 KT952745 (97.5%) 

5647 Tenericutes Mollicutes 87,057 6.9 HG971018 (96.3%) 

94ba Proteobacteria Pasteurellacea 47,527 3.8 KT952745 (93.5%) 

3023 Firmicutes Ruminococcaceae 26,355 2.1 MG488771 (98.8%) 

6350 Tenericutes Mycoplasmataceae 24,219 1.9 LN612674 (91.5%) 

9b2f Proteobacteria Pasteurellacea 24,219 1.9 KT952745 (91.9%) 

d532 Proteobacteria Alteromonadales 23,877 1.9 KT952746 (100.0%) 

5a8a Proteobacteria Vibrio ponticus 22,112 1.8 MG524941 (100%) 

7936 Proteobacteria Alteromonadales 15,147 1.2 KT952746 (99.8%) 

596f Proteobacteria Gammaproteobacteria 14,436 1.2 LC121875 (88.4%) 

73d1 Proteobacteria Vibrio sp. 13,977 1.1 KT952854 (98.7%) 

6013 Proteobacteria Pasteurellacea 13,435 1.1 KT952745 (92.3%) 

af86 Firmicutes Clostridium colinum 13,177 1.1 KC993540 (94.2%) 

was exported in .nwk format. The closest known se- 
quences and the origin of selected ASVs were identified 

through a BLASTN-based search against the GenBank 
nr/nt database. 

Statistical analysis 

The feature table and phylogenetic tree were imported 

into R version 3.5.2 and stored as a phyloseq object 
( McMurdie and Holmes 2013 ) for downstream anal- 
yses. All ASVs not assigned to phylum were filtered 

from the data, and those designated as chloroplasts 
or cyanobacteria were removed and stored as a sepa- 
rate object for further analysis. Samples were rarefied 

to minimum sampling depth for alpha-diversity anal- 
yses, which was estimated using the R package vegan 

( Oksanen et al. 2017 ). Non-rarefied data were used for 
generalized linear model (GLM) analysis ( McMurdie 
and Holmes 2014 ; McMurdie 2018 ). Data used for 
principal component analysis (PCA), betadisper-test 
and PERMANOVA were computed using centered log- 
transformed Euclidean distance matrices of the non- 
rarefied ASV table. Differences in alpha-diversity be- 
tween trophic guilds were tested via t -test. Multivari- 
ate GLM was used to test for significant differences in 

bacterial communities among host fish species, trophic 
guild, and location along intestines using mvabund in 

R ( Wang et al. 2012 ). PCA, betadisper-test and PER- 
MANOVA were used to test differences in the commu- 
nities of Proteobacteria, Bacteroidetes, and Firmicutes 
among fish species and between the two trophic guilds. 
Bacterial taxa were grouped by class when examining 
microbiome changes along the length of the intestinal 

tract. Bacterial community data were fitted to negative 
binomial distributions and tested using log-likelihood 

ratios (LRT) via 999 simulations using Monte Carlo re- 
sampling. A nested analysis of variance (ANOVA) used 

to test the role of trophic guild and gut location when 

accounting for species variation. Venn diagrams were 
produced using the VennDiagram package ( Chen and 

Boutros 2011 ). 

Results 
A total of 1,254,909 sequences were detected in 119 
samples after denoising and removing all chloroplast, 
mitochondria, and uncharacterized sequences. Among 
these sequences, 3,776 ASVs were detected; 39.4% of 
which belonged to the phyla Proteobacteria , 26.2% to 
Bacteroidetes , 13.4% to Firmicutes, and 12.6% to Planc- 
tomycetes . The 20 most abundant ASVs accounted for 
41% of the total number of detected sequences. The 
most common ASV belonged to the genus Actinobacil- 
lus and accounted for 9.9% of the total detected se- 
quences ( Table 1 ). Two unknown species of Mollicutes 
and Pasteurellacea accounted for 6.9 and 3.8% of se- 
quences, respectively. 

