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Dengue virus (DENV) causes infection in humans and current estimates

place 40% of the world population at risk for contracting disease. There

are four DENV serotypes that induce a febrile illness, which can develop

into a severe and life-threatening disease in some cases, characterized pri-

marily by vascular dysregulation. As a mosquito-borne infection, the skin

is the initial site of DENV inoculation and also where primary host

immune responses are initiated. This review discusses the early immune

response to DENV in the skin by both infection target cells such as dendritic

cells and by immune sentinels such as mast cells. We provide an overview of

the mechanisms of immune sensing and functional immune responses that

have been shown to aid clearance of DENV in vivo. Finally, we discuss fac-

tors that can influence the immune response to DENV in the skin, such as

mosquito saliva, which is co-injected with virus during natural route infec-

tion, and pre-existing immunity to other DENV serotypes or to related

flaviviruses.
1. Dengue virus infection and clinical presentation
Dengue virus (DENV) is a vector-borne human pathogen that belongs to the

family of Flaviviridae. The disease caused by DENV is considered to be one of

the most important human viral maladies of the twenty-first century with

nearly 390 million infections annually worldwide in recent years [1]. Epidemio-

logical estimates considering the tropical and sub-tropical distribution of the

virus suggest that as many as 3.9 billion people are at risk of contracting the dis-

ease [2]. DENV is primarily transmitted to humans by a bite from the urban

mosquito, Aedes aegypti, which deposits virus particles in the skin while prob-

ing for a blood meal [3], making the skin the initial site of immune defence

against it. DENV has four antigenically distinct serotypes, DENV 1–4, which

adds complexity to this disease since humans often experience more than one

DENV infection in a lifetime. Specific immunity against a homologous serotype

is long-lasting and protective. However, humans can be infected with a new

serotype multiple times since immunity is cross-reactive but non-neutralizing

for a heterologous strain [4]. Several other important human pathogens that

are closely related to DENV within the genus Flavivirus include West Nile

virus (WNV), Japanese encephalitis virus (JEV), yellow fever virus (YFV) and

the newly-emerged Zika virus (ZIKV).

DENV infection in humans causes a febrile illness known as dengue fever

(DF). After injection of DENV virus particles into the skin, there is an incu-

bation period of 4–7 days before symptoms arise, after which they can last

for approximately 5 days [5]. Increasingly, we understand that some individ-

uals experience asymptomatic or sub-clinical disease [1]. For those with

clinically apparent DF, the signs and symptoms include headache, nausea,

retro-orbital pain, muscle and joint pain, fever and rash. Haemorrhagic mani-

festations, such as petechiae, also occur in some DF cases. A reduction in
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platelet counts, or thrombocytopenia, is one of the hallmarks

of DENV infection and this, like most other signs of disease,

is usually self-resolving [6]. However, in some cases, DENV

infection can progress to life-threatening severe complications

such as dengue haemorrhagic fever (DHF) and dengue shock

syndrome (DSS). Severe disease is characterized by a

dramatic or rapid decline in platelet counts, and severe bleed-

ing, multi-organ involvement and hypovolaemic shock can

occur in some cases. In its most severe form, DENV infection

is life-threatening.

Currently, there are no approved therapeutics for the

treatment of DENV infection or for the targeted prevention

of severe disease, although multiple vaccine candidates are

currently at various stages of clinical development and test-

ing. For some other viral infections, it has been shown that

delivery of antigens or vaccine formulations into the skin

has comparative advantages over other routes of adminis-

tration [7], demonstrating the uniqueness of this site of

inoculation. Therefore, understanding the initial events of

immune responses to DENV infection in the skin that occur

during natural route infections is crucial for our progress

towards robust intervention strategies against DENV,

including therapeutics and vaccinations.
2. Initiation of natural route infection
through the skin

DENV is injected into the skin by the female mosquito whose

mouth parts, or proboscis, probe through the epidermis into

the dermis until a suitable site is found where blood can be

collected from a capillary. During each probing event,

saliva containing virus particles may be injected [8,9].

