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Subjectivity and complexity of 
facial attractiveness
Miguel Ibáñez-Berganza   1, Ambra Amico1 & Vittorio Loreto   1,2,3

The origin and meaning of facial beauty represent a longstanding puzzle. Despite the profuse literature 
devoted to facial attractiveness, its very nature, its determinants and the nature of inter-person 
differences remain controversial issues. Here we tackle such questions proposing a novel experimental 
approach in which human subjects, instead of rating natural faces, are allowed to efficiently explore 
the face-space and “sculpt” their favorite variation of a reference facial image. The results reveal 
that different subjects prefer distinguishable regions of the face-space, highlighting the essential 
subjectivity of the phenomenon. The different sculpted facial vectors exhibit strong correlations among 
pairs of facial distances, characterising the underlying universality and complexity of the cognitive 
processes, and the relative relevance and robustness of the different facial distances.

The notions of body beauty and harmony of proportions have fascinated scholars for centuries. From the ancient 
Greek canons, a countless number of studies have focused on unfolding what is behind the beauty of the face and 
the body. Nowadays the notion of facial beauty is a fast expanding field in many different disciplines including 
developmental psychology, evolutionary biology, sociology, cognitive science and neuroscience1–5. Still, despite a 
profuse and multi-disciplinary literature, questions like the very nature of facial attractiveness, its determinants, 
and the origin of inter-subject variability of aesthetic criteria, elude a satisfactory understanding. Here, we revisit 
the question drawing conclusions based on an empirical approach through which we allow human subjects to 
“sculpt” their favorite facial variations by navigating the so called face-space and converging on specific attractors, 
or preferred regions in the face-space.

The face is the part of the human body from which we infer the most information about others, such as: gen-
der, identity, intentions, emotions, attractiveness, age, or ethnicity6–8. In particular, looking at a face, we are able to 
immediately acquire a consistent impression of its attractiveness. Still, we could have a hard time explaining what 
makes a face attractive to us. As a matter of fact, which variables determine attractiveness and their interactions 
are still poorly understood issues3.

Many works have been devoted to assessing the validity of the natural selection hypothesis, or beauty as a 
“certificate” of good phenotypic condition7. According to this hypothesis, a face is judged on average as attractive 
according to a set of innate rules typical of the human species, which stand out with respect to other social or 
individual factors. Some degree of consensus has, indeed, been reported9–13. Most of these experiments are based 
on the measurement of correlations among numerical ratings assigned to a set of natural (or synthetic14,15) facial 
images by raters belonging to different cultural groups. Much work in this field has also been devoted to assess-
ing the covariation of the perceived beauty of a face with facial traits that are believed to signal good phenotypic 
condition, mainly: facial symmetry, averageness and secondary sexual traits. After decades of intense research, 
the role played by these traits is known to be limited: facial beauty seems to be more complex than symmetry5, 
averageness14,16 and secondary sexual traits7,17.

Indeed, it has been documented that cultural, between-person and intra-person differences influence attrac-
tiveness perception in various ways4. As a representative example, the link between masculinity and attractiveness 
in male faces is subject to significant inter- and intra-subject differences4,5,7,18. An evolutionary explanation is 
that exaggerated masculinity could be perceived as denoting a lack of some personality facets such as honesty or 
expressiveness15. In this context, the so called multiple fitness or multiple motive model4,11,19 proposes that attrac-
tiveness varies according to a variety of motives, each one evoking a different abstract attribute of the person 
whose face is evaluated.

On the other hand, an impressive amount of work is committed to the automatic facial beauty rating. This is 
tackled as a supervised inference problem whose training database is composed of natural facial images codified 
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by vectors of facial coordinates in face-space3,20,21, along with (inter-subject averaged) numerical ratings assigned to 
them by human subjects, to be inferred. Works differ mainly on the codification of faces in the face-space: from a 
geometric face description (2D or 3D spatial coordinates of the facial landmarks), to a detailed description of the 
texture or luminosity degrees of freedom that provide a cue to the facial shape in depth (there also exist holistic 
representations, extracting lower-dimensional, non-local information from the facial image according to some 
criterion (Principal Component eigenfaces or Gabor filters); or using richer techniques which integrate geometric 
from skin textural and reflectivity characteristics). With the advent of deep hierarchical neural networks, the raw 
facial image is given as an input to the algorithm, which automatically extracts the putative relevant features in the 
inference process, although in a hardly accessible way (the black box problem).

The supervised inference of ratings may help to address, albeit indirectly, the impact of various facial features 
on attractiveness. Although the relative relevance of different features has been discussed in various articles, 
robust conclusions are lacking3,22–28. The results about the relative relevance of the kind (geometric, textural and 
holistic) of facial attributes to attractiveness are controversial as well3,29–33. In any case, the integration of different 
kinds of variables seems to improve the inference results29,34, suggesting that these are complementarily taken into 
account in the cognitive process of attractiveness assessment.

Facial beauty is, hence, probably not a universal function of a set of few facial properties, as implicitly assumed 
in many references, but the result of a complex process in which multiple semantic concepts, providing cues to 
personality facets, are inferred. The literature concerning inference of personality traits indicates that such seman-
tic concepts may be encoded in global combinations of facial features, in a complex way35. This motivates a study 
of facial beauty beyond the subject-averaged rating, focusing on the inter-subject heterogeneity and on the global 
combinations of various facial features generating such a diversity.

