
antioxidants

Review

Pharmacotherapy against Oxidative Stress in Chronic Kidney
Disease: Promising Small Molecule Natural Products Targeting
Nrf2-HO-1 Signaling

Md Jamal Uddin 1,2 , Ee Hyun Kim 1, Md. Abdul Hannan 2,3 and Hunjoo Ha 1,*

����������
�������

Citation: Uddin, M.J.; Kim, E.H.;

Hannan, M..A.; Ha, H.

Pharmacotherapy against Oxidative

Stress in Chronic Kidney Disease:

Promising Small Molecule Natural

Products Targeting Nrf2-HO-1

Signaling. Antioxidants 2021, 10, 258.

https://doi.org/10.3390/

antiox10020258

Academic Editors: Yi-Sook Jung and

Sang Hee Shim

Received: 10 January 2021

Accepted: 3 February 2021

Published: 7 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Korea;
hasan800920@gmail.com (M.J.U.); pionhyun@gmail.com (E.H.K.)

2 ABEx Bio-Research Center, East Azampur, Dhaka 1230, Bangladesh; hannanbmb@bau.edu.bd
3 Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University,

Mymensingh 2202, Bangladesh
* Correspondence: hha@ewha.ac.kr; Tel.: +82-2-3277-4075

Abstract: The global burden of chronic kidney disease (CKD) intertwined with cardiovascular
disease has become a major health problem. Oxidative stress (OS) plays an important role in the
pathophysiology of CKD. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant responsive
element (ARE) antioxidant system plays a critical role in kidney protection by regulating antioxidants
during OS. Heme oxygenase-1 (HO-1), one of the targets of Nrf2-ARE, plays an important role in
regulating OS and is protective in a variety of human and animal models of kidney disease. Thus,
activation of Nrf2-HO-1 signaling may offer a potential approach to the design of novel therapeutic
agents for kidney diseases. In this review, we have discussed the association between OS and the
pathogenesis of CKD. We propose Nrf2-HO-1 signaling-mediated cell survival systems be explored as
pharmacological targets for the treatment of CKD and have reviewed the literature on the beneficial
effects of small molecule natural products that may provide protection against CKD.
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1. Introduction

The incidence and prevalence of chronic kidney disease (CKD) patients is increasing
worldwide. The prevalence of CKD between male and female patients is not constant
between countries, however, kidney functions decline faster in males than females [1].
Importantly, CKD is not only a risk factor for increasing global mortality but it is also a
critical factor involved in cardiovascular disease (CVD) [2]. The close link between CKD
and CVD has been known for a long time [3–5]. Not only traditional risk factors such
as hypertension, dyslipidemia, and diabetes, but also non-traditional risk factors such as
disturbed minerals and vitamins in CKD may play important roles in the progression of
CVD. The current treatment options for CKD are controlling blood pressure, serum glucose,
and serum lipid profile [6], as well as a modification of lifestyle [7,8]. Since the efficacy
of the current therapeutic strategy is still limited [9], there is a need to develop a more
effective therapeutic option for treating CKD. Although the exact mechanism involved in
the development of CKD is elusive, many lines of evidence strongly suggest that oxidative
stress (OS) plays a critical role in the progression of CKD [10–13].

OS is an imbalance between cellular reactive oxygen species (ROS) levels and an-
tioxidant enzymes, leading to a pathological condition. ROS regulates various signaling
pathways, including the growth and differentiation of cells, mitogenesis, production, and
breakdown of the extracellular matrix (ECM), inflammation, and apoptosis [14]. OS-
mediated damaging effects of cells are controlled by activating the antioxidant defense
system. OS has also been noticed to be affected by sex hormones in ischemic kidney
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injury [15]. Unfortunately, there is an impairment of antioxidative defense and a reduced
activity of antioxidant enzymes in CKD [16]. Hence, promoting the endogenous antioxi-
dants defense system may become an important strategy in inhibiting OS-mediated cellular
damage in CKD.

