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Cytotoxic DNA damaging chemotherapy brings clinical benefits in the treatment of many
metastatic malignancies. However routine curative treatment remains restricted to a
small number of malignancies including acute leukemia, high grade lymphoma, germ
cell tumors, gestational malignancies and some of the rare childhood cancers. The
detailed explanation for this dramatic divergence in outcomes remains to be elucidated.
However, we have previously argued that there is a strong correlation between presence
of the unique genetic events of immunoglobulin gene variable/diversity/joining (VDJ)
recombination, somatic hypermutation (SHM), meiosis, nuclear fusion and gastrulation
occurring in cells of origin of these malignancies and their high sensitivity to DNA
damaging chemotherapy. In this study we have reviewed some of the basic physiological
information relating to the specialized activity and sensitivity to DNA damage mediated
apoptosis of normal cells undergoing these processes. In each of unique genetic events
there are dramatic changes in apoptotic sensitivity. In VDJ recombination and somatic
hypermutation over 95% of the cells involved undergo apoptosis, whilst in meiosis
and nuclear fusion there are dramatic short term increases in the apoptotic sensitivity
to DNA damage. It is apparent that each of the malignancies arising during these
processes retains some of the unique phenotype associated with it. The impact of the
physiological differences is most clearly seen in the two non-mutational malignancies.
Gestational choriocarcinoma which arises shortly after nuclear fusion is routinely curable
with chemotherapy whilst CIMP-positive ependymomas which is not linked to any of
the unique genetic events is highly resistant. A similar pattern is found in a pair of
malignancies driven by a single driver mutation. Infantile acute lymphoblastic leukemia
(ALL) arises in a cell undergoing the early stages of VDJ recombination and has a 40%
cure rate in contrast pediatric rhabdoid malignancy which is not linked to a unique
genetic event responds very poorly to chemotherapy treatment. The physiological
changes occurring in cancer cells at the time of the malignant transformation appear
to have a major impact on the subsequent sensitivity to chemotherapy and curability.
New therapies that impact on these pathways may be of therapeutic value.
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INTRODUCTION AND HYPOTHESIS

The additional genetic changes that can occur in
tumors after the development of malignancy have been
extensively studied and considerable data indicates that
tumor genetic heterogeneity is an important factor in
resistance to many cancer therapies (Gerlinger et al., 2012;
Alizadeh et al., 2015).

Whilst the majority of metastatic malignancies remain
resistant to curative drug treatment, a number of rarer
malignancies, comprising gestational choriocarcinoma,
testicular and ovarian germ cell tumors, acute leukemia,
high grade lymphoma, Hodgkin’s disease and some of
the rare childhood malignancies have been routinely
curable with cytotoxic chemotherapy drugs for more than
60 years (Hertz et al., 1956; Chabner and Roberts, 2005;
DeVita and Chu, 2008).

The explanation for this dramatic divergence in curability
between these relatively rare malignancies and the more
common incurable metastatic malignancies has long been
a subject of great interest and scientific debate (Savage
et al., 2009; Pritchard et al., 2013; Housman et al., 2014;
Romano et al., 2016).

Historically the rate of cell division and the development
of mutations within the tumor have been regarded as two
of the key features in determining sensitivity and resistance
to cytotoxic chemotherapy (Dean et al., 2005; Mitchison,
2012; Holohan et al., 2013). More recently we have suggested
that a further central component determines heightened
chemotherapy sensitivity and cancer curability. The overview
of the hypothesis is shown in Figure 1. This shows the
persistence in the malignant cells of at least part of the
unique phenotype that their transient cells of origin hold
at the time of their malignant transformation (Savage,
2015). The result of this is to produce extreme sensitivity
to DNA damaging chemotherapy and radiation in the
resultant malignancies.

Whilst the genetic event of mitosis is common to all
human cells, the chemotherapy curable malignancies each
appear to have a very close temporal association between
their cell of origin and the physiological specialized unique
genetic events. As shown in more detail in Table 1 one
of the events of nuclear fusion, immunoglobulin VDJ gene
recombination, immunoglobulin gene somatic hypermutation,
meiosis or gastrulation is closely linked to the cell of
origin of the each of the chemotherapy curable malignancies
(Savage, 2015).

There is increasing data to support the hypothesis that
these malignant cells, retain components of the normally
transient physiological changes occurring in their parent
cells. As we will discuss in this review, it is apparent that
the cells undergoing these unique genetic events transiently
gain extremely high sensitivity to DNA damage mediated
apoptosis. Retention of these profiles within the malignant
cells appears to lead to heightened sensitivity to DNA
damage induced apoptosis and hence curative cytotoxic
chemotherapy treatment.

CELL OF ORIGIN, MALIGNANT
TRANSFORMATION AND FROZEN
DEVELOPMENT

The concept that a malignant cell retains much of the
characteristics of the cell of origin from which it has arisen is well
established and the impact of this is most clearly illustrated in the
lymphoid malignancies (Küppers et al., 1999). The most apparent
feature of this developmental freezing in B cell malignancies is
the static morphology and fixed antigenic markers that define the
appearance and cell surface marker phenotype of the differing B
cell malignancies (Shaffer et al., 2002).

As can be seen in Table 2, it is apparent that the malignancies
arising along the B cell developmental pathway include a
wide range of differing cell types and physiologies. These
include acute undifferentiated leukemia, acute lymphoblastic
leukemia, mantle cell lymphoma, diffuse large B cell lymphoma,
Hodgkin’s lymphoma, chronic lymphocytic leukemia and
myeloma. Each of these malignancies has very differing
morphology, cell surface antigens, typical mutational rates,
physiological characteristics and cytotoxic chemotherapy cure
rates despite their common B cell ancestry. In addition to the
fixed antigenic phenotype corresponding to the cell of origin, the
malignant B cells also retain gene expression profiles that are
very similar to that of the corresponding normal B cell parent
(Andersson et al., 2005, 2010).

A parallel pattern of frozen development is also seen in
other malignancies that have linear developmental pathways.
In the rarer diagnoses of T cell malignancies, acute T cell
leukemia arise from cells at the earliest developmental point
from the hematopoietic stem cell (De Bie et al., 2018),
whilst the more indolent malignancies of Sezary syndrome
and mycoses fungoides arise from mature effector T cells
(Campbell et al., 2010).

