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Epigenetics has emerged as a prime focus area in the field of cancer research.

Lysine-specific demethylase 1A (LSD1), the first discovered histone

demethylase, is mainly responsible for catalysing demethylation of histone

3 lysine 4 (H3K4) and H3K9 to activate or inhibit gene transcription. LSD1 is

abnormally expressed in various cancers and participates in cancer

proliferation, apoptosis, metastasis, invasion, drug resistance and other

processes by interacting with regulatory factors. Therefore, it may serve as a

potential therapeutic target for cancer. This review summarises the major

oncogenic mechanisms mediated by LSD1 and provides a reference for

developing novel and efficient anticancer strategies targeting LSD1.

KEYWORDS

anticancer activity, demethylation, epigenetics, histone modifications, LSD1, lysine
methylation, signaling pathway, targets

1 Introduction

Cancer is a life-threatening disease that seriously threatens human health and life (Liu

et al., 2020). The number of new cancer cases exceeded 19.29 million in 2021, with

approximately 9.96 million deaths reported worldwide (Siegel et al., 2021). Mechanisms

underlying tumorigenesis are usually driven by genetic mutations, especially mutations

that occur in cancer suppressor genes and (or) proto-oncogenes (Wang et al., 2018; Fang

et al., 2020). Several recent studies have shown that abnormal epigenetic modifications,

such as DNA and histone modifications, play essential roles in regulating tumorigenesis

and the proliferation and differentiation of cancer stem cells (Chen J. et al., 2020; Ghasemi

et al., 2021; Zhao and Peng, 2022). In addition, epigenetic reprogramming and unlocking

phenotypic plasticity have been reported as the hallmarks of cancer (Gupta et al., 2019;

Hanahan, 2022; Saltarella et al., 2022).

Histone octamers are composed of two H2A, H2B, H3, and H4 subunits, and each

core histone has a folding region and an amino-terminal domain. Various covalent

modifications such as acetylation, phosphorylation, methylation, ubiquitination, and
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glycosylation can occur at the amino terminus of histones, which

affect the chromatin structure and activation or inhibition of

transcription (Yang et al., 2021a; Yang et al., 2021b). Shi and

Tsukada (2013) discovered the first histone demethylase in 2004,

a lysine-specific histone demethylase 1 (LSD1). The discovery of

LSD1 indicates that histone methylation modification is a

dynamic process that can regulate not only the methylation of

histones but also the interaction of histones with other functional

proteins. Numerous studies have shown that LSD1 is responsible

for regulating the transcriptional activation and repression of

specific genes, X chromosome inactivation and viral pathogenesis

and plays an essential role in embryonic and cancer development

(Miller et al., 2021). This review summarises the research

progress of LSD1 in various cancers and highlights the

mechanism of action of LSD1 underlying its anticancer

activity (Figure 1).

2 Structure and biological function of
LSD1

LSD1, also known as KDM1A, AOF2, BHC110, KIAA0601,

NPAO, and p110b, is a flavin adenine dinucleotide (FAD)-

dependent monoamine oxidase located in the nucleus (Anand

and Marmorstein, 2007). It mainly consists of three domains,

namely, the N-terminal SWIRM (Swi3p/Rsc8p/Moira),

C-terminal amine oxidase (AOL) and central Tower domains

(Figure 2) (Karakaidos et al., 2019; Majello et al., 2019). The

SWIRM domain is highly conserved and can recognise and bind

to histones, whereas the AOL domain mainly binds to histone

substrates (Chen et al., 2006; Castelli et al., 2018). The Tower

domain extends two parallel alpha helices outward from the AOL

domain to facilitate interactions with other co-regulators/

cofactors, including FAD. Typically, the SWIRM and AOL

domains are connected and overlap to form a spherical shape

(Chen et al., 2006; Kaniskan et al., 2018). The Tower domain is

formed by two helices extending outward from the C-terminal

AOL domain, thereby dividing the AOL domain into the

following two parts: the FAD-binding domain and a

catalytically active centre. The main difference between

LSD1 and LSD2 is that the N-terminus of LSD2 has a zinc

finger domain (Zn-CW), which is necessary for binding to its

methylated substrate (Zhang et al., 2013). LSD1+8a, a subtype

generated by alternative splicing of LSD1, is involved in the

differentiation of neuronal cells via demethylation of H3K9me2/

1 (Jotatsu et al., 2017).