Different ASV richness was detected for each fish 

species with observed ASVs (t = −3.15, P = < 0.01) 
and Shannon index (t = −3.68, P = < 0.01) differing 
significantly between the two trophic guilds. The dam- 
selfish D. perspicillatus had the greatest mean richness 
of ASVs, with a total of 322 ± 17 ASVs per individ- 
ual ( Fig. 1 ). The species with the lowest ASV richness 
were C. atripectoralis and A. sexfasciatus with 47 ± 21 
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Fig. 1 Observed richness and Shannon diversity for each fish species. Planktivorous host species are shaded red and algae-farming species are 
shaded green. 

and 30 ± 8 ASVs per individual, respectively ( Fig. 1 ). 
Shannon diversity was greatest for two algae-farming 
species D. perspicillatus and S. apicalis and lowest for 
the planktivorous species A. polyacanthus and P. moluc- 
censis. PCA biplots, betadisper-test, and PERMANOVA 

revealed that the beta-diversity of Proteobacteria , Bac- 
teroidetes, and Firmicutes communities differed among 
fish species and trophic guilds ( Fig. 2 ; Table 2 ). 

Core microbiomes 

In line with previous studies that investigated the core 
microbiome of other organisms ( Ainsworth et al. 2015 ; 
Ricci et al. 2022 ), we choose a minimum threshold 

of 30% for this metric. Most ASVs occurred in less 
than 30% of sampled individuals across all fish species 
( Fig. 3 a). A total of 13 bacterial ASVs were found in 

more than 30% of sampled individuals; therefore, they 
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Fig. 2 PCA biplots showing individual fish intestinal microbiomes for Proteobacteria , Bacteroidetes , and Firmicutes . Ordinations are divided by 
fish species (left) and trophic guild (right). 

may represent the 30% core microbiome of poma- 
centrid investigated in this study ( Table 3 ). The most 
common ASV in this study belonged to the genus 
Actinobacillus , which occurred in more than 80% of 
sampled individuals ( Table 3 ), albeit at a low abundance 
in many individuals, with the highest abundances in 

the planktivorous damselfishes A. polyacanthus and 

P. moluccensis . 

The core bacterial assemblages of each fish species 
(defined as ASVs that were shared between all sampled 

individuals for each species) were composed of a vari- 
able number of ASVs ( Fig. 3 b). For example, there were 
70 bacterial ASVs shared between the three sampled 

individuals of D. perspicillatus and only two ASVs 
shared between the three A. sexfasciatus individuals. 
Core microbiomes within fish species were richer in 
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Table 2 Results of betadisper-test and PERMANOVA testing the beta-diversity of Proteobacteria, Bacteroidetes, and Firmicutes communitites 
across fish species and between trophic guilds. 

Fish species Trophic guild 

betadisper PERMANOVA betadisper PERMANOVA 

Proteobacteria P = 0.084 F = 1.86; p = 0.001*** p = 0.039* F = 3.52; p = 0.001*** 

Bacteroidetes P = 0.269 F = 1.78; p = 0.001*** p = 0.233 F = 2.41; p = 0.001*** 

Firmicutes P = 0.001*** F = 2.17; p = 0.001*** p = 0.355 F = 3.92; p = 0.001*** 

algae-farming species than planktivorous species 
( Fig. 3 b), with algae-farming species sharing 35 ± 22 
ASVs and planktivorous species sharing only 7 ± 3 
ASVs (Wilcox test W = 25, p < 0.01). 

