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Summary Objectives: Antimicrobial resistance (AMR) threatens our ability to treat the sexu-
ally transmitted bacterial infection gonorrhoea. The increasing availability of whole genome
sequence (WGS) data from Neisseria gonorrhoeae isolates, however, provides us with an op-
portunity in which WGS can be mined for AMR determinants.
Methods: Chromosomal and plasmid genes implicated in AMR were catalogued on the PubMLST
Neisseria database (http://pubmlst.org/neisseria). AMR genotypes were identified in WGS
from 289 gonococci for which MICs against several antimicrobial compounds had been deter-
mined. Whole genome comparisons were undertaken using whole genome MLST (wgMLST).
Results: Clusters of isolates with distinct AMR genotypes were apparent following wgMLST
analysis consistent with the occurrence of genome wide genetic variation. This included the
presence of the gonococcal genetic island (GGI), a type 4 secretion system shown to increase
recombination and for which possession was significantly associated with AMR to multiple an-
timicrobials.
Conclusions: Evolution of the gonococcal genome occurs in response to antimicrobial selective
pressure resulting in the formation of distinct N. gonorrhoeae populations evidenced by the
wgMLST clusters seen here. Genomic islands offer selective advantages to host bacteria and
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possession of the GGI may, not only facilitate the spread of AMR in gonococcal populations, but
may also confer fitness advantages.
ª 2016 The Author(s). Published by Elsevier Ltd on behalf of The British Infection Association.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/
by/4.0/).
Introduction

Neisseria gonorrhoeae, the aetiological agent of the sexu-
ally transmitted disease gonorrhoea, annually causes an
estimated 108 million cases globally.1 Untreated gonor-
rhoea can result in severe sequelae including pelvic inflam-
matory disease, infertility, neonatal conjunctivitis as well
as disseminated gonococcal infections. Gonorrhoea may
also lead to increased HIV transmission.2 While effective
treatment of gonorrhoea is a priority for public health glob-
ally, treatment options have diminished as N. gonorrhoeae
strains have developed resistance to multiple classes of
antibiotics.3

Gonococci become resistant to antibiotics through spon-
taneous mutation and/or horizontal genetic transfer (HGT)
with resistance conferred through all known mechanisms
including antimicrobial inactivation, antimicrobial
target alteration as well as increased export and decreased
uptake of antimicrobial compounds.2 For example, resis-
tance to fluoroquinolones, which inhibit the action of topo-
isomerase enzymes involved in DNA replication, occurs
through amino acid alterations in the chromosomal DNA
gyrase gene, gyrA and/or the DNA topoisomerase gene,
parC.4 The penicillin binding proteins 1 and 2 (PBP1 and
PBP2) encoded by ponA and penA respectively are essential
in the final stages of peptidoglycan synthesis involved in
cell wall assembly. Beta-lactams such as penicillin and
cephalosporin target PBP1 and PBP2 inhibiting cell wall syn-
thesis; however, non-synonymous mutations combined with
recombination alter the antibiotic target thereby limiting
beta-lactam activity.5 Resistance to spectinomycin and azi-
thromycin, which both interfere with protein synthesis, oc-
curs through point mutations in the nucleotide sequences
encoding either 16S rRNA or 23S rRNA respectively.6,7

Increased export of antimicrobial compounds may occur
through alterations of the mtrR efflux pump repressor
gene and/or its associated promoter resulting in over-
expression of the MtrCDE efflux pump,8,9 while decreased
antimicrobial uptake occurs through alteration of the major
outer membrane protein PorB encoded by porB1b (also
known as penB).10 Finally, antimicrobial inactivation may
result from plasmid-mediated beta-lactamases and/or
tetM genes which facilitate penicillin and/or tetracycline
resistance.11,12

Advances in sequencing and bioinformatics technology
provide rapid and automated analysis of whole genome
sequence data (WGS) and understanding antimicrobial
resistance (AMR) using WGS is likely to become essential
in combatting AMR. For example, associations between
resistance to the third generation cephalosporin, cefixime
and possession of penA mosaic alleles have been identified
in several WGS studies undertaken in N. gonorrhoeae.6,13,14

The PubMLST.org/neisseria website archives and annotates,
at the time of writing, >7000 WGS data from multiple
Neisseria species including N. gonorrhoeae.15 WGS data
deposited in the database are annotated, gene-by-gene,
enabling rapid extraction of strain information and
enhancing surveillance.16 Pivotal to surveillance is the ca-
pacity for AMR detection to be comparable across datasets
and requires AMR determinants to be annotated in a readily
accessible and reproducible format available to the entire
community. In this study, a catalogue of all known genes
implicated in AMR is provided with genomic comparison of
WGS data from a representative N. gonorrhoeae dataset
identifying distinct gonococcal populations clustering by
AMR genotype indicative of the presence of additional
genomic elements associated with AMR. This included a
type 4 secretion system (T4SS) also known as the gono-
coccal genetic island (GGI) which is known to enhance
HGT through the secretion of single stranded DNA.17 Data
presented here reveal that the T4SS was significantly asso-
ciated with gonococci exhibiting reduced susceptibility to
multiple antimicrobial compounds. The presence of the
T4SS may therefore not only offer selective advantages to
host bacteria but may also facilitate the spread of AMR in
gonococcal populations.