Estimates from studies that examined feeding of DENV- or

WNV-infected mosquitoes on mice have suggested that

approximately 1 � 104 to 1 � 106 PFU of viruses are injected

by mosquitoes into a single site while probing [10,11], while

the volume of mosquito saliva injected is less than 1 ml

(between 1 and 5 nl were measured in a recent quantification

of forced salivation) [12]. It is assumed that viruses are pri-

marily injected into the dermis; however, studies of the

deposition of malaria parasite Plasmodium berghei showed

that sporozoites were also detected in the epidermis [13],

which is also likely to occur for arboviral pathogens since

the deposition of saliva and probing behaviour is similar.

This is relevant for understanding which immune and infec-

tion target cell types may encounter the virus upon natural

route infection. Although the inoculum of DENV is relatively

small, it is able to efficiently establish infection in the host.

After skin infection, DENV must achieve systemic infec-

tion in order to complete its transmission cycle by infecting

new mosquito hosts [14]. DENV is a lymphotropic pathogen

and uses the lymphatics and lymph nodes as a conduit to the

blood. The lymphotropic nature of DENV was first shown in

primates that were inoculated into the skin. Infection became

detectable sequentially in draining lymph nodes prior to

reaching systemic infection where virus could be detected

in the serum [15]. Interestingly, even after viraemia subsided,

DENV remained detectable in the site of inoculation, indicat-

ing a persistence of infection in the skin [15]. In contrast to the

site of initial virus infection, areas of skin with pathologic

manifestations during the acute systemic stage of disease,

which may be characterized by haemorrhaging or oedema,
are usually not positive for DENV infection and, thus, these

lesions are likely to be the result of the systemic inflammatory

response [16]. Surprisingly, in one study, the early presence

of rash or cutaneous manifestations of disease was associated

with improved disease outcomes in human patients [17].

However, other studies noted that immune cells in the skin

were activated at the onset of DSS [18], potentially reflecting

the systemic inflammatory response.
3. Infection target cell types in the skin
and virus entry receptors

At the site of inoculation in the skin, key targets of DENV

infection are immune cells of the myeloid lineage that are

phagocytes, including various subsets of dendritic cells

(DCs) and monocytes. In interferon (IFN)-a/b receptor

knockout (Ifnar – / –) mice, CD103þ DCs, Ly6C– CD11bþ

DCs, and macrophages were all initial targets of infection,

after which the monocyte-derived DCs (Ly6Cþ CD11bþ)

became the primary infection targets [19]. Monocyte-derived

DCs are significantly recruited into the skin following DENV

infection in mice [19]. In human skin explants and sites of

DENV vaccination, Langerhans cells were also targets of

infection [20,21], as well as CD1cþ and CD14þ dermal DCs

[21]. Interestingly CD141þ DCs, which make up a minority

population in the skin, were not observed to be infected

[21]. Macrophages and CD1cþ and CD14þ dermal DCs that

are matured with IL-4 have also been shown to be more sus-

ceptible to DENV infection, potentially due to the

upregulation of DENV receptors, DC-specific ICAM3-

grabbing non-integrin (DC-SIGN) and the mannose receptor,

in response to the cytokine treatment [22]. In spite of being

infection targets, monocyte/macrophage lineage cells could

play a dual role in infection since it has been shown that

depletion of macrophages leads to early reduced infection

in lymph nodes, yet to later increased infection burden

in vivo systemically [23]. That study, however, examined the

role of macrophages after systemic inoculation in mice lack-

ing IFN-a/b/g receptors, rather than specifically examining

their function after skin inoculation [23], so the functional

contributions of the skin-resident macrophage monocytes

to infection amplification versus clearance are not yet

characterized.

In the skin, multiple non-haematopoietic cell types are

also thought to be early infection targets. In vitro or ex vivo,

human fibroblasts have been shown to be infected, but this

may be DENV strain-dependent [24,25]. Keratinocytes were

also postulated to be DENV infection targets based on stain-

ing of cells morphologically consistent with keratinocytes for

non-structural antigens in human skin explants after ex vivo
infection [26]. A recent study has suggested, also using skin

explants, that as much as 60% of the total infected cells in

the skin may be keratinocytes [27]. However the proportion

of keratinocytes infected was lower in another similar study

[21], which may be attributable to differing methods or

virus strains. Explants also lack the potential of exhibiting

normal recruitment of cell types from the circulation, such

as monocytes, which are highly permissive to DENV

infection in animal models [19].