In summary, the complexity of facial attractiveness perception so far prevented a satisfactory understanding 
of how attractiveness relates to various facial elements3, and of the nature of inter-personal differences. In order 
to make progress, from a methodological point of view it is important to highlight three key factors. (A) The pos-
sible mutual influence among geometric, texture and detailed features36. Even considering the problem in terms 
of geometric variables only, the possible existence of interactions or mutual dependencies between different facial 
components may induce a variety of possible pleasant faces, even for the single subject. (B) The undersampling 
of the relevant face-space, due to the many different prototypes of facial beauty14,29. (C) The subjectivity of the 
phenomenon, probably hindered by the use of the average numerical beauty ratings. The complexity and richness 
of the perceptual process, suggested by the multiple-motive hypothesis and by previous work about perception 
of personality dimensions6,37–39, eludes a description in terms of average ratings, a quantity that has already been 
observed to be inadequate3.

In light of these considerations, we here address the phenomenon of facial preference through an empirical 
approach that aims at removing the biases of ratings, focusing instead on the possibility given to human subjects 
to freely explore a suitably defined face-space. By means of a dedicated software, based on image deformation and 
genetic algorithms, we focus on inter-subject differences in aesthetic criterion and let several subjects sculpt their 
favorite variation of a reference portrait, parametrized by a vector of geometric facial coordinates. We observe 
how different subjects tend to systematically sculpt facial vectors in different regions of the face-space, which 
we call attractors, pointing towards a strong subjectivity in the perception of facial beauty. In addition, the facial 
vectors sculpted by different subjects exhibit strong correlations for pairs of facial distances, which is a manifes-
tation of the underlying universality and complexity of the cognitive process of facial image discrimination. The 
correlations contain information regarding the different sources of variability in the dataset of selected vectors. 
For instance, though a difference between male-female subjects is clearly observed, the largest differences among 
facial variations, elicited by a principal component analysis, result from criteria that are transversal with respect 
to the gender only. A third important result concerns the assessment of the robustness of the results with respect 
to the degrees of freedom not described in the face-space. Crucially, in our approach, the luminance, texture and 
detailed degrees of freedom are decoupled from the geometric features defining the face-space, and deliberately 
kept fixed, and common for all the subjects. Finally, we observe that the overall experimental results are, interest-
ingly, partially robust and independent of the detailed degrees of freedom (the reference portrait).

The current experimental scheme bypasses the three confounding factors (A–C) mentioned in the precedent 
paragraph. (A) Uncontrolled sources of biases are absent in our study, since all possible facial variations (given the 
reference portrait) are described by points in the face-space. (B) In our face-space of reduced dimensionality and 
unchanged texture degrees of freedom the undersampling is mitigated, making possible an efficient exploration 
of the face space and allowing for an accurate characterisation of the single-subject attractor. (C) This allow us 
to fully account for subjectivity: we are able to analyse the differences among different subject’s preferred facial 
modifications.

Results
Preferred facial images as extrema in face-space.  We consider a face-space defined by a set of geomet-
ric coordinates illustrated in Fig. 1A. A face is parametrized in terms of a set of 10 non-redundant Cartesian 
coordinates of 7 single landmarks =α

→
  (xα,yα) or, alternatively, in terms of a vector of D = 11 inter-landmark 

distances = =dd ( )i i
D

1. The face-space vector components fi are, in this way, either landmark Cartesian coordinates 
or inter-landmark distances. From a vector of facial coordinates f and a reference facial portrait corresponding to 
a real person, we then construct a facial image by a continuous deformation of the reference portrait such that its 
landmark geometric coordinates acquire the desired value, f (Fig. 1B,C). Within a single experiment, the refer-
ence portrait (the image texture) is unchanged and only the geometric position of the landmarks can change (for 
an in-depth explanation see Sec. Methods and the Supplementary Information).
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The aim of the experimental method is to provide a population of N facial vectors, {f (s,n)}n, with n = 1, …, N 
and ∈f s n D( , ) , for each experimental subject, s. Such a population is considered as an empirical sample of the 
subject’s attractor, or the face-space region of his/her preferred modifications of the reference portrait. This means 
that the subject would probabilistically prefer facial images associated with vectors that are close to the attractor, 
rather than local fluctuations away from it (for a precise definition see the Supplementary Section S2). In our 
experimental scheme, the subject does not sculpt the population by successive discrimination among faces differ-
ing by a single coordinate, which turns out to be an inefficient strategy of face-space exploration, but rather 
through the interaction with a genetic algorithm (see sections Methods, Supplementary Section S3).

In a first experiment (E1), we have let S1 = 95 subjects sculpt their facial variations of reference portrait RP1 
(see 1-A). This results in a final population, = = =f{ }s n

s n
S N

1
( , )

1, 1
,1  of N = 28 facial vectors for each subject. Starting 

from N initial random facial vectors, the FACEXPLORE software generates pairs of facial images that are pre-
sented to the subject, who selects the one that he/she prefers. Based on N left/right choices, a genetic algorithm 
produces a successive generation of N vectors, in a constant feedback loop of offspring generation and selection 
operated by the subject. The iteration of this process leads to a sequence of T generations of facial vectors, each 
one more adapted than the last to the subject’s selection criteria, eventually converging to a pseudo-stationary 
regime in which the populations are similar to themselves and among consecutive generations. Figure 2 reports 
the evolution (versus the generation index, t = 1, …, T = 10) of the intra-population distance, the distance among 
faces within the single populations sculpted by 10 different, randomly chosen, subjects in E1 (see Supplementary 
Section S4 for details). In the next subsection, we discuss the degree of reproducibility of our results as a function 
of N, T and S1.