Materials and methods

Isolate collections and WGS analyses

WGS data from published isolate collections included: i) 236
isolates collected from sentinel public STD clinics by the US
Centers for Disease Control and Prevention Gonococcal
Isolate Surveillance Project; and ii) 53 isolates of diverse
origin dating from the 1980s to 2011. Isolates had been
analysed for antimicrobial minimum inhibitory concentra-
tions (MICs) to several antibiotics.13,14 Short reads were ob-
tained from the European Nucleotide Archive (ENA) and
assembled de novo using VELVET in combination with VEL-
VETOPTIMISER as previously described.18 The resulting con-
tigs were uploaded to the Bacterial Isolate Genome
Sequence (BIGSdb) genomics platform hosted on www.
pubmlst.org/neisseria.15

WGS data were compared using the genome comparator
tool, implemented within the PubMLST.org/neisseria web-
site which runs the BIGSdb genomics platform.15,18,19 Using
this tool, loci defined in the database or an annotated
reference genome can be compared among genomes. Using
a reference genome, the coding sequences within the
reference annotation are extracted and compared against
assembled WGS contigs. Unique allele sequences at each lo-
cus are designated with an integer starting at 1 (represent-
ing identity with the reference sequence) eventually
leading to a genome-wide multi locus profile (wgMLST)
from which a distance matrix can be generated and
resolved into networks using the NeighborNet algorithm im-
plemented in Splitstree.20 In this study, the reference
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genomes from N. gonorrhoeae isolates FA1090 (accession
number NC_002946) and MS11 (accession number
NC_022240) were employed.

The GGI characterised in N. gonorrhoeae isolate MS11
(Accession number AY803022) was used as a reference. It
is composed of 62 open reading frames and, sequences
from each of these were defined in the database
(Supplementary Table 1).17 WGS were then annotated for
the presence or absence of this element.
Annotation of AMR loci

Loci defined in pubmlst.org/neisseria are allocated a value-
free nomenclature using the prefix NEIS followed by 4
digits.18 AMR loci were designated accordingly and were
linked with any number of aliases including locus tags
from finished genomes or gene names (Table 1). For
example, penicillin binding protein 2 was defined as
NEIS1753 and was associated with the locus tag NGO1542
(from the reference N. gonorrhoeae isolate FA1090) and
the gene name, penA. As alterations in promoter regions
located upstream of specific loci have been found to in-
crease antibiotic resistance,9 specific loci were assigned
the pro suffix (for promoter) followed by the corresponding
Table 1 Antimicrobial resistance loci defined in pubMLST.org/n

Locus Gene (aliases) Pro

Beta-lactams

NEIS0408 pilQ/penC (NGO0094) Typ
NEIS0414 ponA (NGO0099; NMB1807) Pen

glyc
NEIS1753 penA (NGO1542; NMB0413) Pen

glyc
NEIS2020 porB/penB (NGO1812; NMB2039) Maj
Fluoroquinolones

NEIS1320 gyrA (NGO0629; NMB1384 DNA
NEIS1525 parC (NGO1259; NMB1605) DNA
NEIS1600 parE (NGO1333; NMB1682) DNA
Macrolides and aminoglycosides

16S rRNA 16S
NEIS0149 rpsE 30S
23S rRNA 23S
Efflux pumps

NEIS0488 macA (NGO1440) Mac
NEIS0489 macB (NGO1439) Mac
proNEIS0488 macAB promoter region Inte
NEIS1635 mtrR (NGO1366; NMB1717) Effl
proNEIS1635 mtrR promoter region Inte
NEIS1852 farB (NGO1682) Effl
NEIS1853 farA (NGO1683) Effl
NEIS0374 farR/marR (NGO0058) Mar
NEIS0763 norM (NGO0395) Mul
proNEIS0763 norM promoter region Inte
Plasmids

NEIS2357-2360
NEIS2357: blaTEM

pTem plasmid Bet

NEIS2202-2249
NEIS2210: tetM

TetM plasmid Tet
locus prefix for the adjacent gene to differentiate them
from coding sequences, e.g. proNEIS1635 (Table 1).