Phytochemicals and other natural products are cytoprotective against OS by scaveng-
ing oxygen-free radicals and enhancing the level of antioxidants [17]. The literature on
protective effects of antioxidant natural products against CKD has been reported [18–20].
Nuclear factor erythroid 2-related factor 2 (Nrf2) is the master regulator of the cellular
antioxidant defense system [17]. Studies review that augmentation of Nrf2 activity pre-
vents the progression of acute kidney injury (AKI) to CKD transition [21,22]. Natural
bioactive compounds and their sources have been demonstrated to have kidney protective
potential by activating Nrf2 in experimental CKD models [23,24]. In a recent review on
clinical studies, bardoxolone methyl (CDDO-me), a semi-synthetic triterpenoid activat-
ing the Nrf2 pathway, has been reported as an effective therapeutic for diabetic kidney
disease (DKD), although it has limitations in that it increases the risk of heart failure [25].
Heme oxygenase-1 (HO-1), one of the target molecules of Nrf2, attenuates the overall
production of ROS through its ability to degrade heme and to produce carbon monoxide
(CO), biliverdin/bilirubin, and the release of free iron. Induction of HO-1 mediates many
beneficial effects in the cardiovascular system and kidney [26]. Also, the modulatory role
of HO-1 has been reported in various kidney injury models including CKD [27–34]. Several
natural HO-1 inducers and their therapeutic applications in various diseases, including
CKD, have been reported [35].

In this review, we have explored the causes responsible for the development of OS
and its involvement in the pathophysiology of CKD. We then introduced Nrf2-HO-1 sig-
naling as pharmacological targets for the treatment of CKD. Finally, we have discussed the
recent literature on its protective effects on the kidney and the underlying pharmacolog-
ical mechanisms of bioactive phytochemicals that activate Nrf2-HO-1-mediated kidney
protective actions.

2. Oxidative Stress in Chronic Kidney Disease

OS plays a critical role in the progression of CKD [36,37], including diabetic kidney
disease (DKD), glomerulosclerosis, glomerulonephritis, lupus nephritis (LN), systemic
lupus erythematosus (SLE), tubulointerstitial fibrosis, and chronic renal allograft dys-
function (CRAD). The mechanistic link between OS and CKD has been widely investi-
gated [10–12]. Briefly, mitochondria and NADPH oxidases are the important sources of
intracellular ROS which activate signal transduction cascade and transcription factors,
leading to upregulation of genes and proteins involved in remodeling of ECM in the
diabetic kidney [10]. In addition, ROS disturb the excretory function of the nephron,
leading to homeostasis imbalance and accumulation of metabolic products. ROS also
disturb regulatory mechanisms of kidney, such as tubular glomerular feedback, myo-
genic reflex in the arteriole, and the renin–angiotensin–aldosterone system. As a result,
the kidney fails to compensate for water–electrolyte and acid–base imbalances, leading
to an additional increase in OS. Ultimately, the progression of CKD is occurred with
a variety of complications [11]. This section reviews the mechanisms involved in the
different models of CKD, as below and in Figure 1.
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Figure 1. Mechanisms involved in the pathogenesis of OS in CKD. Stress stimuli such as high glu-
cose, H2O2, and AGE generate ROS in the kidney. The higher ROS increases TGFβ activation, caus-
ing kidney fibrosis through the accumulation of ECM and EMT. ROS also decreases MMP and 
regulates Bax/Bcl2 in mitochondria to activate caspase3, resulting in apoptosis. Not only nuclear 
localization of NF-kB through degradation of phosphorylated IkBα but also NLRP3 inflam-
masome activation induces inflammation with inflammatory cytokines secretion. These ROS-in-
duced pathophysiologic conditions exacerbate CKD. AGE, advanced glycation end products; 
CKD, chronic kidney disease; COX2, cyclooxygenase 2; ECM, extracellular matrix; EMT, epithe-
lial-to-mesenchymal transition; HG, high glucose; LPS, lipopolysaccharide; MCP-1, monocyte 
chemoattractant protein-1; MMP, mitochondrial membrane permeability; NLRP3, NLR family 
pyrin domain containing 3; ROS, reactive oxygen species; TNFα, tumor necrosis factor α; TGFβ, 
transforming growth factor β. 

