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Abstract

Background: Kunitz-type venom peptides have been isolated from a wide variety of venomous animals. They usually have
protease inhibitory activity or potassium channel blocking activity, which by virtue of the effects on predator animals are
essential for the survival of venomous animals. However, no Kunitz-type peptides from scorpion venom have been
functionally characterized.

Principal Findings: A new Kunitz-type venom peptide gene precursor, SdPI, was cloned and characterized from a venom
gland cDNA library of the scorpion Lychas mucronatus. It codes for a signal peptide of 21 residues and a mature peptide of
59 residues. The mature SdPI peptide possesses a unique cysteine framework reticulated by three disulfide bridges, different
from all reported Kunitz-type proteins. The recombinant SdPI peptide was functionally expressed. It showed trypsin
inhibitory activity with high potency (Ki = 1.661027 M) and thermostability.

Conclusions: The results illustrated that SdPI is a potent and stable serine protease inhibitor. Further mutagenesis and
molecular dynamics simulation revealed that SdPI possesses a serine protease inhibitory active site similar to other Kunitz-
type venom peptides. To our knowledge, SdPI is the first functionally characterized Kunitz-type trypsin inhibitor derived
from scorpion venom, and it represents a new class of Kunitz-type venom peptides.
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Introduction

Venomous animals are considered to be a very distinctive class

of species among animals. Evolution has equipped them with

venom glands and venoms, that provide remarkable advantages

for their survival [1,2]. Various venomous animals such as snakes,

spiders, sea anemones, cone snails, and scorpions are not only

dangerous but also attractive to human beings. Their lethal

venoms contain a diversity of bioactive proteins and peptides,

which are important for predation and have proved to be of utility

for informing drug design [1,2].

Kunitz-type venom peptides constitute one such group of

peptides and were named after the conserved Kunitz motif present

in bovine pancreatic trypsin inhibitor (BPTI). The Kunitz-type

polypeptide usually consists of 50 to 60 amino acid residues and

has a disulfide rich alpha/beta fold structure. Most of them possess

one conserved active site which plays an important rule in

inhibiting the function of proteases. The structure/function

relationships of Kunitz-type venom peptides have been extensively

studied since they were first isolated from snake venoms [3,4].

Kunitz-type venom peptides are usually comprised of 60 amino

acids. They possess a relatively conserved active site loop region

[5]. Currently reported Kunitz-type venom peptides can be

classified into two families based on different cysteine frameworks.

One family retains the typical Kuntiz-type architecture, with three

highly conserved disulfide bridges, exemplified by HWTX-XI

from spider, DTX-K from snake, and kalicludines from sea

anemone [6,7,8]. The other family has only four cysteine residues,

which results in the apparent ‘loss’ of a conserved disulfide bridge,

represented by conkunitzin-S1 from cone snail [9]. Although

distinct in primary structure, Kunitz-type venom peptides usually

have potency as a protease inhibitor or potassium channel

blocking function, or both. They were postulated to evolve from

‘‘old’’ body protein families and to play important roles both in

protecting other venomous toxins from degradation or in blocking

potassium channels in the prey [7]. Recently, more new functions

of Kunitz-type venom peptides have been identified, such as

voltage-gated sodium channels inhibition or analgesic activity

[10,11].

Until now, Kunitz-type venom peptides have been isolated from

a wide variety of venomous animals [12]. However, few Kunitz-

type venom peptides have been functionally characterized from

scorpions, a widely distributed family of species. Prior to our work,

only one putative Kunitz-type carboxypeptidase inhibitor from the
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Mexican scorpion Hadrurus gertschi was reported [13]. Lychas

mucronatus is a scorpion species found in southern China. Recently,

our group collected a population of Lychas mucronatus from Yunnan

province and constructed its venom gland cDNA library [14]. As a

result of the venom gland cDNA library transcriptome analysis, a

number of seldom reported toxins were characterized, including

two putative Kunitz-type venom peptides with an apparently

unique cysteine framework [15]. They were designated scorpion-

derived protease inhibitor (SdPI) and SdPI-2. We have successfully

expressed, purified, and characterized the Kunitz-type venom

peptide SdPI. Synthetic chromogenic substrate assay results

demonstrated that SdPI is a potent inhibitor for trypsin and

possesses good thermostability. The structure/function relationships

for SdPI were further revealed by using site-directed mutagenesis

combined with computer-based molecular dynamics simulation.