Similarly, in the gestational trophoblastic malignancies,
choriocarcinoma retains the phenotypic and methylation
characteristics of a very early trophoblast cell (Mao et al., 2007;
Savage et al., 2019). Whilst the less chemotherapy sensitive rarer
malignancies of placental site trophoblastic tumor (PSTT) and
epithelioid trophoblast tumor arise from more developmentally
mature cells (Kurman et al., 1984).

UNIQUE GENETIC EVENTS, NATURAL
PHYSIOLOGICAL CHANGES, IMPACT
ON APOPTOTIC SENSITIVITY AND
CHEMOTHERAPY CURABILITY

Acute B Cell Leukemia and VDJ
Recombination
During the development pathway of normal B cells, the inherent
sensitivity of the transient cells and their related malignancies to
the induction of apoptosis via DNA damage varies dramatically.
Within a short period of time developing B cells move from
hematopoietic stem cells, which are inherently very resistant
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FIGURE 1 | Schematic summary of the hypothesis indicating the unique genetic processes, which are associated with dramatic changes in apoptotic sensitivity.
These occur in the cancer cells of origin and a remnant of this activity persists in their subsequent malignant cells. This ongoing phenotype leads to a heightened
apoptotic response to DNA damaging chemotherapy.

TABLE 1 | Comparison of the chemotherapy curability for varying malignancies and their relationship with the unique genetic events.

Malignancy Cell of Origin Genetic Event Chemotherapy Cure Rate

ALL Pro B cell Immunoglobulin Gene VDJ Rearrangement 90% children (Pui et al., 2014)
30% adults (Sive et al., 2012)

DLBCL
Hodgkin Lymphoma

Germinal Center B Cell Immunoglobulin Gene Somatic Hypermutation/
Class Switching

DLBCL 60% (Fu et al., 2008)
Hodgkin Lymphoma 85%
(Canellos et al., 1992)

Gestational Trophoblastic
Tumors

Trophoblast cell (early
pregnancy cell)

Nuclear fusion Post molar pregnancy 100%
(Sita-Lumsden et al., 2012)
Choriocarcinoma 95%
(Alifrangis et al., 2013)
PSTT 50% (Schmid et al., 2009)

Germ Cell Tumors Arrested Gonocyte Meiosis Testicular cancer 75%
(Hanna and Einhorn, 2014)
OGCT 80% (Murugaesu et al., 2006)

Childhood Malignancies Unknown Gastrulation Ewing Sarcoma 74%
(Smith et al., 2010)
Wilms Tumor 90% (Smith et al., 2010)

Mantle Cell Lymphoma
CLL
Myeloma

B cell (non-VDJ or SHM) None 0% (Greipp et al., 2005;
Schulz et al., 2007; Pflug et al., 2014)

Common epithelial
malignancies

Epithelial Cell/Stem Cell None 0% (Chabner and Roberts, 2005)
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TABLE 2 | Comparison of the cell of origin, mutational burden, genetic activity and chemotherapy cure rate for selected B cell malignancies.

Malignancy Cell of Origin Tumor Mutation Burden
(Mutations per Megabase)

(Chalmers et al., 2017)

Genetic Activity Chemotherapy Cure Rate

AUL HSC/LSC Unknown VDJ± 20% (Heesch et al., 2013)

Pediatric ALL Fetal liver HSC 1 mutation VDJ± 40% (Pieters et al., 2007)

B ALL Pro B cell 1.7 VDJ+++ 90% (Pui et al., 2014)

CLL Pre-Germinal Center B Cell 1.7 Nil 0% (Pflug et al., 2014)

Mantle Cell
NHL

Pre-Germinal Center B Cell 3.3 Nil 0% (Schulz et al., 2007)

DLBCL Germinal Center 10.0 SHM+++ 65% (Canellos et al., 1992)

Follicular NHL Memory B cell 8.3 SHM+ 0% (Schaaf et al., 2012)

Lymphoplasmacytic
lymphoma

Memory B cell No data Nil 0% (Dimopoulos et al., 2014)

Myeloma Plasma Cell 2.2 Nil 0% (Greipp et al., 2005)

Data on the mutational burden is taken from Chalmers et al. (2017).

to DNA damage mediated apoptosis (Mohrin et al., 2010;
Biechonski et al., 2018) to pro-B cells that can give rise to B-ALL.

The process of VDJ recombination of the immunoglobulin
genes is the key defining feature of the early development phase
of B cells and is the initial mechanism that allows the production
of the width of antibody response from the limited pool of germ
line immunoglobulin genes (Tonegawa, 1983).

The VDJ recombination process includes the cutting and re-
joining of the immunoglobulin genes in a process involving the
VDJ recombinase system (Oettinger et al., 1990). Within this
process, the expression and activation of the key RAG1 and RAG2
enzymes is tightly controlled, occurring at significant levels only
in B and T cells and is restricted to just a brief time in their overall
cellular development pathway (Kuo and Schlissel, 2009).

The initiation of the VDJ phenotype and end of the VDJ
process occur as a result of epigenetic changes very early in B cell
and T cell development. The key components of the VDJ process,
including the expression of RAG1, RAG2, DNTT (TdT) and
ADA, are switched on early as the cells move from hemopoietic
stem cell to common lymphocyte progenitor (CLP) and then are
increased in width and intensity as cells move through the pro-B
cell stage (Hystad et al., 2007).

Alongside the changes in gene expression there are also
changes in the physical structure of the DNA encoding
the immunoglobulin genes and their recognition sequences.
These changes occur by alterations in the placement of
nucleosomes that produce enhancement to the accessibility of
the RAG recombinase to the immunoglobulin genes (Pulivarthy
et al., 2016). These processes combine to focus VDJ activity
predominantly to the immunoglobulin genes, although it is
apparent that the process still retains significant risk of off target
mutation and adverse oncogenic outcome (Tsujimoto et al., 1985;
Schlissel et al., 2006).