Core ASVs that occurred in all three individuals of 
a fish species belonged to the phyla Bacteroidetes , Fir- 
micutes , Tenericutes, Spirochaetes, Planctomycetes, Pro- 
teobacteria, and Verrucomicrobia . Core ASVs belonging 
to Coraliomargarita sp. and Verruco-5 ( Verrucomicro- 
bia ), Pirellulaceae ( Planctomycetes ), and Desulfovibri- 
onaceae ( Deltaproteobacteria ) occurred in all three sam- 
pled D. perspicillatus individuals (Supplementary Fig- 
ure S1). We also detected high diversity of an unknown 

clade of Gammaproteobacteria in P. moluccensis and P. 
wardi damselfish. There were 61 core ASVs belong- 
ing to the Bacteroidetes , 28 of which occur in S. api- 
calis and 38 in D. perspicillatus (Supplementary Fig- 
ure S2). An unknown clade of Flavobacteriales and a 
diverse consortium of Rikenellaceae were core mem- 
bers of S. apicalis , while D. perpicillatus had a di- 
verse core assemblage of ASVs belonging to the family 
Flavobacteriaceae . One ASV belonging to Spirochaetes , 
Brevinema andersonii , was a core member of S. nigri- 
cans and C. atripectoralis , while a Tenericutes ASV be- 
longing to Mollicutes was a core member of all fish 

species except the planktivorous damselfishes A. polya- 
canthus and A. sexfasciatus (Supplementary Figure S3). 
There was a rich consortium of core Firmicutes ASVs 
for S. apicales and S. nigricans , which included members 
of the Erysipelotrichaceae , Ruminococcaceae, and Lach- 
nospiraceae families. 

Bacterial shifts along the intestinal tract 

The interaction between the trophic guild and intesti- 
nal region had a significant influence on the gut bacte- 
rial community composition (LRT = 152, P = 0.001; 
Supplementary Table 1). The abundance of nine classes 
of bacteria changed significantly across the different 
fish species and locations along the intestinal tract 
(LRT = −0.0229, P < 0.001; Fig. 4 ; Supplementary 
Table 2). Members of Gammaproteobacteria were espe- 
cially common throughout the planktivorous intestinal 

tracts, but we also found them along all the intestines 
regions of the algae-farming species D. perspicillatus , 
D. pseudochrysopoecilus, and P. wardi ( Fig. 4 ). In in- 
testinal regions where Gammaproteobacteria were un- 
common, members of Bacteroidia and Clostridia were 
generally found at higher abundances—especially for 
algae-farming species ( Fig. 4 ). Members of the Molli- 
cutes and Planctomycetia were more common through- 
out the intestinal tracts of algae-farming hosts than 

planktivorous species although their abundances were 
generally lowest within the stomach region ( Fig. 4 ). 
The stomach had 286 unique bacterial ASVs, the an- 
terior intestine 753, while 1,139 and 656 ASVs were 
only found in the mid and posterior intestines, respec- 
tively ( Fig. 5 ). Only 19 ASVs were common in the stom- 
ach and posterior intestine while 152 ASVs were found 

throughout the intestine ( Fig. 5 ). 

Effect of the trophic guild on microbiomes 

There was a significant difference in the microbiome 
composition between trophic guilds (LRT = −0.021, 
P < 0.001; Supplementary Table 2). Most bacterial 
ASVs were unique to either of the trophic guilds, with 

only 124 ASVs common to both guilds ( Fig. 5 ). A total 
of 78 bacterial ASVs, belonging to 20 families, were im- 
portant drivers of this relationship. There were marked 

differences in abundances of ASVs belonging to Vibri- 
onaceae , Lachnospiraceae, and Pasteurellaceae . Two Vib- 
rio sp. ( Vibrionaceae ) were more common in planktivo- 
rous species, and five ASVs of Actinobacillus ( Pasteurel- 
laceae ) were more abundant in algae-farming species. 