SdPI is the first functionally characterized Kunitz-type venom

peptide derived from scorpion venom and represents a new Kunitz-

type venom peptide family with protease inhibitory activity.

Results

Cloning and sequence analysis of SdPI cDNA
Using random screening and bioinformatics analysis of the

Lychas mucronatus venom gland cDNA library, a number of new

scorpion venom toxins were identified [16]. After searching for

homologues in the GenBank NCBI database, two putative Kunitz-

type venom peptides differing in only two amino acids were found.

One was termed SdPI (GenBank Accession No. GT028613). SdPI

has a precursor nucleotide sequence of 364 nucleotides (nt)

including three parts: 59 untranslated region (UTR), open reading

frame (ORF), and 39UTR. The 59UTR part is only 7 nt long. The

ORF region of 243 nt encodes a precursor polypeptide of 80

amino acid residues including a 21-residue signal peptide and a

59-residue mature peptide. The 39UTR is 114 nt long, and two

aataaa polyadenylation signals were found 70 nt and 16 nt

upstream of the poly(A) tail at the 39UTR end (Figure 1).

Primary structure analysis of SdPI
Multiple sequence alignments showed that mature SdPI shares

homology with typical Kunitz-type venom peptides, including

HWTX-XI from spider [7], kalicludine-1 from sea anemone [6],

DTX-K from snake [8], and conkunitizin-S1 from cone snail [17].

The most homologous sequence HWTX-XI shows 52.7% identity

to SdPI. However, compared to these typical Kunitz-type venom

peptides, some obvious differences are observed (Figure 2A). Most

of these Kunitz-type venom peptides possess a native Kunitz

architecture involving three disulfide bonds, except conkunitizin-

S1 which lacks the normal CysII–CysIV (CysII indicates the

second cysteine in the primary structure of the peptide) disulfide

on the surface of the molecule [9]. Interestingly, SdPI possesses a

unique cysteine framework different from all reported Kunitz-type

venom peptides. Like conkunitizin-S1, it also lacks the normal

CysII–CysIV disulfide [18]. In addition, SdPI contains another

two cysteine residues close to the C-terminus of the mature

peptide. This special primary structure may generate a distinct

disulfide connection (Figure 2B).

Expression, purification, and characterization of
recombinant SdPI (rSdPI)

The rSdPI peptide was produced as a fusion protein with a N-

terminal His6-tag and a thrombin cleavage site [19]. After

induction of the E. coli Rosetta (DE3) cell culture with isopropyl

b-D-1-thiogalactopyranoside (IPTG), the rSdPI peptide was found

exclusively in inclusion bodies. Using a refolding protocols

described in the Methods section, soluble folded rSdPI was

recovered (Figure 3A). After concentration, the soluble material

was separated by reverse phase high-performance liquid chroma-

tography (RP-HPLC). The peak eluting at 17.5 min correspond-

ing to rSdPI peptide was collected (Figure 3B) and identified by

matrix-assisted-laser-desorption/ionization time-of-flight mass

spectrometry (MALDI-TOF-MS). Accounting for the loss of 6

Da from Cys thiol groups engaged in three disulfide bridges, the

predicted molecular weight of the oxidized rSdPI peptide is 8612.9

Da. MALDI-TOF-MS showed a triply charged ion at m/z

2872.05, a doubly charged ion at m/z 4307.61, and a singly

charged ion at m/z 8613.46, all corresponding to the same peptide

with an average mass of 8612.5 Da, consistent with the calculated

value (Figure 3C). The rSdPI peptide yield was 5.5 mg/L Luria

Bertani (LB) media.