The primary biological function of LSD1 is the

demethylation of histone or non-histone proteins (Gu et al.,

2020). Some standard arginine and lysine methylation sites on

histones or non-histones proteins include histone 3 lysine 4

(H3K4), H3K9, H3K27, H3K36, H3K79, and histone 4 lysine

20 (H4K20). Methylation at H3K4, H3K36, and H3K79 sites is

involved in the repression of gene transcription (Hyun et al.,

2017). LSD1 can remove the monomethyl (Me1) or dimethyl

(Me2) group from lysine residues and can specifically

FIGURE 1
The role of LSD1 in tumorigenesis and development.
LSD1 participates in cancer progression by regulating multiple
critical physiological processes, such as the proliferation, invasion,
metastasis, energy metabolism, immune regulation, and drug
resistance of cells (drawn using tools from PNGBAG; https://www.
pngbag.com/, copyright ©2020 PNGBAG.COM).

FIGURE 2
The structure of human lysine-specific demethylase (LSD)
protein. (A) Three-dimensional structure of human LSD1 protein
(PDB No.: 2Z5U), Copyright © 2007 Elsevier Inc. (B) Schematic
illustration of the structure of LSD1 and LSD2.
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FIGURE 3
Relationship between LSD1 and cancers. (A) LSD1 is aberrantly expressed in various cancers. (B) Analysis of the correlation between LSD1
expression and overall survival (OS). Data from the GEPIA database, http://gepia.cancer-pku.cn/index.html.
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demethylate the H3K4 site to inhibit its transcriptional activity

(Wang and Cole, 2020). In addition, LSD1 can interact with

REST/CoREST/co-regulatory factors to exert a regulatory effect

(non-methylation function) (Gu et al., 2020; Perillo et al., 2020).

3 Primary targets or signalling
pathways mediated by LSD1

Abnormal expression of LSD1 in various cancers promotes

cancer progression and is closely related to the survival and

prognosis of patients (Figure 3) (Ramírez-Ramírez et al., 2020;

Zhang et al., 2020). Given that LSD1 is a potential therapeutic

target for cancer, many targeted inhibitors of LSD1 with excellent

anticancer activity have been reported, and some of these

inhibitors have entered clinical trials (Maes et al., 2018;

Wimalasena et al., 2020; Fang et al., 2021; Yang et al., 2022).

3.1 LSD1-mediated tumor regulators

3.1.1 p53
p53 is a well-known cancer suppressor and transcriptional

activator regulated by many post-translational modifications,

including lysine methylation. LSD1 promotes the interaction

of p53 with the coactivator 53BP1 (p53-binding protein 1) by

removing the monomethyl (K370me1) and dimethyl (K370me2)

groups at K370 (Chen L. et al., 2020). However, the direct

interaction of LSD1 with p53 inhibits p53-mediated

transcriptional activation and apoptosis, resulting in altering

the chromatin structure and inhibiting the development of the

cancer marker alpha-fetoprotein (AFP) (Wen and Wang, 2022).

Therefore, downregulating the expression of LSD1 and (or)

inhibiting its activity can promote cancer cell apoptosis. The

intrinsically disordered C-terminal domain of p53 inhibits

LSD1 activity, and direct interaction between the two proteins

may contribute to their functional crosstalk (Speranzini et al.,

2017).

Overexpression of LSD1 can strongly inhibit p53 in prostate

cancer (PCa) and promote androgen-independent (AI)

transformation of PCa and LNCaP cells in an androgen-

deficient setting (Li X. et al., 2016). Low doses of the

LSD1 inhibitor HCI-2509 can significantly alter the cell cycle

and expression of p53, MYCN and hypoxia pathway-related

genes in neuroblastoma (Gupta et al., 2018).

3.1.2 Terminal deoxynucleotidyl transferase-
interacting factor 1

Terminal deoxynucleotidyl transferase (TdT)-interacting

factor 1 (TdIF1) is a ubiquitously expressed protein that binds

to TdT polymerase (Zhang et al., 2018). It is abundantly

expressed in lung cancer, is associated with a poor prognosis

and is a potential cancer-promoting factor and therapeutic target

(Liu et al., 2021). Silencing or inhibiting TdIF1 can inhibit the

migration and invasion of cancer cells and cancer growth.