Figure 1.  (A) The parameters defining the face space. The red points indicate the landmarks, α = 1, …, 18, 
whose 2D varying Cartesian coordinates generate the continuum of face space. The face space points are 
parametrised in terms of vectors f whose components are the Cartesian coordinates of a set of non-redundant 
landmarks 

→
α  (signaled with an empty circle), or in terms of (vertical or horizontal) distances di (i = 0, …, 10) 

among some pairs of landmarks = | − |α βdi i i( ) ( )x x  or y y= | − |α βdi i i( ) ( )  (arrows). (B) Reference portrait RP1 
used in experiment E1 along with its corresponding landmarks (in blue). (C) Image deformation of RP1 
according to a given vector of inter-landmark distances d: the blue reference portrait landmarks are shifted 
(leading to the red points) so that their inter-landmark distances are d, and the reference image (B) is 
consequently deformed. (D) Image deformation of the reference portrait RP2 according to the same vector of 
distances d as in (C).
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The intra-population distance decreases with the generation index, indicating that the populations sculpted 
by single subjects tend to clusterize in a region of the face-space. This clustering is not observed in a null exper-
iment in which the left-right decisions are taken randomly. Remarkably, a diversity of behaviors towards the 
pseudo-stationary regime is observed, already signaling differences in the way the face-space is explored.

From now on, we will consider the final population sculpted by the s–th subject, =f{ }s n
n
N( , )

1, as the final, 
T = 10-th generation of the sequence of populations sculpted by this subject in E1. In the next subsection we show 
that the face-space attractors of different subjects are actually significantly and consistently different. This exper-
imental scheme is, therefore, able to resolve the subjective character of attractiveness, as the single subject tends to 
sculpt populations of vectors clustered in a narrow region in the face-space in successive realisations of the exper-
iment. All these facts imply that the single subject attractor can be operationally characterised as an extremum of 
a subject-dependent, probabilistic function in face-space, which may be inferred from the populations sculpted by 
the subject in several instances of the experiment (see Supplementary Section S2 for a complete definition). The 
attractors are extrema of such a function in the sense that a significant fluctuation of a vector coordinate away 
from its value in the attractor will tend to lower its probability of being selected by the subject, given the reference 
portrait.

Assessment of subjectivity: distinguishable aesthetic ideals.  In order to assess the subjectivity of 
the sculpting process, we need to measure to what extent the same subject, by repeating the same experiment, 
would sculpt populations of facial vectors closer to each other than to populations sculpted by distinct subjects. 
To this end we performed a second experiment (E2), in which a subset of Ssc = 6 subjects were asked to perform 
m = 6 instances of an experiment E1, with the common reference portrait RP1, different (random) initial condi-
tions and sequence of random numbers in the genetic algorithm. The subjectivity is assessed through the compar-
ison of two sets of distances: (i) the (Sscm(m − 1)/2) self-consistency distances among facial populations sculpted by 
the same subject in different instances of the experiment E2; (ii) the (S1(S1 − 1)/2) inter-subject distances between 
couples of populations sculpted by different subjects in experiment E1 (see Supplementary Section S4 for details). 
If subjectivity was at play in the sculpting process, and not hindered by the stochasticity of the algorithm, the 
self-consistency distances would be lower than inter-subject distances.

This is clearly the case, see Fig. 3: self-consistency distances are lower than inter-subject distances (Student’s 
p < 10−30). In Fig. 3 we also report the histogram of intra-population distances, i.e., the average distance among the 
vectors belonging to a population, for different populations scuplted by different subjects in E1 (blue curve). The 
intra-population distances are not suitable for an assessment of the subject self-consistency, since they strongly 
depend on the number of generations performed by the genetic algorithm (c.f. Fig. 2). The emerging scenario is 
that of single subjects who, in a single realization of the sculpting experiment, end up in a very clustered popula-
tion (blue curve in Fig. 3). Performing several realizations of the same experiment leads the subject to a slightly 
different population in face-space (orange curve in Fig. 3, labelled “self-consistency”). These self-consistent pop-
ulations are anyway closer to each other than to populations sculpted by different subjects, as witnessed by the 
larger inter-subject distances, whose histogram is presented in the green curve in Fig. 3. A crucial point is that the 
distance between the inter-subject (green curve, i) and self-consistency (orange curve, sc) histograms in Fig. 3, 

μ μ σ σ= − + = .t ( )/( ) 0 82(1)i sc i
2

sc
2 1/2  (see Supplementary Fig. S3) would be even larger in an experiment with a 

higher number of generations T. Using larger values of the genetic algorithm parameters T and N would result in 
a lower value of μsc, at the cost of a larger experimental time, since NT binary choices are required from the sub-
ject (see Sec. Methods and Supplementary Sec. S3). Furthermore, larger values of S1, Ssc, m would give rise to a 
lower statistical error of the considered observables (see Supplementary Sec. S4), proportional to S1/ 1,sc  and, in 
particular, to an even more significant difference among both histograms, since the uncertainty of their average is 

Figure 2.  Intra-population distance of the populations sculpted by different subjects (s) as a function of the 
generation (t). The Euclidean metrics in face space has been used (see Supplementary Sec. S4), although the 
results are qualitatively equal for other relevant metrics. Each curve corresponds to a different subject (for 10 
randomly chosen subjects). The upper curve of joined circles corresponds to the null model genetic experiment, 
in which the left/right choices are random.
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proportional to σi/S1 and σ S m/sc sc , respectively. In any case, the values used in experiments E1-2 are large 
enough to assess the differences among different subjects’ attractors in a significant way.