DENV infects the cell through receptor-mediated endocy-

tosis and various receptors have been identified or proposed

for DENV entry. Proteoglycan, heparin sulphate and
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glycosaminoglycans, which are commonly expressed on var-

ious mammalian cell types, have been shown to bind DENV

in vitro [28]. Others have identified carbohydrate moieties on

glycosphingolipids to be involved in DENV attachment to the

cell surface [29,30]. Importantly a C-type lectin receptor, DC-

SIGN molecule, was identified as an attachment receptor for

DENV in DCs [31]. Similarly, the mannose receptor expressed

on macrophages was shown to bind to DENV for its intern-

alization. Blocking the mannose receptor using a specific

antibody inhibited DENV infection of primary human macro-

phages [32]. More recently, phosphatidylserine receptors,

TIM and TAM, were identified as attachment receptors

for DENV entry in human primary kidney epithelial

cells as well as primary astrocytes [33]. Other less defined

co-receptors for DENV include CD14, HSP70, HSP90, GRP78

and claudin-1 [34–37]. Receptors for certain cells in the skin,

such as keratinocytes, which are exposed to DENV during

the cutaneous infectious mosquito bite, remain unknown.
4. Cellular sentinels to dengue virus
infection

At the time of virus inoculation into the skin, DENV is not

unopposed by the host but, rather, detected quickly by

immune sentinels. Skin-resident immune cells of haemato-

poietic lineage that DENV encounters include Langerhans

cells, DCs, macrophages and mast cells (MCs). In the healthy

human dermis, MCs, DCs and macrophages are found at

approximately similar densities: approximately 70–100

MCs, approximately 60 DCs (defined as CD11cþ) and

approximately 80 macrophages (defined as CD163þ FXIIIAþ)

per mm2 in tissue sections [38–40]. Images of MCs and DCs

in the skin are provided in figure 1. MCs, which are granu-

lated cells (figure 1b,c), are sentinels for DENV infection.

They are distributed at relatively even intervals in

the dermis but at highest concentration at the epidermal–

dermal junction [38,39]. They also adopt a perivascular

formation around blood and lymphatic vessels [41]. MCs

are preloaded with granules (figure 1c) containing immune

mediators and can respond to pathogens within minutes by

releasing their granular contents into the extracellular

environment (figure 1d). They can also produce inflamma-

tory mediators de novo, either through enzymatic activation

(e.g. production of eicosanoids) or transcriptional activation

(e.g. cytokines, such as TNF). Often, the transcriptional acti-

vation programmes are pathogen-specific [42] and for

DENV, MCs also induce pro-inflammatory transcriptional

programmes in vivo [43]. DENV, as well as inactivated

DENV particles, induces a degranulation response by MCs

that promotes oedema and recruitment of cytotoxic cells

[44,45]. MC-derived TNF that is associated with granules

has been shown to initiate lymph node hypertrophic

responses which are critical for timely induction of adaptive

immunity [41,46], and MC-derived TNF in the skin leads to

upregulation of E-selectin on vascular endothelium, which

facilitates homing of immune cells into the tissue [47]. Func-

tional studies in immune-competent mice showed that MCs

contribute significantly to DENV clearance since mice

deficient in MCs have augmented infection in draining

lymph nodes [44]. Thus MCs are key early sentinels for

DENV infection in the skin and have the ability to regulate

skin inflammatory and lymph node responses.
Although degranulation of MCs does not require virus

replication, mast cells are also able to internalize DENV,

which produces replication intermediates such as dsRNA,

and triggering of cytosolic pattern recognition receptors

[44,48]. Internalization and activation receptors specific for

DENV on MCs are not yet known. However, infection of cul-

tured MCs with a mature morphology produced very little

infectious virus, with less than 3% of the cultured cells

infected based on infectious virus quantification by plaque

assay [44]. Recently, using MCs isolated from human skin

explants, it was suggested that a higher proportion of MCs

could be infected with DENV based on staining for the struc-

tural component, capsid antigen [49]. However, further

validation of productive replication is needed, such as con-

firming production of replication intermediates and

infectious virus particles, to conclusively establish that MCs

are a DENV replication target in human skin. If MCs can sus-

tain virus replication, it may be at low levels since it has been

shown that more than 90% of the haematopoietic lineage cell

types infected in the human skin are various subsets of DCs

[21]. Thus, the role of MCs in DENV infection appears to be

more in line with one of early host defence rather than virus

amplification.