LSD1 binds to TdIF1 and is recruited to the E-cadherin

promoter region, where it activates transcription to induce

epithelial–mesenchymal transdifferentiation (EMT) and

promote the invasion and migration of cancer cells (Zhang

et al., 2019; Liu et al., 2021). Therefore, simultaneous

inhibition or silencing of LSD1 and TdIF1 exerts synergistic

effects on anticancer proliferation, migration and invasion.

3.1.3 DNA-binding zinc finger transcription
factor

Growth factor independence 1 (GFI1) and the closely related

protein GFI1B are major regulators of both early haematopoiesis

and haematopoietic stem cells, and their aberrant activation has

been implicated in human medulloblastoma and haematological

malignancies (Beauchemin and Möröy, 2020; Ravasio et al.,

2020). GFI1 and GFI1B are major proteins that interact with

LSD1, recruit histone-modifying enzymes to the promoters and

enhancers of target genes through the N-terminal SNAG domain

to regulate the expression of target genes, such as HDAC and

LSD1, and play an essential role in cell proliferation and

differentiation (Maiques-Diaz et al., 2018; Beauchemin and

Möröy, 2020; Tatsumi et al., 2020). In addition, they are

involved in the recruitment of CoREST complexes to

chromatin in myeloid cells (Van Bergen and Van Der

Reijden, 2019). An irreversible inhibitor of LSD1, T-3775440,

selectively suppressed the proliferation of SCLC cells

overexpressing GFI1B (Takagi et al., 2017).

3.1.4 Polo-like kinase 1
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that is

a key regulator of eukaryotic cell division. Because PLK1 is highly

expressed in cancer cells and is associated with the poor

prognosis of many cancers, it has emerged as a new target for

developing many anticancer drugs (Li Z. et al., 2020; Yu et al.,

2021).

LSD1 can recognise and bind to the promoter region of

PLK1 to regulate its expression, which regulates the expression of

cell division-related genes. However, the interaction between

p53 and PLK1 is negatively regulated (Li Y. et al., 2020; Jung

et al., 2021). p53 inhibits transcription at the PLK1 promoter,

whereas PLK1 inhibits the function of p53 by directly binding to

it or inactivating it by promoting its degradation (Dufies et al.,

2021; Zhang C. et al., 2022; Hirschler-Laszkiewicz et al., 2022).

Therefore, LSD1 may regulate the cell cycle and proliferation

through the p53/PLK1 signalling axis.

3.1.5 Hypoxia-inducible factor-1α
Hypoxia-inducible factor 1-alpha (HIF-1α) is a key protein

that regulates the expression and synthesis of cytokines and

growth mediators in cells during hypoxia (Yang et al., 2021c).

It plays an essential role in the formation of tumor blood vessels
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and the proliferation, metastasis, invasion, apoptosis, energy

metabolism, and drug resistance of tumor cells (Li G. et al.,

2021). The expression of HIF-1α is positively correlated with the

malignancy and poor prognosis of cancers. Therefore, inhibiting

the expression of HIF-1α and blocking hypoxia signal

transduction mediated by it may help develop novel

therapeutic strategies for cancers.

The stability of HIF-1α is regulated by lysine methylation.

SET7/9 methyltransferase adds a methyl group to HIF-1α, which
subsequently triggers protein degradation via the

ubiquitin–proteasome pathway. However, LSD1 demethylates

HIF1α at K391, thus protecting HIF-1α from ubiquitin-

mediated protein degradation, and directly inhibits PHD2-

mediated hydroxylation of HIF-1α (Baek and Kim, 2016; Lee

et al., 2017; Yang et al., 2017). In addition, LSD1 is highly

expressed in cancers, potently stabilises HIF1α and enhances

the transcriptional activity of downstream target genes, such as

VEGF, which can induce cancer angiogenesis. Cellular

senescence is a state of permanent cell cycle arrest, which

strongly affects the development, invasion and prognosis of

cancers. In glioblastoma, silencing/inhibiting

LSD1 downregulates HIF-1α, which inhibits the growth and

migration of cancer cells and induces cellular senescence

(Saccà et al., 2019).