The plasmid containing the tetM gene, conferring resis-
tance to tetracycline from N. gonorrhoeae 5289
(GU479466),12 was used to define loci NEIS2202-NEIS2249,
with NEIS2210 designating the tetM gene. Sequences from
the beta-lactamase plasmid conferring resistance to beta-
lactams were retrieved from plasmid pSJ5.2 containing bla-

TEM1, and defined as NEIS2357eNEIS2360 (DQ355980) with
NEIS2357 designating the blaTEM gene (Table 1).21

The BIGSdb software includes ‘autotagger’ and “autode-
finer” tools which scan deposited WGS against defined loci
identifying alleles greater than or equal to 98% sequence
identity. This process runs in the background and automat-
ically updates isolate records with specific allele numbers,
marking regions on assembled contiguous sequences (con-
tigs) for any of the defined loci. Loci with sequence identity
<98% were manually checked and curated. Using the
molecular evolutionary analysis software MEGA v6, deduced
amino acid sequences were aligned identifying polymorphic
sites associated with antimicrobial resistance and enabling
alleles containing these mutations to be detected
(Table 2).22 Four copies of 16S rRNA and 23S rRNA are pre-
sent in N. gonorrhoeae genomes. Reference sequences con-
taining 16S and 23S rRNA along with flanking loci were
eisseria.

duct

e IV pilus biogenesis protein
icillin binding protein 1; peptidoglycan
osyltransferase (EC2.4.1.129)
icillin binding protein 2; peptidoglycan
osyltransferase (EC2.4.1.129)
or outer membrane porin

gyrase subunit A (EC5.99.1.3)
topoisomerase IV subunit A
topoisomerase IV subunit B (EC5.99.1)

rRNA
ribosomal protein S5
rRNA

rolide-specific efflux pump protein; ABC transporter
rolide-specific efflux pump protein; ABC transporter
rgenic promoter region (73bp upstream of NEIS0488)
ux pump transcriptional regulator repressor
rgenic promoter region (67nt upstream of mtrR)
ux pump protein, fatty acid resistance
ux pump protein, fatty acid resistance; homopolymeric tract
R family transcriptional regulator
tidrug and toxin extrusion (MATE) family efflux pump
rgenic promoter region (104bp upstream of NEIS0763)

a-lactamase encoded plasmid

racycline resistant plasmid
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Table 2 Antimicrobial resistance alleles containing mutations known to confer resistance.

Locus Known amino acid substitutions
associated with resistance

Principal alleles with mutations conferring AMR
resistance (MIC values where available)

Beta-lactams

NEIS0408 (pilQ/penC ) QAATPAKQ insertion at 180 D526 / N
pilQ allele I
Q172 / E pilQ allele II
N648 / S pilQ allele III
N432 / S; N648 / S pilQ allele IV
S341 / N; D494 / N; N648 / S pilQ
allele V
S341 / N; N648 / S pilQ allele VI
S341 / N pilQ allele VII
S341 / N; G500 / S pilQ allele VIII
AKQQAAAP deletion at 147; S341 / N
pilQ allele IX

Alleles 332, 575, and 598: pilQ I
Alleles 184, 659, 662 and 667: pilQ III
Allele 602: pilQ IV
Alleles 316, 317, and 664: pilQ V
Alleles 23,318, 319, 322 and 327: pilQ VI
Alleles 22, 251, 314, 320, 321, 323, 324, 325, 326,
328, 329, 330, 331, 590, 660, 661, 668,
and 666: pilQ VII

NEIS0414 (ponA) L421 / P Allele 13 (PEN 0.25e16; TET: 0.25e64*; CFX: 0.008
e1; CEF: 0.008e0.25; CPDF: 0.015e4)
Allele 48 (PEN 1e4; TET: 0.5e32*; CFX: 0.008e0.06;
CEF: 0.008e0.06; CPDF: 0.03e1)
Allele 222 (PEN 0.5; TET: 0.5; CFX: 0.015; CEF: 0.008;
CPDF: 0.03)
Allele 224 (PEN 4; CFX: 0.03; TET: 2; CEF: 0.03; CPDF:
0.125)
Allele 225 (PEN 2e4; TET: 2; CFX: 0.03e0.06; CEF:
0.03e0.06; CPDF: 0.125)