Serine protease inhibitory activity of SdPI
The purified rSdPI peptide was assayed for inhibitory activity

against trypsin, chymotrypsin, and elastase by measuring the

inhibition of hydrolysis of synthetic chromogenic substrates by

serine proteases. The results showed that the rSdPI peptide

inhibited trypsin with a 1:1 stoichiometric ratio (Figure 4), but

exhibited no inhibitory effect on chymotrypsin and elastase even at

high concentration (Figure 5). Furthermore, the inhibitory

constant (Ki) of the trypsin/SdPI complex was determined by

Lineweaver-Burk plots and further slope replotting, yielding a Ki

value of 1.661027 M (Figure 6).

Figure 1. Precursor nucleotide sequence and deduced amino acid sequence of SdPI. The predicted protein sequence is shown below the
nucleotide sequence. The 59 and 39 UTR regions are written in lower case letters. The signal peptide is underlined. The mature peptide is highlighted
in gray color and the cysteine residues are shown in bold type. The potential polyadenylation signal is underlined twice.
doi:10.1371/journal.pone.0027548.g001
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Identification of rSdPI functional residues
Although the primary amino acid sequence of SdPI shows

extensive homology with other Kunitz-type venom peptides (for

example more than 50% identity with HWTX-XI and kalicludine-

1), it adopts a distinct cysteine framework to stabilize its molecular

structure. Most notably, in comparison to the typical Kunitz-type

motif represented by BPTI, the conserved cysteine and proline

residues in the P2 and P3 positions (the surrounding residues of the

active site according to the distance from P1 position) are changed

into glycine and lysine (Figure 2) [20]. To identify whether SdPI

possesses a similar active site to other Kunitz-type venom peptides,

four residues (Lys12, Gly13, Lys14, Ala15) close to the putative

active site according to multiple sequence alignments and previous

literature were targeted for mutagenesis [7,21]. All mutants were

expressed and purified by the same protocol described above for

wild-type SdPI. Compared with that of the wild-type peptide, the

circular dichroism (CD) spectrum of each of the mutants indicated

no significant change in secondary structure, suggesting that they

all adopted the same structural topology (Figure 7). The inhibitory

constants (Ki) of wild-type SdPI and four mutants against trypsin

were measured and these values are listed in Table 1. The results

showed that the Lys14Ala mutant displayed no inhibitory activity

to trypsin up to 40 mM. Therefore, Lys14 likely corresponds to the

P1 position (the key active site residue used to directly interact with

the S1 pocket of protease). The adjacent residues apparently make

minor contributions to the inhibitory activity since mutation has

little effect on trypsin inhibition, though it is notable that the

Ala15Phe mutation results in a nearly 400-fold decrease in

inhibitory potency (Figure 8).