2.1. Diabetic Kidney Disease (DKD) 
DKD is a key microvascular complication of diabetes. NADPH oxidases (Nox)-de-

rived ROS play an important role in inflammation and in the accumulation of ECM in 
DKD. Both hyperglycemia and dyslipidemia play roles in OS and mitochondrial dysfunc-
tion [38,39]. In mice, streptozotocin (STZ) increases the ROS level and the expression of 
monocyte chemoattractant protein-1 (MCP-1), tumor necrosis factor α (TNFα), macro-
phage marker (F4/80), transforming growth factor β (TGFβ), and fibronectin (FN). Also, 
STZ treatment induces mitochondrial and peroxisomal dysfunction. These effects are de-
creased by APX-115, a pan-Nox inhibitor [40], indicating the involvement of OS in mito-
chondrial and peroxisomal dysfunction. Increased ROS levels and oxidative DNA dam-
age were found to be associated with increased TGFβ1 and ECM accumulation in STZ-
induced diabetic mice [41]. In STZ-induced diabetic rats, methylglyoxal increased the lev-

Figure 1. Mechanisms involved in the pathogenesis of OS in CKD. Stress stimuli such as high glucose,
H2O2, and AGE generate ROS in the kidney. The higher ROS increases TGFβ activation, causing
kidney fibrosis through the accumulation of ECM and EMT. ROS also decreases MMP and regulates
Bax/Bcl2 in mitochondria to activate caspase3, resulting in apoptosis. Not only nuclear localization
of NF-kB through degradation of phosphorylated IkBα but also NLRP3 inflammasome activation
induces inflammation with inflammatory cytokines secretion. These ROS-induced pathophysiologic
conditions exacerbate CKD. AGE, advanced glycation end products; CKD, chronic kidney disease;
COX2, cyclooxygenase 2; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition;
HG, high glucose; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MMP,
mitochondrial membrane permeability; NLRP3, NLR family pyrin domain containing 3; ROS,
reactive oxygen species; TNFα, tumor necrosis factor α; TGFβ, transforming growth factor β.

2.1. Diabetic Kidney Disease (DKD)

DKD is a key microvascular complication of diabetes. NADPH oxidases (Nox)-derived
ROS play an important role in inflammation and in the accumulation of ECM in DKD. Both
hyperglycemia and dyslipidemia play roles in OS and mitochondrial dysfunction [38,39].
In mice, streptozotocin (STZ) increases the ROS level and the expression of monocyte
chemoattractant protein-1 (MCP-1), tumor necrosis factor α (TNFα), macrophage marker
(F4/80), transforming growth factor β (TGFβ), and fibronectin (FN). Also, STZ treatment
induces mitochondrial and peroxisomal dysfunction. These effects are decreased by APX-
115, a pan-Nox inhibitor [40], indicating the involvement of OS in mitochondrial and
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peroxisomal dysfunction. Increased ROS levels and oxidative DNA damage were found
to be associated with increased TGFβ1 and ECM accumulation in STZ-induced diabetic
mice [41]. In STZ-induced diabetic rats, methylglyoxal increased the levels of ROS, and Bax,
cytochrome C, caspase-9, and caspase-3 expression, while it decreased Bcl2 expression in
the kidneys [42]. In high-fat diet (HFD)-induced type 2 diabetic mice, accumulation of kid-
ney OS markers such as 8-isoprostane and 4-hydroxynonenal (HNE) were associated with
12/15-lipoxygenase upregulation, resulting in prediabetic nephropathic phenomenon [43].
HFD-induced OS is contributed by inducible nitric oxide synthase (iNOS) and Nox4, as
well as mitochondrial oxidants, induced kidney fibrosis, and glomerular hypertrophy
in mice [44]. The Zucker diabetic fatty rat, a model of type 2 diabetes, shows increased
ROS, nitric oxide, and lipid and protein peroxidation levels in the kidney associated with
alterations in glutathione (GSH)-dependent metabolism and mitochondrial function, lead-
ing to the development of kidney injury [45]. In db/db type 2 diabetic mice, treatment
with an inhibitor of OS, biliverdin, has also been identified as a potential therapeutic
option for translation into clinical application [46]. Under high glucose (HG), peripheral
blood mononuclear cells showed decreased catalase (CAT), CuZn superoxide dismutase
(SOD), and glutathione peroxidase (GPx) mRNA expression in patients with type 1 diabetic
nephropathy [47]. Besides, OS as indicated by the plasma carbonyl group [48], nitrotyro-
sine [49], and malondialdehyde (MDA) [50] were increased in type 2 diabetic patients.