3.1.6 Snail
Snail is an important regulator of EMT-associated zinc finger

structures. It is involved in the immune escape, immune

regulation, drug resistance of cancer cells, and maintenance of

cancer cell stemness. And it also recruits LSD1 to suppress the

expression of breast cancer susceptibility gene 1 (BRCA1) (Li H.

M. et al., 2020; Pan et al., 2021). The interaction of LSD1 with the

SNAG domain at the N-terminus of Snail inhibits the expression

of E-cadherin.

An inhibitor of LSD1, parnate, blocks Snail-dependent

inhibition of the E-cadherin promoter and inhibits the

migration and invasion of cancer cells without affecting their

proliferation (Ferrari-Amorotti et al., 2013; Ferrari-Amorotti

et al., 2014). It has been reported that parnate treatment

inhibited bone marrow homing/transplantation of Snail2-

expressing K562 cells. Furthermore, the knockdown of

LSD1 in triple-negative breast cancer (TNBC) can significantly

inhibit the proliferation and invasion of cancer cells and

metastasis (Bai et al., 2017). LSD1 interacts with Snail1 to

mediate the ectopic expression of Snail1, thus increasing the

risk of AML in mice (Carmichael et al., 2020).

3.1.7 Zinc finger proteins
Zinc finger proteins (ZNFs) are the largest family of

transcription factors in the human genome with extensive and

important molecular biological functions. In addition to

regulating the transcription of downstream target genes by

interacting with different functional domains and trans-

regulatory elements, ZNFs can recruit other chromosome

modifiers and interact with different partner proteins to

inhibit or promote gene transcription. ZFPs are abnormally

expressed in cancer cells and participate in the occurrence and

development of cancers by regulating gene transcription and

translation.

ZNF217, a C2H2 zinc finger transcription factor, acts as a

key effector in stimulating embryonic immortalisation and

oncogenicity in various cancer-related processes.

Downregulation of ZNF217 can inhibit the proliferation,

invasion and EMT of HCC cells (Si et al., 2019).

Mechanistic studies have shown that ZNF217 interacts with

CoREST, LSD1, HDAC, and C-terminal binding protein

(CtBP) to inhibit the transcriptional activity of CDH1 (Li

Y. et al., 2021). SP-2509 inhibits the viability of cancer cells by

blocking the binding of LSD1 to ZNF217 by inhibiting LSD1-

independent function in castration-resistant PCa (Sehrawat

et al., 2018).

3.1.8 Immune checkpoint
Immune checkpoints are inhibitory signals in the immune

system, which mainly maintain normal immune function by

regulating immune activation (Sun et al., 2020; Zhang and Sun,

2020). The binding of programmed death-ligand 1/2 (PD-L1/

PD-L2) expressed on cancer cells with programmed cell death

protein 1 (PD-1) expressed on cytotoxic T cells triggers

inhibitory signalling, leading to immune escape owing to

T cell depletion (Dyck and Mills, 2017).

Knockdown/inhibition of LSD1 in cancer cells upregulates

the expression of repetitive elements, including ERV, induces

dsRNA stress and activates type 1 interferons, which stimulate

anticancer T cell immunity and suppress cancer growth

(Sheng et al., 2018). The expression of LSD1 in TNBC is

inversely correlated with immunoregulatory factors such as

cytotoxic T cell-attracting chemokine (C-C motif) ligand 5

(CCL5). Inhibition of LSD1 increases the expression of

effector T cell-attracting chemokine factors and PD-L1 and

promotes the trafficking of CD8+ T lymphocytes in the

microenvironment of TNBC (Qin et al., 2019). Knockout of

LSD1 or inhibition of LSD1 activity can also enhance the

immune response of T cells in various cancers, such as

cervical, ovarian, gastric, and oral cancers (Soldi et al.,

2020; Xu et al., 2021; Alhousami et al., 2022; Shen et al.,

2022). Therefore, LSD1 inhibition may be an effective

adjuvant for immunotherapy in patients with poorly

immunogenic cancers.