The set of populations = f{ }s n
s n1

( , )
,  sculpted in E1 exhibits facial coordinates which vary in a wide range: 

roughly 0.018(10) per coordinate of the total face length, corresponding to ~3.2 mm in the average female face40 
(see the average 〈f〉 and standard deviation σ of the single coordinates in Supplementary Fig. S5). The 
self-consistency distance μsc ± σsc, with which the experiment allows to resolve the single-individual attractor is, 
remarkably, much lower, equal to 0.0067(18) per coordinate (using the simple Euclidean-metrics in face-space, 
see Supplementary Section S8), barely twice the pixel image resolution, ~400−1 (Figure Supplementary 
Section S4). This quantity corresponds to 1.18(30) mm in the female average facial length.

Several metrics among facial vectors have been used to compute the inter-subject and self-consistency dis-
tances: Euclidean, Mahalanobis, angle- and Byatt-Rhodes metrics (see Supplementary Section S4 and20,21). The 
angle-metrics (the angle subtended among standardised Principal Components (PC’s) in face-space) turns out 
to be the one with which the statistical distinction is more significant (see Supplementary Fig. S3, and subsection 
“Differences induced by the subject gender” for the definition of PC’s). This result is compatible with previ-
ous work proposing that such face-space metrics is the one that best captures differences in facial identity21,41. 
Further results regarding the t-value difference among both histograms as a function of the face-space metrics 
can be found in the Supplementary Section S4. Using the simple Euclidean metrics (the Euclidean distance per 
coordinate in physical coordinates), the inter-subject and self-consistency distances result slightly more over-
lapping, although still clearly distinct. For the sake of the statistical discernibility among the inter-subject and 
self-consistency distances, it is observed that the 10 dimensions involved in the definition of the face space are 
redundant in the sense that defining the face-space metrics in terms of the 7 most varying PC’s, the two sets of 
distances result more significantly different (see Supplementary Fig. S3). For completeness, in Fig. 3 we also 
report two further sets of distances. The red line histogram corresponds to pseudo-distances among pairs of 
populations sculpted by subjects of different gender in E1, while the purple line histogram corresponds to the 
pseudo-distances among pairs of populations sculpted by different subjects with different reference portraits (E3, 
see “Relevance of facial features”, before).

These findings highlight the intrinsic subjectivity of facial attractiveness. Despite the limited freedom of 
choice, the reduced dimension of the face-space, and the common reference portrait, single subjects tend to 
sculpt a region of face-space that is systematically closer to their previous selections than to other subjects’ sculp-
tures. Indeed, the probability of two facial vectors sculpted by the same subject to be closer than two facial vectors 
sculpted by different subjects in E1 is p12 = 0.79(1) (see Supplementary Section S8).

A further interesting observation about Fig. 3 concerns the overlap between the histograms of self-consistency 
and inter-subject distances. Its existence allows us to reconcile the strong subjectivity unveiled by experiments 
E1-2, and the universality reported in the literature. The couples of facial vectors which are involved in distances 
for which there is a high overlap correspond to commonly preferred faces, around the most probable vector 
in the dataset, 〈f〉. Within a low experimental precision, or an accuracy larger than the standard deviation per 
coordinate a > |σ|/D, all the subjects appear to agree in their choices. Under this perspective, the reported uni-
versality of beauty could be the side-effect of an experimental procedure where subjects express their preferences 
among a limited set of predefined options, the real facial images, in a high-dimensional face-space (indeed, the 
effective number of relevant facial dimensions may be of the order of hundreds42). In such an undersampling 

Figure 3.  Main panel: Normalised histograms of pseudo-distances. Blue: subject intra-population distances, or 
self-distances of all the populations sculpted in E1. Orange: self-consistency distances, or distances among 
couples of populations sculpted by the same subject in E2. Green: inter-subject distances, or distances among 
couples of populations sculpted by different subjects in E1. Purple: distances among couples of populations 
sculpted by different subjects in different experiments, E1 and E3 (differing in the reference portrait). Red: 
distances among couples of populations sculpted by subjects of different gender in E1. The orange and green 
arrowed segments over the self-consistency and inter-subject histograms indicate the confidence intervals of the 
histogram averages, μ σ± n/sc sc sc

1/2 and μ σ± n/i i i
1/2 respectively, with nsc = Sscm(m − 1)/2 and ni = S1(S1 − 1)/2.

https://doi.org/10.1038/s41598-019-44655-9


6Scientific Reports |          (2019) 9:8364  | https://doi.org/10.1038/s41598-019-44655-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

situation, different natural faces exhibit very different number of facial coordinates gi (or, more precisely, of PC’s, 
see before), close to the most probable value 〈gi〉, with respect to their standard deviation (say, σ(gi)). The faces 
exhibiting many coordinates in the commonly preferred region are consensually preferred, and most highly 
rated20. By letting the subjects sculpt instead their preferred modification in a lower-dimensional face space, 
as in experiments E1-2, the subjects exclude extreme values of the coordinates, and manage to fine-tune them 
according to their personal criterion. In this circumstance, it is possible to resolve the subjects’ preferences with 
higher accuracy, μsc < |σ|/D, unveiling a strong subjectiveness. Our data suggest that the higher the accuracy with 
which the single subject attractor is resolved, the more distinguishable different subjects’ attractors result in the 
face space. This picture suggests a complete subjectivity, or complete distinctiveness of different subjects’ criteria 
(see also Sec. Methods).

Correlations among different facial features.  In our experimental scheme, only geometric degrees of 
freedom may change. This allows us to determine the personal attractors efficiently and accurately, in a not too 
high-dimensional face-space. Moreover, it avoids the uncontrolled influence of features not described in the 
face-space. However, as anticipated in Sec. Introduction, it is also essential in this framework to account for pos-
sible mutual dependencies between different components of the facial vectors.