In normal B cell development, the activity associated with
the VDJ phenotype is then lost as the VDJ recombinase system
is switched off as the cells move through to the stage of the
immature B cell (Llorian et al., 2007). During the process of
VDJ recombination, the B cell phenotype is characterized by
an acquired balance between enhanced apoptotic pressures and

competing survival signals. It is estimated, in murine studies,
that cells undergoing VDJ recombination are dividing every 16 h
(Opstelten and Osmond, 1983) and that 97% of these B cells die
an apoptotic death at this stage (Liu et al., 1989; Osmond, 1991).

B-ALL is characteristically associated with a number of key
mutations, including PAX5, IKZF1, TCF3 and EBF1. These
mutations impact on the activity of genes associated with the
regulation of normal B cell development (Inaba et al., 2013).
Disruption of the activity of these genes can lead to a block in
B cell differentiation and maturation and result in developmental
arrest (Liu et al., 2014). The impact of this is to prevent the B
cell either dying an apoptotic death or successfully maturing and
moving through to the next stage in development.

There is appreciable data to indicate that the B cell
malignancies arising at this part in their development also retain
an ongoing degree of activity of the VDJ phenotype. A number of
studies have reported that in B-ALL there is detectable ongoing
activity of the VDJ system in the malignant cells (Bird et al., 1988;
Yoneda et al., 1993; Beishuizen et al., 1994; Li et al., 2004; Gawad
et al., 2012). As a result, it appears the pro B cell as it becomes
frozen in its developmental phenotype by the onset of malignancy
retains at some of the activity of the VDJ phenotype and its
associated mechanisms including heighten apoptotic sensitivity.

Physiological Changes in Apoptotic Sensitivity
During VDJ Recombination
There is a large amount of clinical data from the 1940s onward
documenting the extreme sensitivity (Farber and Diamond,
1948) and subsequent routine curability for B-ALL to DNA
damaging cytotoxic chemotherapy (Pinkel, 1971). However, there
is relatively little work exploring the sensitivity to the induction
of apoptosis by DNA damage in the cell of origin.

Whilst hemopoietic stem cells appear able to tolerate DNA
damage and have a high threshold for the induction of
apoptosis (Durdik et al., 2017) developing lymphocytes vary
significantly in their sensitivity to DNA damage during the B cell
development pathway.

An insight into the dramatic changes in the apoptotic
threshold to DNA damage during B cell development is seen
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in a paper published in 1993 by Griffiths et al. (1994a). In
this study the authors compared the in vitro sensitivity of IL-
7 dependent B cells, which equate to pro-B cells, and that
of other earlier and later developmental lymphoid lines to
cytotoxic chemotherapy drugs. As shown in Figure 2 the cells
at these differing developmental stages had markedly differing
sensitivity to chemotherapy drugs. This is most clearly shown
with etoposide where the 50% inhibitory dose (ID50) dose varies
from 108 ng/ml for CFU, falls to 3.2 ng/ml for pre-B cells and then
rises to 95 ng/ml for mature B cells (Griffiths et al., 1994a).

A parallel study examined the sensitivity of these B cells to
radiotherapy also showed a similar pattern. The lethal radiation
dose permitting 37% survival (D37) was 1.4Gy for the CFU,
0.24Gy for the pre-B cells and 1.2Gy for mature B cells (Griffiths
et al., 1994b). Similar results were also reported examining
the radio sensitivity of B cell lines of different developmental
stages. The greatest sensitivity was seen in the pro B cell lines
with greater resistance seen in both lymphocyte progenitor cells
and also in B cells that have completed VDJ recombination
(Uckun et al., 1991).

The Impact of the Timing of Oncogenesis on B ALL
Chemotherapy Sensitivity Characteristics
Within the overall diagnosis of B-ALL, a number of key sub-
types arise at slightly differing points in the early stages of B
cell development. These malignancies have significantly differing
clinical characteristics and also differing outcomes to cytotoxic
chemotherapy treatment. The relationship of these diagnoses
and their chemotherapy sensitivity appears to have a potential
relationship to the developmental timing and the activity of the
VDJ system at the time of malignant transformation.

Malignant transformation occurring very early in the
development of the B cell pathway prior to the point at
which B-ALL would arise can lead to the development of
two relatively rare forms of leukemia, infantile ALL and acute
undifferentiated leukemia.

The rare diagnosis of infantile ALL arises from
the stem/progenitor cells present in the fetal liver

(Agraz-Doblas et al., 2019) and has a chemotherapy cure
rate of approximately 40% (Pieters et al., 2007). This malignancy
is unusual in that it generally occurs as a result of a single
mutation in the mixed lineage leukemia (MLL) gene (Biondi
et al., 2000). Aside from this mutation the rest of the malignant
cell’s genome appears otherwise mutationally bland (Dobbins
et al., 2013; Andersson et al., 2015).

Review of the activity of the VDJ system in t(4;11) infant acute
lymphoblastic leukemia indicates that whilst there is generally
expression of TdT, a key enzyme in the VDJ system (Liu et al.,
2004) but there is a low frequency of completed immunoglobulin
and T-cell receptor gene rearrangements (Peham et al., 2002). As
a result, it appears that this malignancy is likely to arise during
the very earliest phase of VDJ recombination, when the VDJ
phenotype associated apoptotic sensitivity is still evolving.

Acute undifferentiated leukemia is also rare and is
characterized by an absence of lymphoid or myeloid lineage-
specific antigens. Overall early genetic assessment of acute
undifferentiated leukemia indicates a malignancy characterized
by a stem-cell-driven gene expression pattern that lacks any
of the common recurrent genotype aberrations (Heesch et al.,
2013). More recent information indicates that mutations of genes
linked to lymphocyte development are common and that there
is expression of TdT, an early component of the VDJ process
(Weinberg et al., 2019).

Clinically this malignancy carries a much poorer response
to treatment and lower cure rate than the more frequent
cases of B-ALL, with a reported cure rate in the region of
20% (Heesch et al., 2013). Genetic assessment of the VDJ
status of this malignancy indicates that acute undifferentiated
leukemia cells do not have clonal rearrangements of the
B cell receptor indicating that these malignant cells arise
prior to the commencement of effective VDJ recombination
(Lao et al., 2019).