Notably, many of the cell types that are early infection tar-

gets in the skin, including dermal DCs, Langerhans cells and

macrophages, are also antigen presenting cells, which may

contribute to the development of adaptive immune responses

in spite of being confirmed infection targets. The two subsets

of dermal DCs that were observed to be infected in the skin,

CD1cþ and CD14þ DCs, have responsibilities for migrating to

draining lymph nodes to induce systemic T cell and T follicu-

lar helper cell responses [21]. That DENV antigen can be

found in each of these subsets suggests that DENV antigen

is likely to be presented for these purposes, although the

differential contributions of these subsets to infection ampli-

fication, immunity or infection outcomes have not been

described. A diagram summarizing cellular trafficking and

activation in the skin following DENV infection is provided

as figure 2.
5. Innate immune pathways important for
dengue virus detection and protection

Even cellular targets of DENV infection have important

immune pathways to resist virus infection. For example,

there are multiple pathogen recognition receptors (PRRs)

that can recognize DENV replication intermediate products.

These innate immune pathways are evolutionarily conserved

and may evoke similar responses in multiple tissues,

although the skin would be unique in that it is the first site

of exposure to DENV and the location of the first infection

target cell populations. Once DENV is internalized within

cells, dsRNA intermediates are formed during the replication

of the viral genome [50]. Importantly, this critical stage of the

DENV replication cycle can be sensed by PRRs expressed by

various susceptible cell types in the skin [51]. Membrane

anchored toll like receptors (TLRs) such as TLR-3 and TLR-

7 and cytoplasmic retinoic acid inducible gene I (RIG-I) like

receptors, such as RIG-I and MDA-5, can recognize single

or double-stranded complementary viral RNA molecules,

which initiates a cascade of signalling events crucial for anti-

viral defence [52,53]. TLR-3 activation leads to the activation
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Figure 1. Immune cells are densely populated in the skin and are sentinels for DENV. (a) Whole mount mouse (C57BL/6) ear tissue stained for CD11cþ dermal DCs
(green) and MC heparin (avidin, red). (b) Toluidine blue staining of a tissue section of uninfected mouse footpad shows MCs (deep purple) throughout the dermis.
(c) A higher magnification image shows MCs densely packed with granules within the footpad skin. (d ) MC degranulation in the skin visualized by toluidine blue
staining of DENV-infected or saline control-injected tissue sections, 6 h following injection.
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of interferon regulatory transcriptional factors IRF-3, IRF-7

and as well as NF-kB. This results in transcriptional upregu-

lation of Type I (a and b) interferons, various cytokines and

other interferon-stimulated genes [54,55]. In vitro studies,

some using relevant skin cell types such as keratinocytes,

have demonstrated that DENV replication is detected by

TLR-3 and that this contributes to production of Type I

interferons and the cytokine IL-8 [56–58]. Similar to TLR-3,

MDA-5 and RIG-I are also known to sense dsRNA intermedi-

ates during DENV replication [58,59]. In general, triggering

of RIG-I and/or MDA-5 leads to activation of IRF-3, which

together with TBK-1 and NF-kB stimulates the production

of IFN-b and other IFN-stimulated genes [53]. Studies

using a RIG-I agonist have shown that activation of RIG-I

boosts the host cell’s innate antiviral response, which limits

DENV replication [60]. Furthermore, these molecules regulate

the production of chemokines that recruit cytotoxic NK1.1þ T

cells, for example CXCL10. CXCL10 production by sentinel

MCs was shown to be dependent on RIG-I and MDA5 [44].

IFNs and IFN-response genes are essential for the initial con-

tainment of DENV at the cutaneous infection site before an

adaptive immune response is established. More recently, rec-

ognition of DENV replication was also shown to be mediated

by cytoplasmic DNA sensor cyclic GMP-AMP synthetase
(cGAS) by various direct and indirect mechanisms [61,62].