NEIS1753 (penA) I312 / M,
V316 / T,
D345 / a,
A501 / V/P,
F504 / L,
N512 / Y,
G545 / S,
P551 / S/L

Alleles 14 and 511: penA motif X (TET: 1e2; CFX: 0.5)
Alleles 286, 291, 292 and 517: penA motif VII (PEN 1
e16*; TET: 0.5e16; CFX 0.03e0.06; CEF: 0.03e0.06;
CPDF: 0.125e0.25)
Alleles 266, 281, 498, and 547: penA motif XXXIV (PEN
0.25e8; TET: 0.25e16*; CFX 0.015e0.5; CEF: 0.008
e0.25; CPDF: 0.015e4)
Allele 500: penA motif XXXIV with A501 / P amino
acid substitution (TET: 2; CFX: 1)
Alleles 289: penA motif XXXVIII (PEN: 0.25e1; TET:
0.5e2; CFX 0.015e0.03; CEF: 0.008e0.015; CPDF:
0.06e0.125)

NEIS2020 (porB) G120 / K,
A121 / D
Novel mutations identified in this study:
G120 / D/N/R, A121 / G/N/S

Alleles: 512, 517, 521, 523, 524, 526, 528, 530, 531,
534, 539, 540, 541, 542, 544, 545, 546, 547, 548, 550,
551, 552, 553, 554, 556, 557, 558, 560, 561, 562, 564,
565, 566, 568, 569, 570, 571, 573, 574, 575, 576, 577,
578, 579, 580, 581, 583, 584, 585, 586, 587, 588, 589,
590, 593, 594, 628, 629, 631, 632, 633, 634, 635, 636,
637, 638, 639, 647, 671, 728, 729, 786, 810, 877, 882,
968, 969, 970, 971, 974, 975, 976, 977, 982, 983, 985,
987, 988, 989, 990 (PEN: 0.25e16*; CFX: 0.004e1;
CEF: 0.008e0.25; CPDF: 0.015e4)

Fluoroquinolones

NEIS1320 (gyrA) S91 / F,
D95 / G/A/N/Y

Allele 14 (CIP: 0.015e32), allele 193 (CIP: 0.015e32),
allele 231 (CIP: 4e32), allele 233 (CIP: 2e8), allele
234 (CIP: 1e16), allele 236 (CIP: 1), allele 237 (CIP:
16), allele 239 (CIP: 32), allele 409 (CIP: 1e16)

NEIS1525 (parC ) D86 / N,
S87 / I/N/R,
S88 / P

Allele 104 (CIP: 0.015e32), allele 243 (CIP: 2e32),
allele 246 (CIP: 1e2), allele 252 (CIP: 16), allele 253
(CIP: 16), allele 255 (CIP: 4), allele 257 (CIP: 32),
allele 258 (CIP: 8), allele 488 (CIP: 0.015e32), allele
508 (CIP: 0.015e32)

NEIS1600 (parE ) G410 / V None of the isolates were found with this substitution

(continued on next page)
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Table 2 (continued )

Locus Known amino acid substitutions
associated with resistance

Principal alleles with mutations conferring AMR
resistance (MIC values where available)

Macrolides and aminoglycosides

16S rRNA C1192 / T (Escherichia coli numbering;
this corresponds to 1186 in N.
gonorrhoeae)

Allele 1538

NEIS0149 (rpsE ) Deletion of codon 27
K28 / E;
T24 / P

Allele 83

23S rRNA C2599 / T;
A2143 / G

Allele 431 (AZI: 2e16)
Allele 432 (AZI: 16)
Allele 436 (AZI: 2)
Allele 439 (AZI: 2)
Allele 456 (AZI: >256)

Efflux pumps

NEIS0488 (macA) No mutations described No mutations identified associated with AMR
NEIS0489 (macB) No mutations described No mutations identified associated with AMR
proNEIS0488 macAB
promoter region

G / T substitution in �10 promoter
region (50-TAGAAT-30) increases
transcription

None of the isolates had this substitution

NEIS1635 (mtrR) Premature stop codons Allele 367 (PEN: 0.25e0.5; TET: 0.5e1; CFX: 0.015
e0.03; CEF: 0.008; CPDF: 0.015e0.03; AZI: 8e16)
Allele 368 (PEN: 1e8; TET: 16e64*; CFX: 0.015e0.03;
CEF: 0.008e0.03; CPDF: 0.03e0.06; AZI: 0.03e0.25)
Allele 370 (PEN: 2; TET: 2; CFX: 0.06; CEF: 0.06;
CPDF: 0.125; AZI: 0.25)
Allele 371 (PEN: 1; TET: 0.5e16*; CFX: 0.015; CEF:
0.008; CPDF: 0.015; AZI: 0.06e0.5)
Allele 373 (n/a)
Allele 376 (n/a)

proNEIS1635 (mtrR
promoter region)