3.1.9 Silent information regulator 1
Silent information regulator 1 (SIRT1) is a class III histone

deacetylase that is dependent on nicotinamide adenine

dinucleotide and is involved in the regulation of glucose and

lipid metabolism, insulin secretion, oxidative stress, organ

metabolism and tumorigenesis (Soni et al., 2021; Jalgaonkar
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et al., 2022). The highly conserved SWIRM domain of

LSD1 interacts with SIRT to form a functional complex,

which mediates the activity of SIRT1. The interaction between

SIRT1 and LSD1 plays a conserved and cooperative role in

H3K4 demethylation to inhibit Notch signalling-mediated

gene transcription (Cao et al., 2021). SIRT1 and LSD1 are

aberrantly expressed in cancers and play an antagonistic role

in DNA repair and mutation acquisition (Boila and Sengupta,

2020; Wang et al., 2020). Moreover, the expression of LSD1 and

SIRT1 is negatively correlated with the prognosis and survival of

patients.

3.1.10 Mammalian target of rapamycin
complex 1

Mammalian target of rapamycin complex 1 (mTORC1) is an

evolutionarily conserved serine/threonine protein kinase

responsible for the regulation of cell proliferation and

metabolism (Battaglioni et al., 2022; Huang et al., 2022). The

activity of mTORC1 is regulated or feedback-regulated by a

variety of intracellular signaling factors, such as growth

factors, protein levels, energy levels, and intracellular oxygen

partial pressure (Wang et al., 2021; Li et al., 2022). mTORC1 can

participate in cancer progression by phosphorylating its

substrates to regulate intracellular protein synthesis, material

metabolism (lipid, nucleotide, and glucose) and autophagy.

mTORC1 is a key regulator of autophagy, and its activity is

directly and positively correlated with the level of LSD1 (Li et al.,

2019). Activated LSD1 alters the levels of phosphorylated

mTOR1 and AKT through the mTOR signaling pathway,

thereby reducing autophagy in tumour cells (Feng S. et al.,

2016; Ma et al., 2022). Inhibition of LSD1 in drug-resistant

leukaemia helps detect aberrantly activated mTORC1;

therefore, activation of mTORC1 may be a pro-survival

mechanism for cancer cells (Abdel-Aziz et al., 2020).

Simultaneous knockdown or pharmacological inhibition of

mTORC1 and LSD1 significantly enhanced primary cell

differentiation and reduced the proportion of primary human

AML cells (Deb et al., 2020).

3.1.11 F-box and WD-40 domain protein 7
F-box and WD-40 domain protein 7 (FBXW7) is an

important recognition factor in the ubiquitin–proteasome

degradation pathway. It is also a typical cancer suppressor,

which mediates the ubiquitination and degradation of various

oncoproteins and regulates the occurrence and development of

malignant cancers.

LSD1 recognises and binds to FBXW7 and inhibits its

dimerisation, resulting in autoubiquitination/degradation of

FBXW7 (Lan et al., 2019). Inhibiting the activity/expression of

LSD1 exerts anticancer effects by stabilising/upregulating the

accumulation of FBXW7. Knockdown/silencing of LSD1 or

overexpression of FBXW7 in PCa cells can significantly

reduce the activity of oncoproteins such as c-MYC and

NOTCH-1. The oncogenic activity of LSD1 depends on the

interaction of LSD1 with FBXW7, independent of its

demethylase activity (Lan et al., 2019), which is supported by

functional validation of the allosteric inhibitors SP-2509 and

GSK-2879552 (Qin et al., 2020).

3.1.12 Long noncoding RNAs
Long noncoding RNAs (lncRNAs) are non-protein-coding

RNA molecules with a length of >200 nucleotides (Ghafouri-

Fard and Taheri, 2020). They are involved in the growth,

proliferation, metastasis and drug resistance of cancers and

other related processes and are abnormally expressed in

various cancers, such as gastric, lung, breast, liver, and

endometrial cancers (Chen et al., 2016; Kim et al., 2018;

Raeisi et al., 2019). LSD1 can bind to lncRNAs to exert

oncogenic effects.

Enhancers of LSD1 interact with lncRNAs and are recruited

to the promoter regions of cancer suppressors, such as KLF2,

LATS2, and P21, to inhibit their transcriptional activity (Li W.

et al., 2016; Zang et al., 2016). LSD1 can activate p62-mediated

antioxidative pathways by upregulating certain lncRNAs (Ma

et al., 2021). In addition, FOXP4-AS1 and DUXAP8 can

recognise and bind to LSD1 and upregulate the expression of

LSD1 to accelerate cancer progression (Chen et al., 2019; Gong

et al., 2019).