Most innate immune receptors relevant for DENV detection

are adapted to detect viral nucleic acid or replication inter-

mediates; therefore, it should also be noted that some of

these products could be produced or present in the case of

abortive infection [63], so successful completion of the virus

replication cycle is not necessarily required for cellular acti-

vation to DENV and it may occur in cell types that are not

traditional infection targets.

IFN production is a key goal of PRR activation for viral

pathogens and DENV is highly susceptible to effective induc-

tion of both Type I and Type II interferons. This is supported

by the increased susceptibility of IFN-receptor deficient

mouse models to DENV infection. Furthermore, it has been

shown that DENV more efficiently antagonizes the IFN path-

way in humans compared with mice due to differential

binding of DENV NS5 protein with mouse and human

STAT2 [64]. Although antagonized, human cells still induce

high levels of IFN production in response to DENV, so this

pathway is not entirely abrogated in humans during infection

[65,66]. Several varied mechanisms that DENV uses to resist

innate host defence by antagonizing PRR and IFN pathway

signalling have been recently reviewed [67]. However,

when induced, IFN plays an important role in varied innate
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Figure 2. A schematic of immune responses initiated in the skin upon DENV infection. Diagram shows the network of immune cell types that encounter DENV in the
skin in the early hours following infection. Limited virus is thought to be deposited in the epidermis during natural route infection, but Langerhans cells in that
location are infection targets. In the dermis, DCs are also prime infection targets. MCs, which are not substantially infected in the skin, are activated by DENV and
degranulate. Their activation leads to the recruitment of NK and NKT cells to the site of infection. Skin-homing T cells are also thought to be recruited into skin sites
of infection. Using lymphatics, infected DCs carry DENV to the draining lymph node.
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and adaptive immune processes including resistance to viral

entry, promotion of T follicular helper cell activity

and effective antibody class-switching responses [68–70].

IFN production by DCs that are infected and/or presenting

DENV antigen and uninfected bystander cells activated

by the inflammatory environment would likely influence

these processes.
6. Dengue virus clearance by NK cells
and skin homing T cells

Recruitment of cells that contribute to DENV clearance is

another important step in the containment of virus infection

and initiation of adaptive immune responses, which occurs

subsequent to the initial sentinel response of skin-resident

immune cells. As discussed above, cytotoxic cells such as

NK cells, NKT cells and CD8þ T cells are recruited into the

DENV-infected skin in a MC-dependent manner [43]. NK

cells are able to kill DENV-infected DCs via both antibody-

dependent and independent mechanisms [71,72]. In mice,

depletion of NK1.1þ cells leads to greatly enhanced titres of

virus in the draining lymph nodes by 24 h post-infection,

indicating the important contributions of NK and/or NKT

cells to infection clearance in peripheral tissues at early

time points [44]. Consistent with this, higher numbers of

activated NK cells in the blood of human DENV patients

have been associated with milder disease [73]. Interestingly,

during acute dengue infection in humans, activated CD8 T

cells in the blood have a skin homing phenotype, involving
expression of CXCR3, CCR5 and the skin-homing marker

cutaneous lymphocyte-associated antigen (CLA) [74].

Together, these data indicate that skin-homing of cytotoxic

cells is an important component of DENV immunity and

clearance.
7. Mosquito and host factors that can
influence infection outcomes

The natural route of infection for DENV is the mosquito bite,

which likely influences the infectivity of DENV and inflam-

mation elicited by it through both the components of the

mosquito saliva and the process of probing for a blood

meal involving physical damage to the tissue. However,

little is known about the influence of the mosquito bite on

DENV and the results from multiple studies are potentially

contradictory. On the one hand, mosquito bites are immuno-

stimulatory. For example, it has been shown that MCs are

strongly activated by a mosquito bite so that they degranulate

within the skin. The mosquito bite-induced ‘wheal and flare’