Conventional B-ALL in children has high cure rate
approaching 90% (Pui et al., 2014) however in adults the
cure rates are much lower, and the overall biology appears
significantly different (Rowe, 2010). There are a number of

FIGURE 2 | Sensitivity of colony forming units (CFU), pre-B cells and mature splenic B cells to cytotoxic chemotherapy drugs and radiation. ID50 is the drug
concentration required to kill 50% of cells. D37 is the radiation dose (Gy) required to kill 37% of cells. It is apparent that Pre B cells are significantly more sensitive to
DNA damaging agents than CFU or splenic B cells.
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possible explanations for this divergence in outcome including
better tolerability of intensive chemotherapy in younger patients
and the high prevalence of adverse prognostic factors in
older patients. However, it is possible that differences in the
underlying reduced intensity of the activity of the VDJ system
in adults compared to children may also play an important role
(Jensen et al., 2013a,b).

Whilst the full mechanisms for the enhanced sensitivity
to chemotherapy treatment tracking in parallel with the VDJ
phenotype is not yet detailed, it appears to be a strong association.
In contrast the relationship between curability and the mutational
load of these differing types of B cell malignancies appears much
less strong as shown in Table 2.

Post VDJ Pre Somatic Hypermutation B Cell
Malignancies
After the VDJ process is completed, the healthy B cell that has
successfully recombined its immunoglobulin genes moves from a
pro-B cell to an immature B cell. The VDJ process is completed
and the phenotype moves away from the previously seen finely
balanced apoptosis/survival pressures.

At this point in B cell development if malignancy occurs
the resultant diagnosis can include mantle cell lymphoma or
CLL (without hypermutated antibody variable regions) each of
these whilst responsive to chemotherapy are not currently curable
(Crespo et al., 2003; Fernàndez et al., 2010).

GERMINAL CENTER DERIVED B CELL
MALIGNANCIES AND SOMATIC
HYPERMUTATION

The B cells malignancies arising later at the germinal center stage
of development include diffuse large B cell lymphoma, Hodgkin’s
disease and Burkitt’s lymphoma. Each of these have high cure
rates with cytotoxic chemotherapy (Sehn et al., 2007; Viviani
et al., 2011; Todeschini et al., 2012).

Similarly, to the pro B cells undergoing VDJ recombination,
the germinal center B cells are physiologically highly specialized
and are undergoing a differing unique genetic event. At this
developmental point B cells further alter the DNA sequence and
structure of their immunoglobulin genes by undertaking somatic
hypermutation of the antibody variable regions. Additionally,
the cells also perform class switching in their immunoglobulin
heavy chains (Jacob et al., 1991). These processes result primarily
from the action of the enzyme activation-induced cytidine
deaminase (AID), which deaminates cytidines to uridines within
the immunoglobulin gene. These changes are then targeted by
DNA repair pathways leading to either point mutations or class
switching (Muramatsu et al., 2000; Maul and Gearhart, 2010).

The onset of the activity of this usually highly restricted
enzyme is associated with significant genotoxic stress and a
lowering of the apoptotic threshold (Zaheen et al., 2009).
Similarly, to cells undergoing VDJ recombination the germinal
center B cell have a fine balance between negative and positive
apoptosis regulators with increased expression of Bax, p53,
and c-myc and over expression of the pro-apoptotic receptors

including CD95 (Koncz and Hueber, 2012). Overall this balance
within the germinal center B cell leads to a programmed
apoptotic death unless the B cell is rescued by interaction with
antigen or CD40L (Inman and Allday, 2000). As a result, B cells
that fail to successfully refine their antibody genes and form
functional B cell receptors are destined to die an apoptotic death.

In parallel to the cells undergoing VDJ rearrangement, the B
cells in the germinal centers also have dramatic changes to their
physiology. Estimates from kinetic studies of germinal center B
cells indicate that approximately 50% of these cells die via an
apoptotic death every 6 h (Victora et al., 2010) and less than 2%
of B cells successfully exit the lymph node (Mayer et al., 2017).

In Hodgkin lymphoma it is apparent that the infection of
germinal center B cell with the Epstein Barr virus produces a
number of pro-survival mechanisms that allow the infected B
cells to resist the normal pro-apoptotic pressures and stimuli that
normally remove the large majority of non-functional germinal
center B cells (Spender and Inman, 2011). As a result, the
Hodgkin lymphoma cells appears to be held suspended in a pro-
apoptotic state that is relatively easy to destabilize with additional
DNA damage from either cytotoxic drugs or radiation.

In a similar finding to that of ALL where the VDJ
recombination process remains on going after the malignant
transformation, there is also significant evidence to indicate that
B cell malignancies arising from germinal center B cells also have
on going activity of aspects of the somatic hypermutation process
(Lossos et al., 2000; Pasqualucci et al., 2004; Lenz et al., 2007;
Xu-Monette et al., 2019).

Follicular Lymphoma
The exception to the routine curability of malignancies linked
to the somatic hypermutation process in the germinal center is
follicular lymphoma. Follicular lymphoma is characteristically
highly sensitive to DNA damaging cytotoxic chemotherapy
treatment, but despite high response rates and long progression
free intervals cure does not occur (Federico et al., 2009; Kahl
and Yang, 2016). Whilst the full explanation of this divergence
in outcome is awaited, it is likely that the characteristic
t(14;18)(q32;q21) translocation occurring in follicular lymphoma
(Tsujimoto et al., 1985) has a central role on the cells phenotype
and apoptotic sensitivity. The impact of this translocation is
to greatly enhance expression of the BCL-2 protein which is a
powerful inhibitor of the normal apoptotic mechanisms in the
germinal center (Huet et al., 2018).

Follicular lymphoma has historically been viewed as having
its cell of origin from the germinal center B cell. However, there
is increasing evidence that the cells now being identified as the
potential follicular lymphoma cell of origin are actually CD27
+ve memory B cells (Sungalee et al., 2014; Tellier et al., 2014).
These are long lived cells and it is postulated that they gain the
malignant phenotype after repeated transits through the germinal
center (Sungalee et al., 2014).