Adenosine deletion in efflux pump MtrR
promoter region

proNEIS1635 allele 1 (PEN: n/a; TET: 4; CFX: 0.004;
AZI: 0.125)
proNEIS1635 allele 2 (PEN: 2; TET: 1; CFX: 0.03; CEF:
0.015; CPDF: 0.06; CIP: 16; AZI: 0.5)
proNEIS1635 allele 3 (PEN: 0.25e16; TET: 0.25e32*;
CFX: 0.015e1; CEF: 0.008e0.25; CPDF: 0.015e4;
CIP: 0.015e32; AZI: 0.03e2)
proNEIS1635 allele 4 (PEN: 0.25e0.5; TET: 0.5e1; CFX:
0.015e0.03; CEF: 0.008; CPDF: 0.015e0.03; CIP:
0.015; AZI: 8e16)
proNEIS1635 allele 5 (PEN: n/a; TET: 0.5;
CFX: 0.016; AZI: 2)

NEIS1852 (farB) No mutations described n/a
NEIS1853 (farA) No mutations described n/a
NEIS0374 (farR/marR) Regulated by MtrR such that over

expression of MtrR results in decreased
expression of FarAB

n/a

NEIS0763 (norM ) Promoter region n/a
proNEIS0763 norM
promoter region

CTGACG instead of TTGACG substitution
in the �35 box resulting in
overexpression of NorM

n/a

Plasmids

NEIS2357 (bla-TEM ) Allele 3 and allele 9: blaTEM1
Allele 2: blaTEM135

NEIS2210 (tetM ) Alleles 2, 3, and 9
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created against which short reads from isolates were map-
ped using the BurrowseWheeler Alignment (BWA) software
package and subsequently viewed using Tablet.23,24 Mapped
reads were then visually inspected and nucleotide substitu-
tions verified.

Antimicrobial resistance phenotype

MIC cut-offs, guided by the US GISP antimicrobial suscep-
tibility criteria, were defined for each antimicrobial com-
pound (Supplementary Table 2). Phenotypic testing of AMR
is the current preferred method for determining antimicro-
bial susceptibility and is the “gold standard” with any new
approaches, such as genotypic AMR, requiring validation
against this using sensitivity, specificity and predictive
values. These were calculated as described previously.25

Results

N. gonorrhoeae wgMLST

Whole genome analysis identified a star burst phylogeny
with isolates forming discrete clusters associated with
distinct AMR genotypes and the presence/absence of the
T4SS, known as the gonococcal genetic island (GGI) (Fig. 1,
Figure 1 Whole genome genealogy of N. gonorrhoeae isolate

whole genome MLST (wgMLST) comparison of WGS data from 289
colour-labelled according to AMR genotype starting with red circl
green circles depicting susceptible isolates. Red stars indicate th
TET: tetracycline; CEPH: cephalosporins; FLUORO: fluoroquinolone
ceptible; I: intermediate.
Supplementary Table 1). A significant association between
possession of the GGI and AMR to multiple compounds
was identified (Supplementary Table 3). Four MLST ST-
1901 clusters were apparent: Cluster 1 associated with
penA (NEIS1753) allele 266 and isolates exhibiting resis-
tance to multiple antimicrobial compounds as previously
identified by Grad et al.; this cluster also contained the
GGI13; Clusters 2 and 3 also included ST-1901 isolates with
divergent AMR profiles compared with cluster 1, with clus-
ter 3 including isolates with the GGI and cluster 2 without
the GGI. Cluster 4 contained another group of ST-1901 iso-
lates. Cluster 1 included several ST-1901 isolates suscepti-
ble to cephalosporins. These isolates contained penA
(NEIS1753) allele 289 (penA motif XXXVIII, Table 2) which
is not associated with reduced susceptibility to cephalospo-
rins.13 Allelic profiles for the other AMR genes were, howev-
er, the same as the other ST-1901 isolates in this cluster.

Another group of isolates, previously identified as cluster
2 byGrad et al. but indicated here as cluster 8,were ST-1580,
contained NEIS1753 allele 266 as well as the GGI but were
susceptible to ciprofloxacin.13 These isolates possessed the
smaller transferrin binding protein B gene (isotype I) impli-
cated in iron acquisition and predominantly associated
with Neisseria meningitidis isolates from clonal complex
ST-11 as well as commensal Neisseria.13,26 Cluster 7 con-
tained isolates from ST-9363 and lacked the GGI but were
s investigated in this study. A neighbourNet graph depicting
isolates. Each branch tip represents one isolate with circles
es depicting isolates with resistant AMR genotypes through to
e presence of the gonococcal genetic island. PEN: penicillin;
s; SPEC: spectinomycin; AZI: azithromycin. R: resistant; S: sus-
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resistant to azithromycin (Fig. 1). Clusters 5 and 6 included
ST-1588 and ST-1893 isolates on longer branches indicative
of diversity. FA1090 and MS11 were part of a large diverse
group of isolates, some of which dating from the 1980s.14,27
Table 3 AMR Phenotype and genotype concordance in iso-
lates from the US-GISP study.