3.2 Signaling pathways regulated by LSD1

3.2.1 Energy metabolism pathway
The energy metabolism of cancer cells is significantly

different from that of normal cells; that is, despite the

presence of sufficient oxygen, cancer cells use glycolysis as

the main energy production method, which is called the

Warburg effect (Bose et al., 2021; Cook et al., 2021).

Overexpressed LSD1 in cancer cells promotes glucose

uptake and glycolytic activity and upregulates the

expression of GLUT1 and glycolytic enzymes; however, it

strongly downregulates the expression of mitochondrial

metabolism-related genes (Luo et al., 2021). Knockdown or

pharmacological inhibition of LSD1 can activate the

transcriptional activity of the gluconeogenesis genes

FBP1 and G6Pase, resulting in increased de novo glucose

synthesis and decreased intracellular glycogen content

(Wang D. et al., 2022). Inhibition of LSD1 activity in

oesophageal cancer cells can significantly reduce the

extracellular acidification rate (ECAR) and increase the

oxygen consumption rate (OCR) and OCR/ECAR ratio

(Kosumi et al., 2016). LSD1 may contribute to the

malignant behaviour of oesophageal cancer by regulating

metabolism, glycolytic pathway, and mitochondrial

respiration. In addition, LSD1 plays an important role in

regulating adaptive thermogenesis and lipid metabolism
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and may be a novel target for treating obesity (Wang D. et al.,

2022).

3.2.2 NOTCH signalling pathway
The highly conserved Notch signalling pathway regulates

essential life processes such as cell differentiation, proliferation

and angiogenesis via interaction among adjacent cells or paracrine/

endocrine effects (Trindade and Duarte, 2020; Misiorek et al.,

2021). Cancer cells use the Notch signalling pathway to form a

microenvironment of cancer-promoting factors by promoting the

secretion of cancer-related inflammatory cytokines, such as IFN-γ,
which regulates immune cell function; and IL-1β and CCL2, which
mediate immune infiltration, the release of senescence-related

cytokines and immunosuppression, thereby suppressing the

immune response (Cortesi et al., 2021; Wang L. et al., 2022;

Zhou et al., 2022).

The interaction between LSD1 and NOTCH1 inhibits the

expression and downstream signalling of NOTCH1. ORY-1001,

a selective inhibitor of LSD1, can activate the Notch pathway and

strongly inhibit cancer growth in chemotherapy-resistant PDX

models (Augert et al., 2019). However, the expression of

LSD1 and NOTCH3 in clinical specimens of HCC is strongly

negatively correlated with the survival of patients. This negative

correlation may result from the increased expression of LSD1 in

cancer-associated fibroblasts (CAFs), which regulate driving

NOTCH3-mediated self-renewal of cancer stem cells (Liu

et al., 2018).

3.2.3 PI3K/AKT signalling pathway
Phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt)

is a well-known growth and development signalling pathway in

organisms, which plays a crucial role in cell proliferation,

apoptosis, cell cycle, DNA repair, and protein synthesis

(Hoxhaj and Manning, 2020). PI3K/AKT not only mediates

life activities such as the proliferation, migration, metastasis,

and self-renewal of cancer cells but also regulates the self-renewal

ability of cancer stem cells (Yang et al., 2020).

Silencing/knockout of LSD1 inhibited the invasion and

metastasis of gastric cancer cells owing to the significant

downregulation of VEGF-C, p-PI3K, PI3K, p-AKT, AKT,

VEGFR-3, MMP-2, and MMP-9 (Pan et al., 2019).

LSD1 can enhance AR signalling and activate the PI3K/

AKT pathway in PCa by increasing p85 gene expression in

the absence of AR (Wang et al., 2019). Similarly, TCP, an

inhibitor of LSD1, can block the binding of LSD1 to the

promoter regions of NOTCH3, Hes1, and CR2, thereby

reducing Notch and PI3K/Akt/mTOR signalling (Hou

et al., 2019). Moreover, high expression of LSD1 was

detected in patients with colorectal cancer with mutations

in the catalytic subunit of PI3K, and PIK3CA-mutated

colorectal cancer cells were found to be dependent on

LSD1 for growth (Miller et al., 2020).