Discussion 

Our data show that algae-farming damselfish species 
have richer microbiomes than planktivorous species 
( Fig. 1 ) and this result is also reflected in their core 
bacterial community ( Fig. 3 ). This result is likely at- 
tributable to the specialized feeding behavior of algae- 
farming species, which largely consume a narrow range 
of turf algae species ( Hata and Kato 2004 ; Casey et al. 
2014 ), unlike planktivorous species that are adapted 

to a more opportunistic feeding strategy. These results 
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Fig. 3 ( A ) Core members of the microbiome (blue) at different threshold levels. The variable community represents ASVs occurring in less 
than 30% of sampled individuals. ( B ) Venn diagrams depicting the number of ASVs shared between whole microbiomes of the three sampled 
individuals for each fish species. The top row represents planktivorous species and bottom row represent algae-farming species. 

suggest that the microbiome structure of fish species 
with specialized feeding behavior has acquired specific 
intestinal bacteria and further research is needed to 
investigate how microbiome specialization affects host 
digestion and metabolism. We also note that other 
processes that were not tested in our study such as 
host phylogeny and functional traits could influence 

the composition of damselfish intestinal bacteria and 

ultimately influence fish physiology. 
We found that similar to what was recorded in 

many other species of marine fish, the damselfish in- 
testinal microbiome was dominated by members of 
Proteobacteria , Bacteroidetes , Firmicutes, and Plancto- 
mycetes ( Table 1 ) . For example, surgeonfish, parrotfish, 
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Table 3 Taxonomic composition of core ASVs occurring in more than 80% of sampled individuals. Accession numbers for closest GenBank 
sequences (similarity given in brackets) are supplied. Occurrence and relative abundances were generated from rarefied data. 

ASV Phylum Lowest taxonomic division Occurrence (%) Relative abundance GenBank accession number 

b727 Proteobacteria Actinobacillus sp. 83.3 0.083 KT952745 (97.5%) 

94ba Proteobacteria Actinobacillus sp. 53.3 0.017 KT952745 (93.5%) 

9bd9 Proteobacteria Photobacterium damselae 43.3 0.013 CP035457 (100%) 

5647 Tenericutes Mollicutes 40.0 0.022 HG971018 (96.3%) 

a832 Proteobacteria Photobacterium damselae 40.0 0.008 CP018297 (100%) 

73d1 Proteobacteria Vibrio sp. 40.0 0.010 KT952854 (98.7%) 

9b2f Proteobacteria Actinobacillus porcinus 40.0 0.018 KT952745 (91.9%) 

6c33 Proteobacteria Spirobacillales 37.7 0.002 KU578602 (100%) 

dc1c Proteobacteria Vibrio sp. 37.7 0.004 CP033144 (100%) 

5a8a Proteobacteria Vibrio ponticus 37.7 0.019 MG524941 (100%) 

762a Bacteroidetes Lutimonas sp. 30.0 0.001 MG488523 (99.6%) 

ca47 Proteobacteria Vibrio harveyi 30.0 0.009 CP033144 (100%) 

6013 Proteobacteria Pasteurellaceae 30.0 0.007 KT952745 (92.3%) 

and rabbitfish intestinal microbiomes from the Red Sea 
also consist of diverse assemblages of Firmicutes and 

Proteobacteria ( Miyake et al. 2015 ). Another dominant 
ASV in the damselfish microbiome belonging to Molli- 
cutes ( Tenericutes ) resembled bacteria detected in rab- 
bitfish intestines ( Zhang et al. 2018 ). The number of 
highly similar bacterial ASVs shared among pomacen- 
trids, acanthurids, and siganids may reflect the similar 
feeding behaviors of these coral reef fishes. For instance, 
algae-farming damselfishes may also ingest prey items 
other than algae, such as zooplankton ( Eurich et al. 
2019 ) or other invertebrates ( Letourneur et al. 1997 ). 
The functional roles of these seemingly important mi- 
crobial taxa warrant further attention in order to under- 
stand the potential consequences on host metabolism 

and health. 
Damselfish microbiomes were largely dominated by 

the family Pasteurellaceae in the phylum Gammapro- 
teobacteria , with one ASV (b727) occurring in more 
than 80% of sampled fishes and representing almost 
10% of the total detected sequences ( Tables 1 and 3 ). 
Although this ASV currently represents an unknown 