Antimicrobial Number of isolates in the
US-GISP study with concordant
phenotype and genotype

Penicillin 205/236 (87%)
Tetracycline 216/236 (92%)
Cephalosporins 190/236 (81%)
Ciprofloxacin 234/236 (99%)
Azithromycin 232/236 (98%)
Spectinomycin 236/236 (100%)
AMR analysis

A catalogue of all AMR determinants in gonococci is
described (Table 1). Alleles containing mutations associ-
ated with resistance were identified and linked with anno-
tations describing principal mutations (Table 2). Mutations
in ponA (NEIS0414) associated with resistance to beta-
lactam compounds were identified in 203/289 (70%) isolates
with allele 13 the most predominant (187/203, 92%)
(Table 2, Supplementary Table 4). Penicillin binding protein
2, penA (NEIS1753) alleles 266 and 281 contained penA
mosaic motif XXXIV, which is associated with reduced sus-
ceptibility to third generation cephalosporins; however,
penA allele 281 contained an additional non-synonymous
mutation (D101 / E) found in one isolate only, GCGS126.
This isolate had a cefixime MIC >0.125 mg/ml but did not
possess mutations conferring resistance in any other AMR-
associated loci (Supplementary Table 4). penA (NEIS1753)
allele 266 was found in 122/289 (42%) isolates; however,
26/122 (21%) did not have mutations associated with resis-
tance in other AMR loci. Although these isolates exhibited
reduced susceptibility to cefixime, they did not have resis-
tant phenotypic MIC values to any of the other antimicro-
bials (Supplementary Table 4).

Most isolates, 282/289 (98%) contained the porB1b
(NEIS2020) allele associated with decreased susceptibility
to beta-lactams and tetracycline with AMR conferred
through non-synonymous substitutions in loop III of PorB.10

A total of 31 distinct loop III regions were identified with
those containing G120 / K and A121 / D/N mutations
associated with resistant MIC values to penicillin and tetra-
cycline (Supplementary Table 5). Only 3/289 (1%) isolates
contained amino acid substitution D526 / N found in
pilQ (NEIS0408) associated with decreased susceptibility
to cefixime and ceftriaxone,28 however, these isolates
lacked mosaic penA (NEIS1753), mtrR (NEIS1635) and
porB1b (NEIS2020) mutations and therefore were suscepti-
ble to these compounds. Amino acid mutation S341 / N
in pilQ (NEIS0408, also known as pilQ allele VII), not associ-
ated with increased resistance to cephalosporins, was
found in 275/289 (95%) isolates.28

Plasmid mediated AMR was not prevalent with 21/289
(7%) isolates containing the beta-lactamase plasmid and
19/289 (6%) the TetM conjugative plasmid. Divergent blaTEM
genes have been described with blaTEM1 the most commonly
found followed by blaTEM135.

11 NEIS2357 (blaTEM) alleles 3
and 9 were blaTEM1 and were found in 15/21 (71%) isolates
while allele 2 designated blaTEM135 and was found in 6/21
(29%) isolates. There were two NEIS2210 (tetM ) alleles
with allele 1 found in 7/19 (37%) isolates and allele 2 in
12/19 (63%) isolates (Table 2).

Most isolates, 176/289 (61%), were found with mutations
S91 / F and D95 / G in gyrA (NEIS1320) conferring resis-
tance to fluoroquinolones, with allele 14 the most predom-
inant (138/176, 78%). In parC (NEIS1525), 184/289 (64%)
isolates contained amino acid substitutions at residue 87
(S87 / R) only, with allele 104 the most predominant
(145/184, 79%) and found in association with gyrA
(NEIS1320) allele 14. All of these isolates were resistant
to ciprofloxacin (Table 2). None of the isolates were found
with the G410 / V substitution in parE (NEIS1600).29

Of the previously reported mutations associated with
macrolide resistance, mutation C24 / P identified in rpsE
ribosomal protein S5 (NEIS0149) was not found.7,30,31 Muta-
tion C2599 / T in 23S rRNA was found in 25/289 (9%) iso-
lates and these had azithromycin MIC values �8 mg/ml.
One isolate, MUNG19, had mutation A / 2143G, 23S rRNA
allele 456, and had resistant MIC to azithromycin,
�256 mg/ml (Table 2, Supplementary Table 3). Spectino-
mycin resistance is conferred through deletion of codon
27 and, subsequent L28 / E substitution in rpsE
(NEIS0149) allele 83 or mutation C1186 / T in 16S rRNA
allele 1538.7,30 Two isolates, ATL0121 and MUNG18, were
found with either of these mutations, however, spectino-
mycin phenotypic values were unavailable (Table 2,
Supplementary Table 2).