2.2. Glomerulosclerosis and Glomerulonephritis

Glomerulosclerosis is a common final pathological feature of CKD. In Charles Dawley
rats, doxorubicin-induced glomerulosclerosis (glomerular podocyte damage) increased
proteinuria and reduced their body weights. Doxorubicin increased OS, as indicated by
neutrophil cytosolic factor 1 (p47phox) and Nox2 (p91phox) mRNA. Increased oxidative
enzyme expression was accompanied by increased lipid peroxidation, as demonstrated by
HNE and increased protein nitrosylation demonstrated by nitrotyrosine in doxorubicin
nephropathy in Charles Dawley rats. Besides, fibrosis markers such as TGFβ1, CTGF, and
Col1α1 mRNA were also upregulated [51].

Acute glomerulonephritis (AGN), an inflammatory and proliferative glomerular dis-
ease, is characterized by marked proliferation of mesangial and endothelial cells in the
glomerulus, together with infiltration of neutrophils. During the disease process, ROS
levels might be increased by neutrophils, monocytes, and mesangial cells. Thus, OS may
play an important role in the pathogenesis of AGN [52]. The involvement of OS with
experimental AGN is further supported by an increase in lipid peroxidation products and
alterations in antioxidants [53]. Membranous glomerulonephritis (MGN) is a nephrotic
syndrome that may lead to CKD. In cationic bovine serum albumin (BSA)-induced MGN
in the rat, kidney dysfunction and histopathological changes were observed, while oxi-
dants such as MDA were enhanced with a decline in the level of antioxidants, including
SOD, CAT, and GPx [54]. Altogether, the oxidant–antioxidant imbalance may cause the
development of pathogenic alterations in these glomerulonephritis models.

2.3. Lupus Nephritis (LN) and Systemic Lupus Erythematosus (SLE)

LN is a severe and frequent complication of SLE. The important role of OS in LN
has been previously described [55]. The New Zealand black/white F1 lupus-prone mice
showed impaired kidney function with severe kidney lesions and increased ROS-mediated
OS. Besides, they showed enhanced expression of the NLRP3 inflammasome as well as NF-
kB activation [56]. The pristine-induced lupus nephritic mice resulted in LN with glomeru-
lar oxidative damage associated with an increase in ROS, TGFβ1, FN, and iNOS [57]. A
recent review has also explained the role of OS in SLE. Here, mitochondrial dysfunction
increased OS, leading to lupus pathogenesis [58]. In lupus nephritic patients, immunohis-
tochemistry analysis of the kidney showed an increased accumulation of 8-oxo-dG [57].
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2.4. Tubulointerstitial Fibrosis

Tubulointerstitial fibrosis is the most important feature associated with progressive
CKD. The remnant kidney of 5/6 nephrectomy-induced CKD in Sprague-Dawley rats
showed increased profibrotic cytokines, lipid peroxidation, GSH depletion, and Nox,
suggesting the involvement of OS with tubulointerstitial fibrosis [48]. The involvement of
OS in kidney tubulointerstitial inflammation and fibrosis in a unilateral ureteral obstruction
(UUO) mouse model has been established for a long time. DNA oxidant markers such
as 8-oxo-dG and lipid peroxidation markers such as MDA are increased in UUO kidneys.
Also, the increase in ROS levels and a reduction in antioxidants, including SOD and CAT,
were found to be involved with TGFβ-mediated inflammation and fibrosis [59]. Adenine
administration significantly increased the plasma and urinary OS biomarkers and caused
morphological and histological damage in the kidney tubules in rats. Adenine also increased
the inflammatory biomarkers and reduced the levels of antioxidant enzymes [60,61].