Follicular lymphoma and diffuse large B cell lymphoma
(DLBCL) share important similarities with both having a close
association with somatic hypermutation and with evidence of
on-going somatic hypermutation in the malignant cells (Adam
et al., 2007). In contrast the differing timescale and route
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to malignancy combined with the impact of the presence
of BCL-2 activation make the overall biology of these two
types of lymphoma very different. Conceptionally the route to
malignancy and impact of somatic hypermutation appears to
be distinctly different. In DLBCL it is likely that the malignant
cells arising during the normal progress through the germinal
center with the cells being involved with the full somatic
hypermutation process for the first time. In contrast follicular
lymphoma is likely to arise from aberrant memory B cells, a
cell type that normally has completion somatic hypermutation
and no longer expresses AID the key component of this system
(Pasqualucci et al., 2004). Memory cells are able to retransit
the germinal center and undergo a degree of reactivation of the
somatic hypermutation activity (McHeyzer-Williams et al., 2015).
However, in the resultant malignant cells the intensity of ongoing
somatic hypermutation appears significantly lower in follicular
lymphoma than in DLBCL and primary central nervous system
lymphoma (Zuckerman et al., 2010).

In addition to the impact of mutation, epigenetic
dysregulation plays a key role in the development of follicular
lymphoma with mutations occurring in a larger number of
key genes controlling changes affecting B cell differentiation
and somatic mutation (Kretzmer et al., 2015). The patterns of
methylation and hence gene activity differ substantially between
follicular lymphoma and high-grade chemotherapy curable
germinal center derived lymphomas (Kretzmer et al., 2015).

Whilst it is beyond the scope of this review to examine
the details of these changes it is probable that these follicular
lymphoma linked changes combined with the high BCL-2 activity
may provide a strong counter to the residual impact of the low
level activity of the somatic hypermutation associated apoptotic
pathways (Zan and Casali, 2015; Huet et al., 2018).

Physiological Changes in Apoptotic
Sensitivity During Somatic
Hypermutation
The normal physiology of the germinal center B cell is intricately
linked with apoptosis, as a result it is unsurprising that the non-
malignant germinal cell B cells are extremely sensitive to DNA
damage mediated apoptosis (Lindhout et al., 1995).

The extreme sensitivity of the germinal center to radiation
exposure has been documented historically (De Bruyn, 1948;
Congdon, 1966; Burge, 1975) and the B cells in the germinal
center have been noted to be very sensitive to the induction of
DNA damage mediated apoptosis by both cytotoxic drugs and
radiation (Thielen and Heinen, 2010).

Post Somatic Hypermutation B Cell
Malignancies
B cells that have successfully completed somatic hypermutation
exit from the germinal center and complete the latter stages
of maturation into antibody producing plasma cells. In normal
healthy B cells at this point the AID activity and SHM phenotype
is rapidly lost (Muramatsu et al., 2000; Lenz et al., 2007).

The B cell malignancies that arise from these later stages in
development after the completion of both VDJ rearrangement

and somatic hypermutation are generally less sensitive to DNA
damaging agents and demonstrate no evidence of ongoing
SHM activity (Bakkus et al., 1992; Rollett et al., 2006). The
diagnoses arising at these points include plasmocytic lymphoma,
CLL (mutated variable region) and myeloma which are usually
responsive to but are not cured with cytotoxic chemotherapy.

Overview of the B Cell Malignancies and
Their Variation in Chemotherapy
Curability
Taken overall, the pattern of chemotherapy curability of
malignancies moving along the B cell developmental pathway
presents an intriguing picture. The initial malignancies arising
closest to the hematopoietic stem cell, have the lowest number of
mutations, but only relatively low cure rates with chemotherapy.
In contrast the malignancies arising from the next stage in
development, that is associated with the VDJ process, generally
have more mutations but are highly curable, with over 90% of
children with B-ALL being cured with modern therapy. The cells
arising from the next stage in B cell development, occurring after
VDJ is completed but before somatic hypermutation including
Mantle cell lymphoma and chronic lymphocytic leukemia (CLL)
are generally sensitive to chemotherapy but non-curable.

The malignancies arising from the next stage in B cell
development, during the germinal center phase, include diffuse
large B cell lymphoma and Hodgkin’s lymphoma are routinely
curable. Finally, the malignancies arising from B cells that
have completed VDJ recombination and somatic hypermutation
include CLL, plasmocytic lymphoma and myeloma and are non-
curable with DNA damaging chemotherapy.

Whilst there are other potential explanations for this unusual
biphasic curability curve for B cell malignancies, we would
argue that these two peaks of B cell malignancy chemotherapy
curability coincide with and are linked to the two apoptosis
associated cellular genetic events of immunoglobulin gene VDJ
rearrangement and somatic hypermutation/class switching.

As discussed above, the physiology of the B cells during these
two processes is dramatically different from any other cells, with
extremely rapid turnover, dramatic upregulation of pro-apoptotic
pathways and high levels of physiological cell death.

It is apparent that the resultant malignant cells carry some
components of the phenotype of the cells that they arise from.
We would argue that the presence of these components of the
VDJ and somatic hypermutation phenotypes is linked to the
extremely high sensitivity of these specific malignancies to DNA
damaging chemotherapy.

T Cell Malignancies
T cell malignancies have a much lower incidence than B cell
malignancies despite the numbers of B cells and T cells being
similar (Anderson Marjault et al., 1998). T cells have a simpler
pathway of genetic recombination to achieve variation in the
antigenic recognition of the T cell receptor. The T cell receptor
(TCR) alpha chain has only rearrangement of the V and J regions
whilst the TCR beta chain has the complete rearrangement of the
VDJ components similarly to a B cell (Bassing et al., 2002).
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Of the T cell malignancies acute T cell ALL has the highest
cure rates with a 75% cure rate in children (Goldberg et al., 2003)
but with only 10–15% in adults (Rowe, 2010). Molecular analysis
indicates that these cells, similar to B ALL have recombined VDJ
genes (van Dongen et al., 2003). Additionally, in a similar fashion
to that of B -ALL, it is apparent that the VDJ process can be
on going in T-ALL with higher rates of clonal evolution seen
in childhood cases compared to adult (Szczepański et al., 2003;
Smirnova et al., 2016).

Amongst the malignancies arising later in the T cell
developmental pathway ALK +ve anaplastic large cell lymphoma
also has a high chemotherapy cure rate with long term survival
rates of up to 80% are reported (Gascoyne et al., 1999). ALK +ve
large cell lymphoma appears similar to Hodgkin’s lymphoma in
that it has undergone V[D]J recombination but failed to produce
a functional T cell receptor (Bonzheim et al., 2004). The ALK
mutation appears to prevent the natural pattern of apoptosis and
holds the cell in a suspended pro-apoptotic state.