To further examine the inhibition assay results, molecular

dynamics (MD) simulation was employed to probe the stability of a

proposed SdPI-trypsin complex model, in which the SdPI was set

up to adopt a similar position to BPTI in the complex with trypsin

(PDB accession code 2PTC). During the 2 ns simulation, the SdPI

remained in a relatively stable position on the trypsin surface, with

its putative active site formed by Lys12, Gly13, Lys14, and Ala15

inside the S1 pocket of trypsin (Figure 9A). In the coordinates at

the end of the MD trajectory, strong polar and nonpolar

interactions were observed among residues in the proximity of

the active site. The SdPI Lys14 side chain protrudes inside the

pocket formed by trypsin Asp171, Ser172, Gly175, Asp176,

Ser177, Val191, Ser192, G196, and Cys197 (Figure 9B). Trypsin

residues Asp176 and Ser192 were found to form hydrogen bonds

with SdPI Lys14 (Figure 9B). Such strong polar interactions

rationalize the complete loss of inhibitory activity after mutating

Lys14 to alanine, supporting the prediction that Lys14 is located in

the P1 position. The adjacent residues Lys12 and Phe17 also make

their own contributions to enhancing the intermolecular interac-

tions. Within a distance of 4 Å, SdPI Lys12 contacts trypsin

Leu81, Trp193, and Gly194 (Figure 9C), whereas SdPI Phe17

mainly forms hydrophobic interactions with trypsin aromatic

residues Tyr22 and Phe24 as well as Cys41 in this domain

(Figure 9D). Therefore, although the SdPI apparently adopts a

new Cys54-Cys59 disulfide bridge at the C-terminus (Figure 9A), it

Figure 2. Sequence comparison and phylogenetical analysis of SdPI and other Kunitz-type proteins. (A) Sequence alignment of SdPI
and other Kunitz-type proteins. Identical and similar residues are highlighted by black and gray colors. Predicted disulfide connections are shown
with lines. The sequence identities of different Kunitz-type proteins compared with SdPI are shown on the right side. HWTX-XI is a bifunctional toxin
isolated from spider. It can block voltage-sensitive K+ channels and inhibit trypsin activity. Kalicludine-1 is also a bifunctional toxin isolated from sea
anemone. DTX-K is a snake derived Kunitz-type venom peptide with a potent potassium channel blocking function. Conkunitizin-S1 is a potassium
channel inhibitor isolated from cone snail. HGE030_Hg1 from the Mexican scorpion Hadrurus gertschi is the only reported hypothetical scorpion-
derived Kunitz-type venom peptide. BPTI is the first Kunitz-type protein, identified from bovine pancreas. (B) A minimum evolution (ME) tree of
representative Kunitz-type proteins based on the multiple sequence alignment.
doi:10.1371/journal.pone.0027548.g002
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likely possesses a conserved overall structure, and a similar mode

of trypsin interaction to other Kunitz-type venom peptides.

Thermostability of SdPI
To test the thermostability, aliquots of the purified recombinant

SdPI peptide were incubated for 1 hour in preheated test tubes at

several temperatures up to 100uC, and the residual trypsin

inhibitory activity was then determined (Figure 10). The result

showed that there was about 73% residual trypsin inhibitory

activity remaining after incubation at 100uC for 1 hour, indicating

that SdPI is a thermostable protein.

Discussion

To date, Kunitz-type venom peptides have been isolated from

almost all the well-known venomous animals [7]. But hardly

anything is known about this type of toxin in scorpion venom. In

this work, a novel Kunitz-type venom peptide termed SdPI was

identified in the scorpion Lychas mucronatus. We report here the

cloning, expression, purification, and characterization of this novel

scorpion-derived Kunitz-type venom peptide. Based upon a

protease inhibition assay, SdPI was confirmed to be a potent

trypsin inhibitor. This result supports the idea that Kunitz-type

venom peptides are an essential toxin group, present in nearly all

familiar venomous animals.

Moreover, SdPI possesses a unique cysteine framework different

from any other Kunitz-type protein [17]. Compared to the typical

Kunitz motif, SdPI lacks the normal CysII–CysIV disulfide but

obtains another two cystine residues at the C-terminus. We used a

computer-based molecular dynamics simulation to predict the

SdPI 3D structure and the results showed that the change in

cysteine positions may lead to the formation of a novel disulfide

connection in the SdPI molecule, while allowing for a similar

interaction model with trypsin compared to other Kunitz-type

venom peptides. Site-directed mutagenesis results are also

consistent with the computer prediction. These characteristics

suggest that SdPI is representative of a new family of Kunitz-type

venom peptides. Although the physiological target of Kunitz-type

serine protease inhibitors in venom is still unclear, it is conceivable

that these proteins play an important role in the survival of

venomous animals, perhaps by protecting toxin peptides from

degradation or generating a synergistic effect with other

neurotoxins [7].