Besides the average and standard deviation of single coordinates referenced above, a quantity of crucial impor-
tance, despite the scarce interest that the literature has dedicated to it, is the correlation among facial coordinates 
from subject to subject. We denote with y the standardised fluctuations of the vector f around the experimental 
average, σ= − 〈 〉y f f( )/i i i i. The sculpted facial vectors presenting a fluctuation of a coordinate yi (say, a larger 
mouth width, y7 > 0 in terms of inter-landmark distances) tend to consequently present positive and negative fluc-
tuations of other facial coordinates yj≠i (e.g., a higher mouth, y4 > 0). The sign and magnitude of such covariations 
is given by the correlation matrix among fluctuations of facial coordinates. This is the positive definite, symmetric 
matrix = 〈 〉C yyij i j , averaged over subjects 〈 ⋅ 〉 = ∑ ⋅= S/s

S
1 . In order to subtract the influence of correlations 

within the single-subject attractor, only one population vector, of index nb(s), uncorrelated and randomly distrib-
uted, is considered for each subject s; the average and standard deviation of the matrix elements Cij have been 
obtained from many bootstrapping realisations, labelled by b, of the indices nb(s), see Supplementary Section S4. 
The experimental matrix C exhibits a proliferation of non-zero elements (32% of the matrix elements presenting 
a p-value < 5 · 10−2, see Supplementary Section S11), unveiling the presence of strong correlations among several 
couples of facial coordinates.

The most strongly correlated C elements are among vertical or horizontal distances (see Supplementary Fig. S9 
and Table S4). Such strong correlations are easily interpretable: wider faces in 1 tend to exhibit larger inter-eye 
distances and wider mouths and jaws; higher nose endpoints, in their turn, covary with higher mouths and eyes; 
higher eyes covary with higher mouths, and so on. Perhaps the most remarkable aspect of the matrix C is the 
proliferation of couples of vertical-horizontal coordinates, highlighting the crucial role played by oblique correla-
tions. The sign of oblique correlations Cij (see Supplementary Table S4) is such that fluctuations of a landmark 
position 

→
α  covary with fluctuations of different landmarks →β  in such a way some inter α,β-landmark segment 

slopes are restored with respect to their average value. This is so for the most correlated couples of 
vertical-horizontal coordinates i, j (p < 5 · 10−2).

The information brought by the correlation matrix helps in this way to construct a remarkably clear picture 
of the experimental distribution of facial vectors. The inter-subject differences and the experimental stocasticity 
induce fluctuations around the average facial vector y = 0. The fluctuations are, however, strongly correlated in 
the facial coordinates, in such a way that vertical and horizontal coordinates covary positively and, at the same 
time, the value of some inter-landmark segment slopes shown in Fig. 4, of prominent relative importance, do not 
change too much with respect to their average value (see Supplementary Section S13).

These findings indicate that, for a meaningful inference of the perceived attractiveness in face-space, one 
should consider the impact of at least linear combinations of facial coordinates, rather than the impact of single 
facial coordinates. The intrinsic complexity of attractiveness perception cannot be satisfactorily inferred through 
a simple regression of facial datasets using a sum of functions of single facial coordinates (see also Supplementary 
Section S14 and43).

Relevance of facial features: the variable hierarchy.  In this section we discuss the robustness of 
the results presented above. One of the crucial questions in facial attractiveness is what is the relevant set of 
variables which mainly determine the perceived attractiveness of a face3,36. A formulation of the problem in 
theoretical-information terms is that of finding a hierarchy of relevant facial features. It is such that, when enrich-
ing the description with more variables in high levels of the hierarchy, the resulting variables in lower levels result 
unchanged. In the present study, the geometric quantities can be considered as low-level variables in the extent to 
which they are not influenced by the reference portrait, or by the luminance and texture facial features that have 
been disregarded and kept unchanged in the face-space description.

To settle this question, we performed a third experiment, dubbed E3, in which we asked the S1 participants in 
E1 to repeat the experiment using a different reference portrait (RP2, see Fig. 1D). Afterwards, we have compared 
the resulting set of sculpted facial vectors, 3, with the outcome of experiment E1, 1 . Interestingly, a statistical 
t-test shows that, while some facial coordinates result clearly distinguishable, others result statistically indistin-
guishable, signifying their robustness with respect to the texture facial features determined by the reference por-
trait. These are, in terms of inter-landmark distances, di, the coordinates d2,6,7,10, indistinguishable with p > 0.1 
(see Supplementary Fig. S6). If, instead of focusing on the distribution of single quantities yi, one considers 
instead the correlations, yiyj, the results (see Supplementary Table S4) turn out to be robust within their statistical 
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errors, since only 2% of the matrix elements Cij result significantly distinguishable (p < 0.075, and none of them 
for p < 0.05).

The ensemble of these results implies a strong robustness of the results presented above, namely the subjectiv-
ity and the correlations among different facial features, with respect to a change in the reference portrait. It is 
remarkable that the coordinates i = 2, 6, 7, 10 in 1 are indistinguishable from those in 3 up to a remarkably small 
scale. For them, the average difference of couples of coordinates, − ′

′⟨ ⟩f fi
s

i
s

s s
( ) ( )

,  (with subjects s, s′ belonging to 
E1 and E3, respectively), vanishes up to small fluctuations, lower than the statistical error of such quantity. Such 
an error, of order (S1S3)−1/2, see Supplementary Section S10, is: σ − = . ⋅′ −f f( ) 1 54 10i

s
i

s( ) ( ) 2 per coordinate, 
which corresponds to 0.27 mm in the average female face. We consider this result as one of the most remarkable 
of the present work. It highlights the striking robustness of the inter-landmark distances d2,6,7,10. Such variables 
are, therefore, in low levels of the variable hierarchy, suggesting that they have prominent and intrinsic impor-
tance in the cognitive mechanism of face perception.