species in the Actinobacillus genus, a 98% similar se- 
quence has been retrieved from the intestines of sur- 
geonfishes in Saudi Arabia ( Miyake et al. 2016 ), sug- 
gesting that Actinobacillus are common members of 
reef fish microbiomes. Bacteria in the genus Pasteurel- 
laceae have also been recorded in high abundances in 

adult damselfishes and cardinalfishes collected around 

Lizard Island, Australia ( Parris et al. 2016 ), and they are 
deemed as common components of tropical planktiv- 

orous fish gut microbiomes ( Egerton et al. 2018 ). The 
prevalence of Pasteurellaceae amongst the damselfishes 
in this study, as well as in other reef fishes, provides ad- 
ditional evidence that Pasteurellaceae are likely impor- 
tant members of coral reef-associated fish microbiomes. 

Algae-farming damselfishes had more observed 

ASVs and larger core microbiomes than planktivo- 
rous species ( Figs. 1 and 3 ), and these core micro- 
biomes were specific to each host species ( Fig. 3 ). 
For example, P. wardi and P. moluccensis microbiomes 
were dominated by different taxa of Gammaproteobac- 
teria , while D. perspicillatus and S. apicalis had large 
Bacteroidia core communities but were dominated by 
Flavobacteriaceae and Rikenellaceae , respectively. Dif- 
ferent species of algae-farming damselfishes consume 
different species of algae ( Casey et al. 2014 ), and the 
large differences in their specialized microbiomes may 
reflect these narrow dietary preferences. Conversely, 
the small core microbiomes of the planktivorous dam- 
selfishes may reflect the high variation in consumed 

plankton of each species, suggesting these fishes have 
opportunistic feeding behaviors. These results, how- 
ever, do not support the notion that fish with greater 
diet variability have more diverse microbiomes ( Givens 
et al. 2015 ). In fact, the damselfish with narrow, algae- 
farming feeding behaviors tended to have the greatest 
diversity of intestinal bacteria, suggesting that the host- 
microbiome interactions may select for specialized bac- 
teria that enhance the digestion and absorption of nu- 
trients from specific algal diets. The richer microbiome 
of algae-farming fishes could also reflect the necessity 
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of this trophic guild to be associated with a pool of 
symbionts that facilitate the breakdown of algal cellu- 
lose. We also acknowledge that some of the bacteria 
we retrieved from the damselfish intestine could have 
been associated with the food recently ingested by the 

fish and, therefore, not being part of the damselfish 

microbiome. 
Evidence suggests a high degree of resource parti- 

tioning in fish communities, which is a key mecha- 
nism that facilitates the high diversity of coral reefs 
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( Casey et al. 2019 ; Leray et al. 2019 ). The largely dis- 
tinct microbiomes of each host species presented in this 
study may reflect the high degree of resource partition- 
ing found in coral reef communities, whereby differ- 
ent species of damselfish may be consuming different 
size classes of zooplankton ( Leray et al. 2019 ), farm 

different algal species ( Casey et al. 2014 ), or occupy 
different trophic niches ( Casey et al. 2019 ). The simi- 
larity between closely related host species and micro- 
biomes, such as P. wardi and P. moluccensis , also demon- 
strates that phylogeny may influence the intestinal mi- 
crobiomes of damselfishes ( Sullam et al. 2012 ; Miyake 
et al. 2015 ; Neuman et al. 2016 ; Chiarello et al. 2018 ). 