3.2.4 Wnt/β-Catenin signalling pathway
The Wnt/β-Catenin signalling pathway plays a key role in

regulating cell pluripotency and carcinogenesis and is closely

related to important processes such as cancer proliferation,

metastasis and chemotherapy resistance (Zhang and Wang, 2020;

Liu et al., 2022). LSD1 can activate the Wnt/β-Catenin signalling

pathway by downregulating DKK1 in colorectal cancer. After

pharmacological inhibition or silencing of LSD1, the

translocation of β-Catenin to the nucleus is significantly reduced,

and the transcription of the target gene c-Myc is downregulated.

Combination therapy with LSD1 inhibitors and 5-FU strongly

inhibited Wnt/β-Catenin signalling and DNA synthesis,

significantly inhibiting the proliferation, migration, and growth of

cancer cells in a tumor xenograft-bearing model (Peng et al., 2020).

LSD1 is necessary to emerge cancer stem cells after long-term

sorafenib treatment. LSD1 inhibitors downregulate the expression

of multiple regulators of the Wnt/β-Catenin signalling pathway and

increase the sensitivity of cancer cells to sorafenib (Huang et al.,

2017). LSD1 can downregulate the Wnt pathway antagonists

APC2 and DKK1 through demethylation in thyroid cancer, thus

inhibiting APC2 transcription and activating the HIF-1α/DKK1 axis
to regulate cancer progression (Zhang W. et al., 2022).

4 Conclusion and outlook

As the first discovered histone demethylase, LSD1 has

promoted the research progress of epigenetics. LSD1 is a key

regulator of the proliferation, apoptosis, differentiation, invasion,

metastasis, drug resistance, and cancer stemness and hence is a

promising therapeutic target for cancers (Feng Z. et al., 2016;

Wang et al., 2016; Alsaqer et al., 2017; Cusan et al., 2018; Verigos

et al., 2019; Tayari et al., 2021).

This review summarises the cancer-promoting regulatory

mechanisms of LSD1 in lung, breast, gastric, colorectal, liver,

bladder, leukaemia, and other cancers. LSD1 regulates different

signalling pathways, such as the Wnt/β-Catenin, PI3K/AKT

signalling, EMT-related, Notch signalling and

ubiquitin–proteasome pathway, and target proteins, such as the

classic cancer suppressor star protein p53, HIFs, and immune

checkpoints, in different types of cancer to mediate cancer

progression. However, because the occurrence and development

of cancers are very complex biological processes, all oncogenic

factors or pathways mediated by LSD1 could not be described in

this review. Some examples include SOX2, whichmaintains cancer

cell stemness; sex hormone receptors (AR and ER); the

transcriptional repressor ZNF516; retinoic acid-related orphan

receptor alpha (RORα); aryl hydrocarbon receptors; ubiquitin-

specific protease 28 and miRNAs (Park et al., 2016; Bai et al., 2017;

Khanal et al., 2017; Kim et al., 2017; Li et al., 2017;Macheleidt et al.,

2018; Cuyàs et al., 2020; Yu et al., 2020; Zhang et al., 2021).

However, the detailed mechanisms of LSD1 underlying
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carcinogenesis remain unclear and warrant further investigation.

For example, does or how LSD1 is involved in ferroptosis and

pyroptosis, and whether LSD1 interact with SITR6?

To date, many LSD1 inhibitors have been reported, with

some having excellent anticancer activity. Among these

inhibitors, ORY-1001 and GSK2879552 have entered

clinical trials, thus validating the clinical application of

LSD1 as a therapeutic target for cancers and incredibly

encouraging the development of strategies targeting

LSD1 for treating cancers. Furthermore, inhibiting

LSD1 protein synthesis or promoting its degradation may

be a potential anticancer strategy (Qi et al., 2020).

Tumorigenesis patterns may be induced by point-to-net or

multi-point-to-net cascades involving numerous regulatory

factors/signalling pathways. In the future, a cure for cancer

may be developed if LSD1-like master switches involved in the

regulation of cascade reactions related to tumorigenesis and

cancer development or target proteins with relatively more

regulatory functions can be identified or if a multitarget

regulation strategy can be developed. Therefore, refining

the oncogenic mechanism of LSD1 will help develop

promising tumor therapeutic drugs or strategies.
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