The adenine deletion in the 13bp promoter region
associated with increased expression of the MtrCDE efflux
pump was found in 178/289 (62%) isolates (proNEIS1635
allele 3)9 and was associated with mutations in many of
the other AMR loci including penA (NEIS1753), ponA
(NEIS0414) and porB (NEIS2020). Four isolates were found
with an A / C substitution in the promoter region, pro-

NEIS1635 allele 4, with these isolates also containing pre-
mature stop codons in mtrR gene consistent with putative
non-functional MtrR proteins. These were associated with
resistant MIC to azithromycin8 (Table 2). Mutations associ-
ated with high AMR MIC values were not detected in the
efflux pumps MacAB and FarAB.32,33 None of the isolates
were found with nucleotide substitution G / T in the
�10 promoter region (50-TAGAAT-30) upstream of macA (pro-

NEIS0488) and no significant mutations were found in the
transcriptional regulator, NEIS0374 (farR).34 Overexpression
of NEIS0763 (norM ) may occur when a T/ C nucleotide oc-
curs in the �35 box in the promoter region (proNEIS0763)
(TTGACG to CTGACG)35 and all of the isolates contained
this substitution.
Phenotype vs genotype correlation

High congruence was observed between phenotypic AMR
and the predicted genotypic AMR (Table 3). Discrepancies
occurred when comparing beta-lactam resistance profiles
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with, for example, nine isolates containing MIC values
�1 mg/ml to penicillin but which had AMR amino acid muta-
tions associated with resistance in loci NEIS1753, NEIS0414,
NEIS2020, NEIS0408 and proNEIS1635 for which other isolates
with the same mutations had MIC values ranging from 2 to
8 mg/ml to penicillin. In addition, four isolates with an
AMR genotype had reduced susceptibility to cefixime and
penicillin but were susceptible to ceftriaxone and cefpo-
doxime. Two isolates had genotypic profiles consistent
with reduced susceptibility to cefixime but did not have a
corresponding resistant phenotype. Three isolates con-
tained a beta-lactamase plasmid but had MICs �1 to
penicillin.

PPV scores were over 95% for each antimicrobial com-
pound consistent with genotypic AMR performing as well as
phenotypic AMR in detecting antimicrobial resistance
(Table 4). NPV scores indicated whether isolates with a sus-
ceptible phenotype also had a susceptible genotype and
NPV scores were low for penicillin and tetracycline but
high for cefixime, ciprofloxacin and azithromycin
(Table 4). Sensitivity and specificity scores were high for
all compounds.
Discussion

Direct deduction of resistance from WGS data provides an
important opportunity for the enhanced surveillance of
AMR for public health benefit. Gonococcal AMR is, however,
a complex phenotype resulting from single to multiple
genetic changes often occurring in synergy and resulting
in increasing levels of antimicrobial resistance to several
compounds with the added uncertainty that additional
unknown genetic elements may also be playing a role.3,5

The complexity of gonococcal AMR is further exacerbated
by the presence of multiple gene names and lack of web-
accessible repositories with which sequence data can be
queried. In this study, all of the known genes implicated
in AMR were catalogued defining AMR determinants in a
readily accessible, reproducible format found on the
www.pubmlst.org/neisseria website, which hosts WGS
data from multiple Neisseria species (Tables 1 and 2).19
Table 4 Sensitivity and Specificity of genotype vs phenotype ca

Antimicrobial Sensitivity (%) Specificity (%) Positiv
(%)

Penicillin 80.59 96.61 98.56
Tetracycline 98.68 100 100
Cefixime 98.37 99.12 99.18
Ciprofloxacin 98.82 100 100
Azithromycin 100 98.04 88.89
Spectinomycin nd nd nd