Interestingly, Photobacterium damselae, Vibrio har- 
veyi, Vibrio ponticus, and other Vibrio sp. were preva- 
lent amongst the damselfishes sampled in this study 
( Table 3 ). These bacteria represent potential pathogenic 
members of Vibrionacaea and have been detected 

in many fishes of aquaculture importance, including 
Chromis punctipinnis ( Love et al. 1981 ), Lutjanus ar- 
gentimaculatus ( Reshma et al. 2018 ), Seriola dumerili 
( Nishiki et al. 2018 ), Scophthalmus maximus ( Montes 
et al. 2003 ), Sparus aurata ( Vera 1991 ), and Solea 
senegalensis ( Terceti et al. 2016 ). Although identified 

as Vibrio harveyi in the GreenGenes database, Gen- 
Bank revealed there was a high similarity of these se- 
quences to other members of the Harveyi clade, such 

as Vibrio owensii ( Nishiki et al. 2018 ). It is thought 
that there are up to 11 species of Vibrio belonging to 
this clade ( Urbanczyk et al. 2013 ), most of which are 
pathogens of fish, shrimp, and coral ( Thompson et al. 
2004 ; Austin and Zhang 2006 ; Ushijima et al. 2012 ). 
Given the apparently healthy state of the sampled fishes 
and the high abundances of potentially pathogenic Vib- 
rionacaea in the fish guts, we provide support to the idea 
that these organisms are natural components of healthy 
fish microbiomes and are opportunistic pathogens in 

fishes only under specific conditions ( Rivas et al. 2013 ; 
Reshma et al. 2018 ). Future studies should also investi- 
gate the involvement of algae-farming damselfish in the 
spreading of pathogens across reef organisms. For in- 
stance, it has recently been reported that the seagrass 
pathogen Labyrinthula was present in the skeleton of 
a common coral species ( Ricci et al. 2021 ) and proba- 
bly infected the abundant endolithic algae living in the 
coral skeleton ( Ricci et al. 2019 ; Iha et al. 2020 ; Tandon 

et al. 2022 ; Ricci et al. 2022 ). Thus, it is possible that 
damselfishes grazing near alive corals were the medium 

that allowed the pathogen Labyrinthula to infect the 
corals’ endolithic algae. 

The facultative anaerobic bacterial classes Bac- 
teroidia , Clostridia, and Mollicutes were generally in 

higher abundance in the mid and posterior intesti- 
nal regions than in the stomach ( Fig. 4 ). Differences 

in microbiomes along the intestinal tract have been 

recorded in the rabbitfish Siganus fuscescens ( Nielsen 

et al. 2017 ), with midgut communities more represen- 
tative of the environmental sources and hindguts host- 
ing a microbiome more specialized to anaerobic condi- 
tions and fermentation ( Jones et al. 2018 ). The increase 
in Bacteroidia , Clostridia, and Mollicutes along the in- 
testines may be due to some members of these bac- 
terial classes being mutualistic components of the fish 

gastrointestinal microbiome. Some members of Bac- 
teroidia are known to breakdown polysaccharides and 

metabolize the derived sugars ( Xu et al. 2003 ), while 
members of Clostridium are known to metabolize cel- 
lulose ( Liu et al. 2016 ). Our results confirm the in- 
creased prevalence of anaerobic bacteria in the hindgut 
of damselfishes, which probably consists of taxa respon- 
sible for the fermentation and metabolism of complex 
molecules before being absorbed by the host ( Clements 
et al. 2014 ). We also note that Actinobacillus sp. that 
could breakdown cellulose via fermentation ( Almqvist 
et al. 2016 ) were more abundant in the gut of algae- 
farming damselfish, suggesting that these bacteria could 

aid the digestion of fish in this trophic guild. 

Conclusions 
In this study, we show that damselfishes have diverse 
intestinal microbial communities whereby the bacterial 
richness of a species reflects diet and trophic guild. We 
show that algae-farming damselfishes have richer bac- 
terial alpha-diversity and core microbiomes, which may 
reflect the more specialized diets of this trophic guild. 
We also provide evidence that damselfish mid and pos- 
terior intestines have higher abundances of facultative 
anaerobic bacteria that are known to play important 
roles in fermentation and cellulose breakdown. These 
findings add to a growing body of literature that sug- 
gests that host fish feeding behavior has a strong influ- 
ence on the composition of intestinal microbiomes. 

Supplementary data 

Supplementary Data available at IOB online. 
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