The T cell malignancies arising later in the
development pathway include peripheral T cell lymphoma,
angioimmunoblastic lymphoma and adult T cell
leukemia/lymphoma each have a poor prognosis with no
significant chemotherapy mediated cure rates (Vose and
Armitage, 2008).

Acute Myeloid Leukemia (AML)
Acute myeloid leukemia has a significant chemotherapy cure
rate but in keeping with the experience in B ALL and T ALL
the cure rates are significantly higher in children than adults.
Overall pediatric AML has a cure rate approaching 70% whilst
in adults the cure rate drops from approximately 50% for young
adults to only 13% for those aged 60–69 (Shah et al., 2013;
de Rooij et al., 2015).

Despite their later development pathways, myeloid precursor
cells initially have a high level of activity of the VDJ
recombination system. Genetic studies performed in AML
indicate that the immunoglobulin heavy chains genes have
undergone VDJ rearrangement in 40–50% of cases and that the
ongoing expression of the VDJ recombinase associated proteins
RAG1 and RAG2 is frequent (Kyoda et al., 1997; Stavroyianni
et al., 2003).

In contrast the malignancies arising from mature myeloid
cells, have no evidence of VDJ activity and characteristically have
modest responses to chemotherapy (Vose and Armitage, 2008;
Borcherding et al., 2019).

TESTICULAR CANCER AND MEIOSIS

Testicular cancer has been curable with chemotherapy for over
60 years (Li et al., 1960) and today patients with metastatic disease
have overall cure rates approaching 90% (Feldman et al., 2008).

The malignant cells in testicular cancer usually arise from the
pre-malignant precursor carcinoma in situ (CIS). This in turn
evolves from an abnormal gonocyte, a developmental cell that has
failed to mature normally to become a healthy pre-spermatogonia
(Sonne et al., 2008, 2009). Recent data indicates that at the onset

of testosterone exposure with puberty, the CIS cell, despite not
having effectively matured to the a spermatogonium, has some of
the key physiological machinery associated with meiosis activated
(Jørgensen et al., 2012; Feichtinger and McFarlane, 2019).

In keeping with the thesis of the persistence of unique
phenotype within the malignant cells recent data indicates that
significant aspects of expression of genes associated with the
meiosis phenotype are found in testicular germ cell tumors
(Heaney et al., 2012; Bruggeman et al., 2018).

Physiological Changes in Apoptotic
Sensitivity During Meiosis
Meiosis is a complex genetic process that involves genetic
recombination and natural apoptosis is an integral component
within the process of spermatogenesis. It is estimated that 75% of
spermatogenesis is lost via apoptosis (Dunkel et al., 1997).

In the normal process of spermatogenesis, the onset of the
process of meiosis has a dramatic effect on the sensitivity to
DNA damage induced apoptosis. This has been demonstrated
in studies examining the impact of low dose radiation on
the survival of cells in the differing stages of spermatogenesis
(Rowley et al., 1974; Marjault and Allemand, 2016). The data
as shown in Table 3 indicates that the cells that are outside the
meiotic process, the quiescent spermatogonial stem cells and the
maturing sperm are relatively resistant to induction of apoptosis
by low dose radiation despite developing similar levels of DNA
damage (Grewenig et al., 2015). In contrast the cells undergoing
meiosis, the differentiating spermatogonia and spermatocytes are
significantly more sensitive with cell killing rates of up to 99%.

Experimental data in murine models examining the impact
of a number of cytotoxic chemotherapy drugs on apoptosis in
spermatogenesis also indicates dramatic changes in sensitivity
to chemotherapy between spermatogonial stem cells and
differentiating spermatogonial cells (Lu and Meistrich, 1979). As
shown in Table 3 the difference in ID50 concentration can vary
up to more than a 100-fold difference which is far greater than the
ratios seen in conventional malignancies (Izumi et al., 2017).

It is apparent that the processes involved in meiosis are closely
linked to naturally occurring apoptosis in health. We would argue
that in testicular cancer the malignant cells that arise from these
abnormal parent cells that have partially activated components
of the meiotic phenotype. As a result, they maintain some of
the unique physiology and heightened apoptotic sensitivity that
naturally occurs at this unique biological point.

GESTATIONAL MALIGNANCIES AND
NUCLEAR FUSION

The gestational malignancies are rare but have been curable
with chemotherapy since the 1950s (Hertz et al., 1956). The
majority of cases happen after a complete molar pregnancy and
in this situation a cure rate of 100%, with the use of often
low dose single agent chemotherapy, can be expected (Sita-
Lumsden et al., 2012). The clinically more challenging forms
of gestational malignancies, choriocarcinoma and placental site
trophoblast tumor generally arise from otherwise genetically
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TABLE 3 | Variation in the sensitivity to the induction of apoptosis with DNA damaging radiation and cytotoxic chemotherapy during spermatogenesis.

Cell Genetic Event Radiation 1 Gy ID 50 mg/kg

% Survival Cyclophosphamide Cytarabine Doxorubicin

Spermatogonial stem cell Mitosis 50% >200 >7000 3

Spermatogonial cell differentiating Meiosis 1% 30 16 1

Spermatocyte (Leptotene) Meiosis 1% – – –

Spermatocyte (Pachytene) Meiosis 50% – – –

Spermatid Maturation 52% – – –

Radiation data (Rowley et al., 1974). ID 50 data (Lu and Meistrich, 1979). Doxorubicin data.

normal pregnancies and have high cure rates with combination
chemotherapy (Schmid et al., 2009; Alifrangis et al., 2013).

Whilst there is no normal counterpart to the cells of a
molar pregnancy, it is apparent that it shares considerable
phenotypic characteristic with an early healthy trophoblast
cell. In contrast the cells of choriocarcinoma and PSST
have phenotypic and epigenetic similarities with more slightly
more developmentally mature cells (Kurman et al., 1984;
Savage et al., 2019). Similar to the situation in the B cell
malignancies it appears that the malignant trophoblast cells
remain frozen with their developmental phenotype and do not
follow the standard maturation and developmental pathways of
trophoblast/placental cells (Savage et al., 2019).