PPV was calculated as the proportion of isolates with a resistant AMR g
a (true positive)/a þ b (true positive þ false positive). NPV calculated
have a susceptible phenotype: NPVZ d/c þ d where d (true negative)
likely a resistant AMR genotype was able to detect an isolate with a res
positive þ false negative). Specificity identified how likely a susceptib
AMR phenotype: d/b þ d where d (true negative)/b þ d (true negati
Gene-by-gene annotation of AMR loci, combined with
wgMLST analysis, identified clusters of isolates with
distinct AMR genotypes. Some of these also possessed the
GGI, a T4SS known to facilitate HGT through the secretion
of single stranded DNA (ssDNA) into the extracellular
environment (Fig. 1, Supplementary Table 1).17 T4SSs are
mobile genetic elements and play a major role in HGT al-
lowing bacteria to outcompete other bacterial species
through the acquisition of a variety of fitness genes
including catabolic, virulence and antibiotic resistance.
For example, antimicrobial resistance in Haemophilus in-
fluenzae has been shown to be associated with the acqui-
sition of integrative conjugative elements known as ICEs, a
type of T4SS.36 It is also known that mobile genetic ele-
ments such as plasmids, phages and genomic islands play
an important role in the emergence of pathogenic Entero-
bacteriaceae.37 A number of hypothetical genes remain to
be characterised in the GGI which may offer additional se-
lective advantages to host gonococci (Supplementary
Table 1). The association, however, of the T4SS in this
study with N. gonorrhoeae isolates exhibiting reduced sus-
ceptibility to multiple antimicrobial compounds is consis-
tent with the likelihood that this element will accelerate
the spread of AMR.

Expansion of distinct gonococcal populations may also be
promoted through the activity of toxineantitoxin (TA) sub-
units encoded by the genes, ydhB (NEIS2281) and ydcA
(NEIS2282), located in the GGI (Supplementary Table 1).
TA are common features of mobile genetic elements and
the negative effects of cell growth conferred by the toxin
are suppressed by an antitoxin. Cells lacking the mobile ge-
netic element and, therefore the TA, are harmed by the
toxin producing cells, which are themselves immune due
to possession of the antitoxin.38,39 Thus, the presence of
the GGI may have been a significant factor in the expansion
in the Western Hemisphere of gonococci belonging to ST-
1901 (NG-MAST ST-1407). In addition, isolates possessing
both the GGI and plasmid mediated AMR were not prevalent
in this dataset. Many of GGI encoded genes show similarity
to those from the Escherichia coli F-plasmid conjugation sys-
tem and, the order of the genes in the GGI is highly similar to
the IncF family of conjugative plasmids, consistent with the
GGI being an ancestral chromosomally inserted plasmid.17,40
lculated for the US-GISP isolates.

e predictive value (PPV) Negative predictive value
(NPV) (%)

63.33
71.43
98.25
97.10
100
nd

enotype to have a resistant AMR phenotype: PPVZ a/a þ b where
the proportion of isolates with a susceptible AMR genotype to also
/c þ d (false negative þ true negative). Sensitivity calculated how
istant AMR phenotype: a/a þ c where a (true positive)/a þ c (true
le AMR genotype was able to detect an isolate with a susceptible
ve þ false positive).

http://www.pubmlst.org/neisseria
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In particular, the DNA methylases, ydg (NEIS2288) and ydhA
(NEIS2289) can be found which may enable within host
competition between plasmids consistent with the low prev-
alence of isolates here possessing both a plasmid and the
GGI41 (Supplementary Tables 1 and 4).

The increasing number of bacteria becoming resistant to
multiple antimicrobials is a major global concern with
health officials warning of the possibility of untreatable
bacterial infections.42 The tools developed in this study pre-
sent a means through which AMR can be deduced from WGS
while also permitting AMR genotypes to be compared be-
tween isolates and linked with additional genomic data.
Furthermore, the availability of a web-accessible database
enables globally distinct isolate collections, where selec-
tion pressures will be different, to be compared, thereby
enriching surveillance. Concordance was high between
phenotypic and genotypic AMR with most of the discrep-
ancies observed for the beta-lactam compounds and tetra-
cycline, for which multiple genetic components are
implicated in conferring resistance (Tables 3 and 4). In
most cases, AMR genotypes were identified which did not
correlate with AMR phenotypes (i.e. isolates had suscepti-
ble phenotypes despite the presence of resistant geno-
types). These correlated with some of the lower NPV
scores obtained for penicillin and tetracycline (Table 4).
The high PPV, specificity and sensitivity values are encour-
aging, however, and indicate that molecular AMR diagnosis
may be useful in surveillance particularly in settings where
diagnosis relies on nucleic amplification tests (NAATS) and
cultures are not available (Table 4).43

N. gonorrhoeae has developed resistance to all antimi-
crobials recommended in the first-line empirical treat-
ment of gonorrhoeae and in order to understand and
limit the onset of an era of untreatable gonorrhoea, it is
essential that factors underpinning the acquisition of anti-
microbial resistance are understood and monitored. The
data and tools presented here provide a model in which
this can be accomplished using an easily accessible data-
base with the likelihood that such interfaces will become
particularly important as more WGS data become
available.
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