Differences induced by the subject gender.  An extensively debated question in the literature is to what 
extent the subject gender influences attractiveness, a question that the present experimental scheme is particular-
ity suited to address. Partitioning the dataset accordingly, ∪=1 m f   , it is obtained that, again, some facial 
coordinates are barely distinguishable or completely indistinguishable in both sets (d3,4,6,7, see Supplementary 
Fig. S7). Conversely, some coordinates are noticeably distinguishable. Compared to female subjects, male subjects 
tend to prefer thinner faces and jaws (d5,10), lower eyes (d1), higher zygomatic bones (d0), larger eye width (d8). 
The difference becomes very distinguishable along d2,9 (p < 3 · 10−3, Supplementary Fig. S7): males definitely pre-
fer shorter and thinner noses. These results are partially in agreement with previous findings in the literature, that 
highlight male subjects’ preference for smaller lower face area and higher cheekbones14,44. Furthermore, they also 
provide accurate relative differences along each coordinate and reveal that, at least for the two reference portraits 
RP1-2, the facial feature leading to larger differences among men and women attractors is the nose.

A deeper insight is obtained by the analysis of PC’s. These are the projections of the physical coordinates on 
the C-matrix eigenvectors, y′ = Ey (where λ λ= …†ECE diag( , , )D1 ). The different principal components ′y i are, 
in other words, uncorrelated linear combinations of the physical coordinates ( λ δ′ ′ =y yi j i ij). Principal compo-
nents corresponding to large eigenvalues (as ′y 10) represent the linear combinations of physical coordinates 
accounting for as much of the database variability, while those corresponding to the lowest eigenvalues represent 

Figure 4.  Relevant inter-landmark segments. The correlation matrix elements Cij involving vertical and 
horizontal landmark coordinates, x yα α⟨ ⟩i j( ) ( )  can be understood geometrically as a statistical invariance of the 
value of some inter-landmark segment slopes (dashed lines) with respect to their average value (represented in 
the figure). The sign of oblique Cij’s coincide with that of the slope of the inter-landmark lines 
y y x x− −α α α α⟨ ⟩ ⟨ ⟩ ⟨ ⟩ ⟨ ⟩( )/( )i j i j( ) ( ) ( ) ( ) . For instance, the most correlated horizontal-vertical landmarks are 〈x12y9〉, 

exhibiting a positive sign (c.f. Supplementary Table S4): indeed, for lower nose endpoints (which correspond to 
a positive fluctuation y9 > 〈y9〉), the 9–12 angle can be restored only by increasing the x12-coordinate, x12 > 〈x12〉.
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the most improbable, or “forbidden” linear combinations of fluctuations away from the average y = 0 (see the 
Supplementary Information). Different principal axes (e(k), the rows of matrix E) describe the different, independ-
ent sources of variability in the dataset, that could reflect the subjects’ traits most distinguishing their aesthetic 
criteria (as the gender).

It turns out that faces corresponding to different subject’s gender are distinguishable on three PC’s (see 
Supplementary Fig. S8). Quite interestingly, such principal axes are not the ones exhibiting the largest eigenvalue, 
suggesting that the largest differences among selected faces correspond to inter-subject criteria that are transver-
sal with respect to the subject’s gender. Figure 5 shows some image deformations of the average face along two 
principal axes: e(9), e(7) (the 2nd and the 3rd most variant eigenvectors of C). The PC defined by e(9) is male/female 
distinguishable (males preferring negative values of y′9). Instead, the y′7 coordinate is gender-indistinguishable, 
and it could correspond to a different subject’s quality, as the predilection for assertiveness, neoteny, or a different 
personality dimension, in the language of the multiple motive hypothesis4,11,19.

Discussion
In this article, we have introduced an experimental behavioural method that allows human subjects to efficiently 
select their preferred modification of a reference portrait in the multi-dimensional face-space (and, in principle, 
in general spaces of images that can be parametrised with 2D landmark coordinates). The method allows to 
flexibly and accurately determine the face-space regions which are representative of a given subject’s criterion. It 
opens the path to a novel, data-driven approach to cognitive research in face perception, allowing scholars to: (1) 
quantitatively address the inter-subject differences in the resulting sculpted shapes, beyond the rating; (2) isolate 
the influence of a secondary set of variables (such as texture features) and a posteriori address their influence 
(something that cannot be directly done with databases of natural facial images); (3) analyse a resulting set of 
facial vectors without being limited or conditioned by the a priori correlations present in natural image databases.

Figure 5.  Top figure: facial images corresponding to the deformation of the average facial vector along two 
different principal axes (the e(7), e(9) eigenvectors of the correlation matrix C, corresponding to the fourth and 
second larger eigenvalues, λ7, λ9). The axes represent the principal components along these axes, (y′9, y′7) in 
units of their standard deviations (λ i

1/2). In other words, the image is generated from the facial vector 
= ′ + ′†E y ye e( )7

(7)
9

(9)y . Bottom figure: selected facial vectors. Each point is a projection of a selected facial 
vector in the principal axes corresponding to the Top figure, i.e., each point has coordinates ′ ′y y,s n s n

7
( , )

9
( , ), for all 

s, n in the E1 dataset. Blue points correspond to male subjects, and orange triangles to female subjects (male 
subjects tend to sculpt vectors with ′ <y 09 , and vice-versa). The black points correspond to a population 
sculpted by a single, randomly selected, subject.
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The method (based on our software FACEXPLORE, whose details are explained in the Supplementary 
Information) permits a highly accurate description of the single subject or subject category preferences in the 
face-space, thanks to the geometric/texture separation of facial degrees of freedom and to a genetic algorithm 
for efficient search in the face space. Using this technique, we have performed a set of experiments in which the 
single subjects preferred region in the face space have been determined with an unprecedented accuracy, below 
the millimeter per facial coordinate.