2.5. Chronic Renal Allograft Dysfunction (CRAD)

CRAD is defined as a progressive kidney dysfunction with features on biopsy of
chronic allograft nephropathy. F344 rat kidneys were orthotopically transplanted into
Lewis rats. At 12 weeks following surgery, the kidney expressed a higher level of MDA and
lower levels of SOD activity, with increased levels of pathological damaging biomarkers
such as serum creatinine levels and the infiltration of tubulointerstitial mononuclear cells,
indicating the role of OS in CRAD [62].

2.6. The Role of Oxidative Stress in Kidney Cells

Various kidney cells are used to dissect the molecular mechanisms involved in CKD.
In mouse proximal tubular epithelial (mProx) cells, Ang II induced hypertrophy. Ang
II induced superoxide anion (O2

•−) in cultured tubular epithelial cells. This induction
of O2

•− might be due to p22phox-mediated activation of Nox [63]. In human proximal
tubular epithelial (HK-2) cells, lipopolysaccharide (LPS) enhanced the expression of Nox4
and iNOS, leading to an increase in the levels of nitric oxide and O2

•−. Subsequently, these
ROS reduced cytochrome C oxidase activity and caused mitochondrial dysfunction by
interrupting mitochondrial oxidative phosphorylation [64]. HG increased ROS-induced
phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt)/ glycogen synthase kinase 3β
(GSK3β) activity and accelerated epithelial-to-mesenchymal transition (EMT) in HK-2
cells [65]. Treatment with 4-hydroxy-2-hexenal increased ROS levels and increased ERK
and JNK expression, triggering NF-kB activation and IkBα degradation in HK-2 cells.
Eventually, activation of NF-kB promoted apoptosis by inhibiting Bcl2 and increasing Bax
expression [66]. H2O2 increased levels of ROS in the cytosol and mitochondria, leading
to apoptosis in HK-2 cells [67]. Treatment with TGFβ1 increased the levels of ROS and
decreased the levels of GSH in HK-2 cells. TGFβ1 stimulated the expression of EMT genes,
FN, and collagen1 [68]. When Madin-Darby canine kidney epithelial cells were exposed
to oxalate, a constituent of many kidney stones, phospholipase A2 was activated and the
ROS level was increased with depolarization of the mitochondrial membrane potential,
implying mitochondrial dysfunction through OS is involved in oxalate toxicity [69]. In
rat kidney epithelial (NRK-52E) cells, methylglyoxal increased the ROS levels, along with
inducing increased expression of Bax, cytochrome C, caspase-9, and caspase-3, while it
decreased the mitochondrial membrane permeability and Bcl2 expression [42].

HG induces intracellular ROS in mProx cells and mesangial cells. Also, ROS are in-
duced in glomerular mesangial by advanced glycation end products (AGE) and cytokines.
This study suggests that Nox may play a role in ROS generation, leading to DKD [10]. In rat
kidney mesangial cells, the role of OS was examined via alleviation of AGE-induced activa-
tion of NF-kB, protein kinase C (PKC) activity, and TGFβ1 transcription with antioxidants
such as vitamin E and nitecapone [70].

HG induces micro-vesicles generation (which may cause the pathogenesis of many
diseases, such as CVD and diabetes) through the ROS/Nox4 pathway in mouse podocyte
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clone 5 cells. Also, HG-induced micro-vesicles were significantly decreased after pretreat-
ment with N-Acetyl-l-cysteine (NAC, an antioxidant) [71]. In mouse podocyte cell lines,
exposure to aldosterone elevated ROS levels. Treatment with NAC prevented OS and
attenuated podocyte injury by increasing nephrin expression and inhibiting apoptosis [72].