Presently, it is acknowledged that most toxin types were

recruited into the venom proteomes from ‘‘old’’ protein families

during the evolutionary process [22]. Subsequently, adaptive

Figure 3. Purification and mass determination of rSdPI. (A) Tricine–SDS–PAGE analysis of expression and purification of rSdPI. Lane 1 shows
molecular mass markers; Lanes 2 and 3 are the pellet fractions of mock-induced and IPTG-induced Rosetta (DE3) cells containing the expression
plasmid pET-28a-SdPI, respectively; Lane 4 is refolded rSdPI after desalting and enrichment; Lane 5 is HPLC-purified rSdPI peptide. (B) Purification of
rSdPI by RP-HPLC. The fractions containing rSdPI are indicated by arrows. (C) MALDI-TOF-MS mass spectrum of rSdPI. The predicted rSdPI mass is
8612.9 Da, and the measured value is 8612.5 Da.
doi:10.1371/journal.pone.0027548.g003
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evolution following gene duplication made a primary contribution

to the diversification of toxin types [23]. Frequently, new functions

have been grafted onto old protein scaffolds [24]. Kunitz-type

venom peptides represent one typical protein family that accords

with the suggested recruitment pattern and its evolutionary origin

has been well discussed in snake venom [25]. With respect to SdPI,

Darwinian selection pressures may have forced the peptide to keep

its activity against proteases but to also generate two other cysteine

residues far away from the active site. These changes form a

different disulfide connection in the molecule, potentiating a

specific, as yet unknown function. All these characteristics suggest

SdPI could be a useful molecule for elaborating the evolution and

diversification of venom toxins.

Trypsin is reported to be involved in many inflammatory

reactions in the human body, such as pancreatitis and other

cardiovascular and nervous systems diseases [26,27]. Trypsin

inhibitors, such as ulinastatin and aprotinin, are already being

clinically used in anti-inflammatory therapy [28]. Venomous

animals are a rich source of protease inhibitors. Their divergent

venom peptides are still waiting for exploitation in drug

development. Scorpion-derived Kunitz-type venom peptide SdPI

is a potent trypsin inhibitor with a Ki value of 1.661027 M.

Compared with other Kunitz-type venom peptides, SdPI has

greater trypsin inhibitory activity than snake-derived bungarusku-

nin, but weaker activity than sea anemone-derived kalicludines

and spider-derived HWTX-XI (Table 2) [6,7,29]. Although more

Figure 5. The inhibitory ability of different concentrations of rSdPI against chymotrypsin and elastase. The concentration dependence
of chymotrypsin inhibition (closed triangles) and elastase inhibition (closed squares) is shown with different concentrations of rSdPI. Chymotrypsin or
elastase (final concentration100 nM) were incubated with various concentration of rSdPI (0 to 40000 nM) for 30 min. Data represent the mean 6 S.E.
of at least three experiments.
doi:10.1371/journal.pone.0027548.g005

Figure 4. The trypsin inhibitory ability of different concentrations of rSdPI. The concentration dependence of trypsin inhibition is shown
with different concentrations of rSdPI. Trypsin (final concentration 400 nM) was incubated with various concentration of rSdPI (0 to 400 nM) for
30 min. Data represent the mean 6 S.E. of at least three experiments.
doi:10.1371/journal.pone.0027548.g004
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study is needed to explain why these different Kunitz-type venom

peptides vary in activity, they are nonetheless potential candidates

for engineering more specific inhibitors against trypsin.

Neurotoxins from venom are valuable molecular probes for

studying the role of ion channels in disease [30]. However, these

neurotoxic peptides are easily degraded in many situations. Based

on the thermostability assay, SdPI is a stable scorpion venom

peptide. Previous research indicated that mutation of just a few

residues may introduce new ion channel blocking functions into a

Kunitz-type motif [10]. Considering that SdPI is a stable Kunitz-

type venom peptide with selective trypsin inhibitory activity, its

sequence could be an excellent template for future scientific study

and molecular design.