Such experiments allow us to draw the following conclusions. First of all, attractiveness turns out to be 
associated with the existence of subject-dependent specific regions in the face space that we dubbed attractors, 
highlighting the essential subjectivity of attractiveness. Despite the limited face-space dimension, and the homo-
geneity of the statistical universe (composed of subjects of the same cultural group), different subjects clearly tend 
to prefer different facial variations, suggesting that the subjectivity should be taken into account for a complete 
scientific picture of the phenomenon. Larger databases and more heterogeneous statistical universes would only 
make the essential subjectivity of attractiveness perception even more evident.

In light of these facts, the validity of the natural selection hypothesis (universality, impact of averageness, 
symmetry and sexually dimorphic traits) may be arguably a matter of the precision of the length scale and of the 
facial image resolution of the facial description. Within a sufficiently accurate description of the subjects’ criterion 
in face-space, the phenomenon emerges in its whole complexity, showing that the preferred faces of different 
subjects are systematically different among themselves and, consequently, different from the average face. In their 
turn, these differences reflect personal features and circumstances that condition the subject’s preferences, one of 
which is the subject’s gender.

The second important conclusion we can draw concerns the patterns associated to different subjects’ attrac-
tors. Different sculpted facial vectors exhibit strong correlations among pairs of facial distances, characterising the 
underlying universality and complexity of the cognitive processes, leading, in its turn, to the observed subjectiv-
ity4. Our study reveals, in particular, the crucial importance of correlations among vertical and horizontal coor-
dinates, whose existence and relevance have been, to the best of our knowledge, only postulated22,24,35. Different 
facial variations are strongly correlated, a fact that confirms the holistic way in which we perceive faces36. Our 
results suggest to consider attractiveness not as a scalar quantity, rather as the outcome of a complex process in 
which various semantic motives are evaluated. These are probably encoded in pairwise and higher-order correla-
tions among facial features, more than in the value of single facial coordinates35.

A third result concerns the role of the subject’s gender in the assessment of attractiveness. This is, indeed, an 
important source of diversity in our dataset. Nose length and width, eye height, face and jawbone width, zygo-
matic bone height, turn out to be the main facial traits distinguishing male and female observers. However, a 
principal component analysis suggests that the largest differences among selected facial variants correspond to 
principal axes that are independent of the subject’s gender. Abstract personality dimensions have been observed 
to be consensually attributed to faces, and the impact of such qualities on various facial elements have been 
measured through principal component analysis6,37–39. Such principal axes could be correlated with those of the 
present study. This would be a confirmation of the postulated connection between attractiveness and person-
ality judgments1,6,45. It would allow to elicit the different traits that are judged by the subjects in a bottom-up, 
data-driven fashion.

A further noticeable result is the assessment of the influence of the reference portrait in the distribution of 
sculpted facial vectors. Quite remarkably, the a priori dimensionality reduction implicit in our analysis (ignoring 
texture degrees of freedom), turns out a posteriori to be sufficient and justified (see Sec. Methods).

In summary, the novel experimental approach proposed in this article allowed us to unveil the essential sub-
jectivity of attractiveness. The subjectivity emerges more evidently in the present scheme, since the reduction of 
the number of face space dimensions allows to avoid the undersampling occurring in experiments in which the 
subjects are asked to choose or rate natural faces.

We believe that the generality and reliability of the present approach could have a strong impact on future 
studies about beauty and pleasantness in different domains.

Possible completions of the present work are: an assessment of the robustness of principal components; an 
analysis of the intra-subject correlation matrix of facial coordinates; a variant of the analysis of correlations in an 
experiment with real facial images (whose landmarks could be automatically identified with deep learning tech-
niques46); an unsupervised inference analysis of the database (already being carried on in our group) within the 
framework of the Maximum Entropy method.

Methods
Face space.  Our experimental design is based on the parametrisation of the face in a 10-dimensional face-
space defined by D = 11 vertical and horizontal inter-landmark distances, = =dd ( )i i

D
0 between standard facial 

landmarks (see Fig. 1A). The inter-landmark distances are subject to a constraint = ∑ == dh 1i i1
4 , reflecting the 

intrinsic scale invariance of the problem, in such a way that all distances di are in units of the total facial length 
(i.e., they represent proportions with respect to the facial length, rather than absolute distances). As vector of facial 
coordinates f, we have considered both the 11 distances fi = di themselves or, alternatively, the non-redundant 
(and unconstrained) subset of D = 10 Cartesian landmark coordinates of a set of landmarks =α α α

→
 ( , )x y  (with 

α = 1, 3, 7, 9, 10, 12, 14, see Fig. 4 and Supplementary Sec. S13), that can be unambiguously retrieved from the set 
of inter-landmark distances. All the results presented in the article are qualitatively identical using the inter-land-
mark distances di or the landmark Cartesian coordinates 

→
α  as facial vectors.

Separation of geometric and texture degrees of freedom.  The face-space parametrisation is based, 
as previously mentioned, on the decoupling of texture (lightness, detailed, and skin textural) facial features, on the 
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one hand, and geometric (landmark coordinates), on the other hand. The separation of these two kinds of degrees 
of freedom is a standard paradigm of face representation (see, for example6,39,42). It has been argued, in the light 
of the recently decoded neural coding for the facial identity in the primate brain, to be a naturally efficient para-
metrisation of the face42, outperforming other techniques in which texture and landmark-based are not separated, 
as the description in terms of eigenfaces.