reaction is attributed to MC histamine [75]. Yet, in contrast,

mosquito saliva has also been described as having some

immunosuppressive properties [76]. The few recent reports

examining innate responses to viruses delivered by mosquito

bite have suggested that mosquito saliva may enhance the

infectivity of those viruses [77,78]. Interestingly, since it has

been shown that IL-4 can potentiate infectivity, it is possible

that the mosquito bite could be enhancing for infection

through its induction of IL-4 [78–80]. Mosquito saliva may



rsob.royalsocietypublishing.org
Open

Biol.8:180087

6
also influence the cellularity in the skin. One study examining

the influence of the mosquito bite on the infectivity of another

arbovirus, Semliki Forest virus, showed that the mosquito

bite induces influx of neutrophils which hinder viral clear-

ance at the site of infection [81]. A recent study also

showed immune cell (monocytes, macrophages and DCs)

migration in the skin was increased in the presence of mos-

quito salivary gland extracts, as well as in the presence of

DENV enhancing antibodies, leading to exacerbated DENV

disease in IFN Type-I deficient mice [82]. Aedes aegypti
saliva has also been shown to suppress transcription of key

virus detection genes at the site of infection, such as TLR-7,

RelA, IFN-g and IP-10, which was postulated to hinder the

detection of the initial virus inoculum and contribute to

increased viral titres in vivo [83]. In contrast, experiments

using human donor-derived DCs suggested a protective

role for mosquito saliva and showed inhibition of DC infec-

tion by DENV in the presence of saliva [84]. Mosquito

saliva is a complex mixture of numerous proteins, which

require further studies to understand and describe their

functions in vivo in terms of modulating arboviral infections.

Inoculation of virus into the skin may also occur into a

host that has pre-existing immunity, whether to a homolo-

gous serotype, a heterologous serotype or to a Flavivirus
from a related serocomplex. Although concentrations of anti-

bodies are very low in the interstitial space [85], they are

likely to be present at higher concentrations as a result of

mosquito piercing of blood vessels or due to oedema and

vascular permeability at the site of infection. There are mul-

tiple ways that antibodies could influence infection,

whether through our traditional understanding of antibody-

dependent enhancement of infection or via alternative

pathways. For example, in the case of DENV, antibodies to

a heterologous DENV serotype could enhance infection of

Fc-receptor bearing cells, monocytes and macrophages,

known as antibody-dependent enhancement of infection

(ADE), resulting in severe disease [86–88]. However, anti-

bodies that are cross-reactive to other closely related viruses

could also potentiate immunity, as was shown to occur due

to the presence of serocomplex-cross reactive antibodies

after vaccination. In that case, antibodies may bind to the

virus particles, promote their uptake and increase the presen-

tation of the viral antigens in draining lymph nodes [89].

DENV-immune complexes have been shown to enhance

infection of Fc-receptor bearing cells including DCs [90]

and MCs [91], but they also can trigger activation and
enhanced degranulation of MCs compared to exposure of

MCs to virus alone (without cross-reactive antibodies) [92].

This IgG-enhanced degranulation to DENV has been shown

to occur via cross-linking of the FcgRIII receptor in mice

[92]. Furthermore, antibodies can promote antibody-depen-

dent cell-mediated cytotoxicity (ADCC) of infected cells by

NK cells, which has the potential to enhance killing of

infected cells [71]. Of course, the specificity and quality of

antibodies would greatly influence the potential outcomes.

As we know, both concentration dependent and specificity

dependent changes can influence whether antibodies result

in ADE or promote neutralization [87].

Finally, T cells, which are under-represented in the litera-

ture with respect to DENV infection of the skin, can also have

immune memory functions. Some studies have observed that

cross-reactive T cells are detrimental to recovery from DENV

due to the phenomenon of original antigenic sin [93], yet

other recent studies have indicated that serocomplex cross-

reactive T cell responses can promote protection during a

heterologous challenge [94,95]. Further studies are needed

to understand how memory T cells influence a homologous

or heterologous DENV infection in the skin.
8. Closing remarks
DENV infection begins in the skin where the immune

response is composed of multiple immune cell types that

are also potentially targets of infection and enhanced cellular

trafficking to and from the site of infection (figure 2). The

magnitude and character of the initial immune response

can influence the viral burden at later time points and the

kinetics of virus clearance. This natural route of infection is

also representative of the route used for vaccine adminis-

tration, making it important to understand the initial

responses that are immunogenic and protective, as well as

which host factors have the potential of modulating

anti-DENV immunity in the skin.
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