Scorpion venoms are combinatorial peptide libraries of

numerous toxin types with extreme diversity. Previous studies

have identified a large number of toxins using bioassay-guided

isolation methods and ‘‘-ome’’ approaches [31]. However, current

research still mainly focuses on two classes of functional molecules:

typical neurotoxins and antimicrobial peptides [32,33]. Other

atypical toxins in scorpion venom are seldom studied. Our work

Figure 7. Circular dichroism spectrum analysis of rSdPI and site-directed mutants. The CD spectrum of SdPI and mutants was measured in
the UV range 190–250 nm at a concentration of 0.2 mg/ml in water at 25uC.
doi:10.1371/journal.pone.0027548.g007

Figure 6. The inhibition of trypsin by rSdPI. Lineweaver-Burk plots for the determination of Km/Vmax values of trypsin activity on a synthetic
chromogenic substrate in the absence (#) or presence of 50 nM (X), 100 nM (g) and 200 nM (&) rSdPI, respectively. (Inset) Secondary plot: the
slopes (Km/Vmax) of the primary Lineweaver-Burk graphs were plotted against the concentration of inhibitor. The inhibitory constant (Ki) is
determined from the intercept point on the x-axis.
doi:10.1371/journal.pone.0027548.g006
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on SdPI indicates that even low abundance toxins, such as Kunitz-

type venom peptides, could be both important for scorpion

survival and useful for disease studies.

Materials and Methods

cDNA library construction and screening
The Lychas mucronatus were obtained from Jiufang small towns in

Shidian county in Yunnan province of China and artificially fed in

a simulated wild habitat in the laboratory. All animal studies were

approved by the Institutional Animal Care and Use Committee at

Wuhan University. Venom glands of 60 wild specimens were

removed 2 days after extraction of their venom by electrical

stimulation and ground into fine powder in liquid nitrogen [15].

The total RNA of the venom glands of Lychas mucronatus was

isolated with TRIZOL Reagent (Invitrogen, U.S.A.), and then

mRNA was prepared with the PolyATtractH mRNA Isolation

Systems (Promega, U.S.A.). SuperScriptTM Plasmid System

(Invitrogen, U.S.A) was used to construct the cDNA library.

cDNA inserts were directionally cloned into the plasmids

pSPORT 1, following the manufacturer’s instructions. After

transforming the recombinant plasmids into electrocompetent

Escherichia coli, random colonies were selected for nucleotide

sequencing using an ABI 3730 automated sequencer.

Bioinformatic analysis of the cDNA library and Kunitz-
type toxins

Sequences were identified for open reading frames using

ORFfinder (http://www.ncbi.nlm.nih.gov/projects/gorf/). After

excluding signal peptides, the similarity was analysed by searching

against GenBank NCBI database (http://www.ncbi.nlm.nih.gov/

blast) using BLAST algorithms. All the sequence alignments were

performed with Clustal_X 1.83 software followed by manual

adjustment and viewed with the software Jalview. The multiple

sequence alignment was used to carry out phylogenetic analysis

using MEGA3.1.

Construction of expression vector pET-28a-SdPI
The cDNA sequence of SdPI from Lychas mucronatus venom

gland cDNA library was used as the template for constructing the

protein expression vector. Primers were designed to match the

mature peptide region of SdPI. The forward primer was 59-

GCGCAGCATATGAAGAATAAGTGCCAGCTTC-39 (NdeI

restriction site underlined). The reverse primer was 59-

CTGCGGATCCTCAACAGCTCCCCTGCGCGCAT-39

(BamHI restriction site underlined). The PCR product was digested

with NdeI and BamHI, and then inserted into the cut pET-28a

vector. After verification by DNA sequencing, the recombinant

plasmid pET-28a-SdPI was transformed into E. coli Rosetta (DE3)

cells for expression.

Site-directed mutagenesis
QuikChangeH Site-Directed Mutagenesis Kit (Stratagene,

U.S.A.) was used for generating the mutants based on the wild-

type plasmid pET-28a-SdPI. All plasmids of mutants were verified

by DNA sequencing before expression.