Image deformation.  Given a reference portrait (see Fig. 1B) and a vector of facial distances d1, we create, by 
means of image (similarity transformation) deformation algorithms47, a realistic facial image based on the refer-
ence portrait, deformed in such a way that the inter-landmark distances defined in Fig. 1A assume the desired 
values, d = d1. Given the reference portrait image 0 , the position of its corresponding landmarks → α0, , and the 
vector d, we calculate the Cartesian coordinates → α1,  of the new set of landmarks, completely defined by d. The 
image deformation algorithm then generates a new facial image 1 with a point-dependent parameter linear 
transformation, such that the pixels occupying the landmark positions → α0,  in the original image are mapped into 
the new positions → α1, , and the rest of the pixels of the original image are mapped in order to produce a resulting 
image as realistic as possible. We have observed that, in order to produce realistic results, the linear transforma-
tion should be in the similarity class47, beyond affine transformations. The deformed image is actually not created 
by mapping every pixel of the original image, but only the corners of a sub-grid; the sub-images inside each 
sub-grid are then warped to a polygon defined by the mapped corners of the grid, through affine transformations. 
The size of the sub-grid is taken to 15 pixels. Both the reference portrait and the deformed images are roughly 
300 × 400 pixels for RP1-2.

Genetic algorithm of face-space exploration.  The genetic algorithm is based on a sequence of pair-
wise subject’s choices among two facial images that are adaptively proposed to the subject, learned from his/her 
previous choices. An initial population of N vectors of randomised facial coordinates, f(s,n)(0), evolve by means of 
genetic mutation and recombination, subject to the selection exerted by the experimental volunteer. At the t-th 
generation, the N vectors of the population generate an offspring of N individuals, by mutation and recombina-
tion according to the differential evolution algorithm (see Supplementary Sec. S3). The offspring is generated from 
the facial vectors only, independently of the reference portrait. The subject plays then the role of the evolutive 
pressure in the algorithm dynamics, selecting (N times) one among two facial images: one made from a vector of 
the population (and a reference portrait), and one made from its offspring. The t + 1-th generation of vectors is 
then taken as the N vectors selected by the subject at the t-th generation. After a certain number, T, of generations, 
the population of facial vectors eventually reaches a regime in which the population of vectors do not change too 
much from one generation to the next. The T-th population of facial vectors is taken as the population of vectors 
sculpted by the subject, and constitutes the outcome of experiments E1-3.

This approach differs from previous approaches to facial attractiveness based on genetic algorithms48,49 in 
what: it allows a subject to select in real time a realistic facial image; in terms of geometric quantities only; with 
fixed texture degrees of freedom; finally, avoiding the use of numerical ratings, since the subject performs a sequence 
of left/right choices rather than assigning ratings to the images.

Populations of facial vectors sculpted by different subjects tend to be more far apart than populations sculpted 
by the same subject (see Sec. Results). Remarkably, the real difference between different subjects’ attractors is 
even larger, since it is unavoidably underestimated in virtue of the finiteness of the experimental method. Indeed, 
two standard deviations with different origins contribute to the self-consistency distance μsc (see Fig. 3). One is 
the intrinsic, cognitive ambiguity of the subject’s criterion; the other is the uncertainty brought by the genetic 
algorithm stochasticity (sec. Supplementary Sec. S3), whose origin is the discreteness of the proposed mutations 
and the consequent stochastic bias in the face space exploration. In genetic experiments with parameters in what 
we call in the slow search regime (mainly larger N and number of generations, T), the algorithmic uncertainty 
decreases, and μsc is expected to decrease consequently. This is the general expected behaviour of the differential 
evolution algorithm. We have also verified this fact experimentally: the distances among populations sculpted by 
a single subject significantly decrease for increasing values of N = 10, 20, 28. As a consequence, variants of the 
present experiment with slower genetic algorithm parameters would more finely resolve different subject’s facial 
ideals, leading to a larger gap between inter-subject and self-consistency distances, at the cost of a larger number 
of subject’s choices and experimental time.

Details of the experiments.  Experiments E1, E2, E3 were performed by a pool of S = 95 volunteers (54 
female, 39 male, of age average and standard deviation: 26(12)), mainly students, researchers and professors of 
the University “La Sapienza”. Experiment E2 was performed under identical conditions of E1. A subset of Ssc = 6 
participants to E1 (3 females, 3 males, of age average and standard deviation: 33(15)), were asked to perform 
5 further instances of the experiment E1, in five different days, using, as in E1, the reference portrait RP1. The 
genetic algorithm parameters used are (see Supplementary Sec. S3): N = 28, T = 10, μ = 0.15, ρ = 1. Each sub-
ject performed a number of NT = 280 choices among couples of facial images. These are 400 × 300 pixel, B/W 
images in an 1024 × 768 resolution monitor. The reference portraits RP1-2 have been taken from the Chicago face 
database50. Each experiment lasted roughly 25 minutes on average (see the histogram of time intervals among 
successive left-right choices in figure Supplementary Sec. S7). The subjects were asked to look away and relax for 
some second each N = 28 choices. All methods in experiments E1-3 were carried out in accordance with relevant 
guidelines and regulations. The experimental protocols used have been approved by the General Data Protection 
Regulation (EU) 2016/679. Informed consent was obtained from all subjects. No subjects under 18 participated 
in the experiment.
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Data Availability
The data and the codes devoted to the data analysis are available by request to the corresponding author.
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