The timing of the developmental origin of the gestational
trophoblast tumors appears to have a close relationship with the
chemotherapy sensitivity of the malignancies arising along this
route. Molar pregnancies that arise at the time of fertilization have
a cure rate approaching 100% and patients with this diagnosis
generally only require low dose single agent chemotherapy (Sita-
Lumsden et al., 2012). Gestational choriocarcinoma which arises
slightly later in developmental has chemotherapy cure rates
approaching 95% but with most patients requiring more intensive
combination chemotherapy (Alifrangis et al., 2013). The rarer
diagnosis PSST which is believed to arise later in trophoblast
cell development has a lower overall cure rate for patients with
metastatic disease of approximately 50% (Schmid et al., 2009).

Physiological Changes in Apoptotic
Sensitivity Following Nuclear Fusion
In health gametes and the cells of conception demonstrate a
change in their sensitivity to the induction of DNA damage
mediated apoptosis in a relatively short period after fertilization.
Clinical data indicate that sperm are relatively resistant to DNA
damage, with sperm counts in cancer patients only subsiding
significantly 1–2 months after the commencement of cytotoxic
chemotherapy (Meistrich et al., 1997). This resistance to the
induction of DNA damage mediated apoptosis is also supported
by data shown in Table 3 that indicates that radiotherapy (at
1Gy) only causes a 50% reduction in spermatid counts compared
to a 99% reduction in the number of early spermatocytes
(Rowley et al., 1974).

There is little data on the sensitivity of human ova and
the early cells of conception to DNA damaging cytotoxic
drugs. However, in vitro animal data suggests that there is an

appreciable difference in sensitivity to methotrexate mediated
apoptosis between the newly fertilized ova and the early
stages of the developing blastocyst. Murine data looking at the
impact of methotrexate exposure on maturing ova indicates that
concentrations of methotrexate of 20uM and above are clearly
cytotoxic (Takai et al., 2007). However, the cells are able to
tolerate exposure to methotrexate at 10 µM with only modest
reductions in the speed of germinal vesicle breakdown and
polar body extrusion but without an impact on cell viability
(Tian et al., 2018).

In fertilized zygotes, in both murine and bovine in vitro
models, a biphasic impact of methotrexate exposure is seen.
Fertilized ova and zygotes up to 8 cell stage were largely resistant
to exposure to methotrexate at 10 µM. In contrast, methotrexate
at 10 µM resulted in the total loss of viability for 8 cells
zygotes in the bovine system (Kwong et al., 2010) and a major
reduction in viability in the mouse model (O’Neill, 1998). The
reason for this increasing sensitivity to methotrexate induced
apoptosis is unclear. It is apparent that the cells are increasing
their thymidine requirements (O’Neill, 1998) at this stage but
also making profound and rapid changes to their patterns of gene
expression (Fraser and Lin, 2016).

The in vitro documentation of extreme sensitivity of the early
cells of conception to cytotoxic drugs is also reflected clinically
in the management of ectopic pregnancies where a single dose of
50 mg of methotrexate is employed (Creinin et al., 1996).

The very high degree of sensitivity to cytotoxic drugs of the
cells after conception occurs for only a relatively short time and
as the placenta matures it undergoes a rapid change in sensitivity
to DNA damage induced apoptosis. This process that is complete
by the end of the first trimester by when the trophoblast cells
(Sand et al., 1986) and the placenta are resistant to cytotoxic
drug induced apoptosis (Abellar et al., 2009). Of the note the very
rare proliferative conditions that arise from the mature cells of
the placental exhibit a high degree of resistance to chemotherapy
drugs (Farasatinasab et al., 2016).

At present there is little data on the underlying mechanisms
for the high degree of chemotherapy sensitivity for both the
native and malignant trophoblast cells. Recent whole genome
sequencing and epigenetic analysis suggests that gestational
trophoblast tumors do not have any significant mutational
burden and are likely to arise during aberrations of methylation
during the early stages of placental development (Rowley et al.,
1974; Xing et al., 2019). Following fertilization there are dramatic
changes in the methylation patterns of the trophoblast cell
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(Fraser and Lin, 2016) and it is likely that these changes in
gene expression and DNA conformation are the key drivers in
the rapidly changing sensitivity to induction of apoptosis from
cytotoxic chemotherapy induced DNA damage.

Childhood Malignancies and
Gastrulation
At present there is considerable debate regarding the origin of
the rare childhood malignancies. Previously we and others have
suggested that these rare malignancies with their very primitive
pathology may be linked to defects in gastrulation (Ewing, 1921;
von Levetzow et al., 2011; Savage, 2015). We hypothesize that
these cells remain trapped in a normally transient phenotype in
similar way the B cell malignancies are trapped at the point of
origin cell type.

The curability of these malignancies with cytotoxic
chemotherapy was originally seen nearly 50 years ago and
current cure rates approach 70% for neuroblastoma, 75% for
Ewing sarcoma 74 and 90% for Wilms tumor (Smith et al., 2010).

Physiological Changes in Apoptotic
Sensitivity During Gastrulation
Whilst gastrulation does not include DNA mutation or
recombination the process has a major impact on apoptotic
sensitivity. In a murine model, the dramatic changes in the
sensitivity of cells to DNA damage associated with gastrulation
are demonstrated in Figure 3. An exposure of 0.5Gy resulted
in <5% apoptotic embryonic cell death at day 5 just prior
to gastrulation. In contrast at day 6.5 the apoptotic cell death
response to the same low dose of radiation rose to 60%. By day 8.5
as the gastrulation process was completing the apoptotic response
fell back to 10% (Heyer et al., 2000).

The relationship to defects in gastrulation and the etiology
of the rare childhood malignancies remains an area of debate.
However, it is apparent that in a similar way to the impact
of VDJ recombination, meiosis and nuclear fusion the process
of gastrulation is closely related to dramatic changes in
apoptotic sensitivity.

DIFFERENTIAL CHEMOTHERAPY
SENSITIVITY IN NON-MUTATIONAL AND
SINGLE MUTATION MALIGNANCIES

Classically the paradigm for oncogenesis is centered on the
sequential development of mutation leading to the development
of the malignant phenotype. This appears to be the case for the
majority of solid cancers (Fearon and Vogelstein, 1990) and also
for many lymphoid malignancies (Greaves et al., 2003).