Expression, purification and characterization of SdPI and
its mutants

Cells transformed with expression plasmids of SdPI and mutants

were cultured at 37uC in LB medium with 30 mg/ml kanamycin

and 34 mg/ml chloramphenicol. Protein synthesis was induced by

the addition of 0.75 mM IPTG when the optical density at

600 nm reached 0.3. After incubation for 4 hours at 37uC, 1 L of

cell culture was centrifuged. Cell pellets were resuspended in

phosphate-buffered saline (PBS) and lysed by sonication on ice.

The recombinant SdPI protein was found to accumulate

exclusively in inclusion bodies, and so was refolded in vitro using

the following procedures. The insoluble inclusion bodies were first

washed twice with 1% (v/v) Triton X-100 in PBS and then

denatured in 5 ml 6 M guanidinium hydrochloride, 0.1 M Tris-

HCl (pH 8.0), 1 mM EDTA, 30 mM reduced glutathione. The

rSdPI was reactivated by 100-fold dilution in renaturation solution

Table 1. Trypsin inhibitory activities of SdPI and its mutants.

Protein WT K12A G13F K14A A15F

Inhibition constant, (Ki) (M) 1.661027 2.961027 2.661027 - 6.261025

The inhibitory activities of SdPI and its mutants on the hydrolysis of synthetic chromogenic substrates by trypsin were assayed in 100 mM Tris-HCl (pH 8.0), containing
10 mM CaCl2 at 25uC. Trypsin was pre-incubated with the inhibitor for 30 min. The reaction was initiated by addition of synthetic chromogenic substrates. Formation of
p-nitroaniline was monitored continuously at 405 nm for 5 min. Inhibition constants of SdPI and mutants were determined by Lineweaver-Burk plots and further
replotting of the slopes. Errors in Ki values are less than 6 10%.
-, no inhibition detected.
doi:10.1371/journal.pone.0027548.t001

Figure 8. Active site comparison for SdPI and other Kunitz-type proteins. Identical and similar residues are highlighted in blue. Cysteine
residues are highlighted in black. The predicted P1 positions of the active site of Kunitz-type proteins with protease inhibition activity are highlighted
in red and the P1’ positions in green.
doi:10.1371/journal.pone.0027548.g008
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Figure 9. SdPI-trypsin complex predicted by molecular dynamics simulation. (A) The a-helix and b-strands of the modeled SdPI structure
are displayed in red and blue, respectively. Disulfide bonds are shown in yellow. The active site residues of SdPI are represented as green sticks. (B)
Lys14, the P1 residue of SdPI, can fit into the S1 pocket of trypsin. (C) The adjacent residue Lys12 likely also contributes to enhancing the SdPI-trypsin
interactions. (D) The nearby residue Phe17 may also contribute to enhancing the SdPI-trypsin interaction.
doi:10.1371/journal.pone.0027548.g009

Figure 10. Inhibition of trypsin by SdPI at elevated temperatures. The residual trypsin inhibitory activity of rSdPI was determined after
incubation for 1 hour at temperatures from 25 to 100uC. Data represent the mean 6 S.E. of at least three experiments.
doi:10.1371/journal.pone.0027548.g010
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[0.2 M ammonium acetate (pH 7.5), 0.2 mM oxidized glutathi-

one] at 16uC for 24 h. The soluble material was desalted and

concentrated using centrifugal filter devices (cutoff value .5 kDa)

(Sartorius Stedim Biotech, Germany). Renatured protein was

finally purified by RP-HPLC on a C18 column (106250 mm,

5 mm) (Elite-HPLC), using a linear gradient from 5% to 95%

acetonitrile with 0.1% TFA in 60 min with a constant flow rate of

5 ml/min. Peaks of eluted protein were detected at 230 nm. The

fraction containing rSdPI peptide eluted as major peaks at 30–

33% acetonitrile, which were collected manually and immediately

lyophilized. The molecular mass of the purified rSdPI peptide was

further analyzed by MALDI-TOF-MS (Applied Biosystems).

The secondary structures of SdPI and its mutants were analyzed

by CD spectropolarimetry. All purified peptides were dissolved in

water at a concentration of 0.2 mg/ml. Spectra from 250 to

190 nm were recorded at 25uC with a scan rate of 50 nm/min on

a Jasco-810 spectropolarimeter. The final CD spectra were

obtained by averaging three scans and subtracting the signal from

a water blank.

Serine protease inhibition assays
The inhibitory activity of rSdPI and its mutants was tested by

measuring the hydrolysis of synthetic chromogenic substrates in

the presence serine proteases. Trypsin (bovine pancreatic trypsin;

EC 3.4.21.4), chymotrypsin (bovine pancreatic a-chymotrypsin;

EC 3.4.21.1), elastase (porcine pancreatic elastase; EC 3.4.21.36),

and the chromogenic substrates Na-benzoyl-L-arginine 4-nitroa-

nilide hydrochloride, N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide,

and N-succinyl-Ala-Ala-Ala-p-nitroanilide, were purchased from

Sigma (U.S.A). The trypsin assay was performed in 100 mM Tris-

HCl (pH 8.0) containing 10 mM CaCl2 in a total volume of

200 ml. Trypsin (final concentration was 400 nM) was incubated

with various amounts of rSdPI or mutants (100 to 400 nM) for

30 min. The reactions were initiated by adding varying concen-

trations of substrate Na-benzoyl-L-arginine 4-nitroanilide hydro-

chloride ranging from 0.1 to 0.8 mM. The initial rate of p-

nitroanilide (pNA) production was monitored continuously at

405 nm for 5 min at 25uC. The inhibitory activity of rSdPI was

determined by setting the initial velocity with protease alone as

100% [29]. Lineweaver–Burk plots (1/V vs. 1/[S]) were used to

determine the Km/Vmax values of trypsin activity on Na-benzoyl-

L-arginine 4-nitroanilide in the presence of different inhibitor

concentration. The slopes (Km/Vmax) of curves were plotted

against the concentration of inhibitor. The inhibitory constant (Ki)

of the trypsin/inhibitor complex can be determined from the

intercept point of the secondary plot on the x-axis [19]. Inhibitory

tests for chymotrypsin and elastase were carried out in the same

manner as for trypsin, except with a lower protease final

concentration of 100 nM and switching to the relevant chromo-

genic substrates.

Atomic coordinates and molecular dynamics simulation
Molecular dynamics simulation was used for predicting the

putative active site of SdPI. The atomic structure of SdPI was

modeled by using the bovine pancreatic trypsin inhibitor (BPTI,

PDB code: 1OA5) as a template. The structure of trypsin was

extracted from the BPTI-trypsin complex (PDB code: 2PTC).

Then a SdPI-trypsin complex was obtained through distance-

restraint homologous modeling method [34] on the basis of the

BPTI-trypsin complex and subjected to molecular dynamics

simulation in explicit solvent to test its stability. To simulate SdPI

with trypsin in explicit solvent, the starting complex was embedded

in a periodic box containing 10250 TIP3P explicit water

molecules, with a distance of 8.5 Å. The system was then subject

to 400 ps equilibration and 2 ns unrestrained simulation using

sander and PMEMD modules in the Amber8 program, respec-

tively. The equilibration steps were taken by gradually reducing

the force constant from 5.0 (kcal/mol)/Å2 for restraining all the

heavy atoms to 0.02 (kcal/mol)/Å2 for backbone heavy atoms

only. The temperature was set at 300K with a cutoff distance of

12 Å. The ff99 force field (Parm99) was applied in all the energy

minimization and simulation steps.

Thermostability assays
Aliquots of purified rSdPI peptide at a final concentration of

400 nM were dissolved in 100 mM Tris-HCl (pH 8.0) containing

10 mM CaCl2. Then the samples were added to preheated test

tubes and incubated for 1 hour at temperatures from 25uC to

100uC [35]. The residual trypsin inhibitory activity of rSdPI

peptide was determined by the method described above.
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