A small number of relatively rare malignancies, each of
which has a short developmental time for oncogenesis, appear
to arise via alternate routes. Recent whole genome sequencing
and epigenetic analyses have provided an insight into these
differing routes to oncogenesis and also potential factors affecting
chemotherapy sensitivity and chemotherapy curability.

Non-mutational Malignancies
Two rare malignancies appear to have their route to oncogenesis
occurring from epigenetic changes alone without any
documented mutational drivers.

In the childhood CNS malignancy CIMP ependymoma, a
series of 47 cases were analyzed by whole genome analysis,
with the results indicating a very low mutational burden and
an absence of documented oncogene or driver mutations (Mack
et al., 2014). In contrast to the absence of mutation, epigenetic
analysis indicated consistent abnormalities of methylation
impacting on the action of the Polycomb repressive complex
(Mack et al., 2014).

More recently we have reported the first case of gestational
choriocarcinoma to be analyzed with whole genome sequencing
and full methylation analysis (Savage et al., 2019). Similarly,
to the findings in CIMP ependymoma this cancer also has no
appreciable mutational burden. However, the cells appear to have
a defect in the natural progression of methylation that leaves
the malignant cell fixed with a persisting phenotype of an early
trophoblast cell.

Whilst the exact timing of the onset of oncogenesis in
gestational choriocarcinoma is yet to be determined it is likely
that the malignant cells arise from cells within the first 2 weeks
after conception and nuclear fusion. As discussed previously
normal healthy cells at this point are immensely sensitive to
cytotoxic chemotherapy in vitro (Kwong et al., 2010) and in vivo
as demonstrated by the efficacy of low dose methotrexate in the
treatment of ectopic pregnancies (Creinin et al., 1996).

Whilst these two malignancies have similar etiology, they
have dramatically different responses to chemotherapy treatment
as shown in Table 4. CIMP ependymoma is characteristically
highly resistant to cytotoxic chemotherapy treatment and carries
an extremely poor prognosis (Bouffet and Foreman, 1999). In
contrast gestational choriocarcinoma is immensely sensitive to
cytotoxic chemotherapy treatment and has a 95% cure rate
(Alifrangis et al., 2013).

As discussed above we would argue that the key difference
that affects the response to chemotherapy, for these two non-
mutational malignancies, is the persistence of the ongoing
phenotype of the early post nuclear fusion trophoblast cell
in choriocarcinoma.

Single Mutational Malignancies
Highly divergent sensitivity to DNA damaging chemotherapy
is also seen in two other rare malignancies which are each
characterized by a single mutation.

Pediatric rhabdoid malignancy has a single driver mutation
which is of SMARCB1 tumor suppressor gene (Kieran et al.,
2012). Similarly, infantile ALL also has a single driver mutation
in the MLL gene (Dobbins et al., 2013).

Aside from these mutations both infantile ALL and the
pediatric rhabdoid malignancies are otherwise mutationally
bland with a negligible level of mutation (Kieran et al., 2012;
Dobbins et al., 2013).

Despite this apparent similarity of genetic structure and
route to oncogenesis these two malignancies also differ
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FIGURE 3 | Sensitivity of embryonic cells to low dose radiation (0.5 Gy) before, during and after gastrulation. Data and graph taken from Heyer et al. (2000).

TABLE 4 | Comparison of the route to oncogenesis, relationship to unique genetic events and chemotherapy curability for non-mutational and single
mutation malignancies.

Non-mutational malignancies Single mutational malignancies

Diagnosis Gestational Choriocarcinoma Ependymoma Infantile ALL Pediatric rhabdoid cancer

Mutations Nil Nil MLL SMARCB1

Oncogenesis Defect in Methylation Defect in Methylation Mutational Mutational

Genetic Event Nuclear Fusion Nil VDJ Recombination Nil

Chemotherapy Response Rate 100% 11% 95% 50%

Chemotherapy Cure Rate 95% 0% 40% <10%

dramatically in their sensitivity to DNA damaging chemotherapy
treatment. Pediatric rhabdoid malignancies are characterized by
a very high level of resistance to DNA damaging cytotoxic
chemotherapy. The prognosis for this rare cancer is very poor
with the median survival of patients with metastatic disease
of less than 1 year (Reinhard et al., 2008; Brennan et al.,
2016). In contrast infantile ALL has a high response rate to
chemotherapy and approximately 40% of patients are cured
(Pieters et al., 2007).

However, whilst the two malignancies are both mutationally
bland aside from their single driver mutation there is key
difference between them. Infantile ALL arises in cells that
are in the earliest stages of VDJ rearrangement that have
either germline or an incompletely rearranged VDJ regions
(Jansen et al., 2007). In keeping with cases of ALL arising
slightly later in the development pathway infantile ALL
cells have on going significant expression of the RAG1/2
enzymes indicating that significant components of the
early VDJ phenotype are retained in the malignant cells
(Jansen et al., 2007).

From these four rare malignancies we can see the extremes
of sensitivity to chemotherapy treatment that does not appear
to be influenced by the absence of mutation, or by the route to
oncogenesis being methylation changes. However, for the two
chemotherapy curable malignancies it is apparent that they are
closely linked, via their parent cell, to the genetic events of either

VDJ recombination or nuclear fusion. We would argue that it is
the partial persistence of the unique phenotype associated with
these events that leads the cells to retain extremely high levels of
sensitivity to DNA damaging therapies.

DISCUSSION

A number of malignancies have been routinely curable with
chemotherapy treatment for over 60 years. Review of the natural
history of these cells indicates that they each arises from a special
transient cell type that is intricately involved with one of the key
physiological processes of immunoglobulin gene rearrangements,
meiosis, nuclear fusion or gastrulation.

The chemotherapy sensitivity of these malignancies appears
to mirror the extreme natural sensitivity to the induction of
apoptosis that these parent cells naturally pass through as part
of these transient processes in health.

This interpretation of the biological and clinical data offers
an explanation as to why other malignancies have not become
curable despite immense research endeavors.

At present there is little data on the detailed mechanisms as
to how these dramatic changes in apoptotic sensitivity occur.
With more information it may be possible to devise therapeutic
approaches that could therapeutically exploit these dramatic
biological effects.
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