3. Role of Nrf2 and HO-1 against Oxidative Stress

Cellular antioxidant defense systems against OS include SOD, CAT, sulfiredoxin,
thioredoxin, γ-glutamine cysteine ligase and synthase, NADPH quinone oxidoreductase
(Nqo1), Nrf2, and HO-1. The cellular antioxidant defense system is mainly controlled by
the Keap1-Nrf2 pathway, which is activated by stimuli such as electrophilic compounds,
ROS, and ER stress. The transcription factor Nrf2 is a master regulator of this system.
Under normal conditions, the function of Nrf2 is negatively regulated by Keap1 [73],
which promotes its degradation via the ubiquitin-proteasome system [74]. Under stress
conditions, after a conformational change in Keap1, Nrf2 is released from the proteasome
pathway and it translocates into the nucleus [75]. In the nucleus, Nrf2 binds to the gene
regulator antioxidant responsive element (ARE) region and mediates the transcription of
antioxidant genes [76]. The association of Nrf2 with kidney diseases has been described
in various reports. In brief, Nrf2 plays an important role in improving STZ-induced
DKD in mice [41]. In this study, Nrf2−/−mice showed increased ROS levels and higher
oxidative DNA damage. Besides, increased TGFβ1 and ECM accumulation were found
in diabetic mice. These all were decreased by Nrf2 activation [41]. A study reviewed that
genetic or pharmacological augmentation of Nrf2 activity reduces OS in the kidney tubules
and significantly prevents the progression of AKI to CKD transition [21]. This review
explained that a deficiency of Nrf2 accelerates kidney injury in various models, such as
LN, and STZ-induced DKD. On the other hand, a deficiency of Keap1 reduced tubular
injury in ischemia reperfusion injury (IRI) and diminished kidney fibrosis in UUO [21].
A recent study suggested a role of GSK3β overexpression-mediated Keap1-independent
regulation of the Nrf2 antioxidant response against the folic acid-induced AKI to CKD
transition in mice [22]. In LN patients, immunohistochemistry analysis of the kidney
showed an increased accumulation of 8-oxo-dG, while the expression of Nrf2 and Nqo1
was decreased [57]. The pristine-induced LN mice had glomerular oxidative damage, while
the Nrf2-deficient mice had accelerated kidney damage with an increase in ROS, TGFβ1,
FN, and iNOS, suggesting a role of Nrf2 in the regulation of ROS levels [57]. In cationic BSA-
induced MGN in the rat, kidney dysfunction and histopathological changes were observed.
Also, Nrf2 expression and its downstream antioxidants were responsible for the protective
response against OS in MGN rats, while negative regulators of Nrf2, such as Keap1 and
oxidants such as MDA, were enhanced, with a decline in the level of antioxidants, including
SOD, CAT, and GPx [54]. HG increased ROS-induced PI3K/Akt/GSK3β activity and
accelerated EMT in HK-2 cells. Further, the accumulation of EMT was reduced by treatment
with an Nrf2 activator, sulforaphane, emphasizing the therapeutic potential of targeting
Nrf2-HO-1 signaling [65]. The TGFβ1-increased ROS levels, EMT genes, FN, and collagen
1, were further increased by Nrf2 knockdown and suppressed by Keap1 knockdown in
HK-2 cells [68], suggesting a critical role of Nrf2 in kidney fibrosis.

HO-1 is one of the targets of Nrf2 and it degrades heme into CO, iron (induction
of ferritin), and biliverdin-IXα [77], all of which have antioxidative, anti-inflammatory,
and cytoprotective effects against various diseases, including kidney diseases [78–84].
Cobalt protoporphyrin (CoPP) and curcumin, inducers of HO-1, induce NQO1 expression
in HepG2 cells. In addition, endogenous CO, a by-product of HO-1, induces NQO1
expression [85]. Treatment of CoPP increases the SOD expression and catalase activity in
STZ-treated rats [86]. These observations suggest a major and functional role of HO-1 in
antioxidant defense. HO-1 has been found to be effective against several injurious stimuli
and many clinically relevant diseases such as sepsis, hypertension, atherosclerosis, and
acute lung and kidney injury [87,88]. Hyperglycemia is the major reason for increased
ROS levels, while it is also an important cause of CKD [89]. High levels of glucose inhibit
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HO-1 activity [90], which leads to increased OS in the vascular system [91]. Decreased
HO-1 expression and activity are observed in type 1 diabetes [92], and upregulation of
HO-1 reduces diabetic vascular dysfunction [93]. All of these observations suggest that
decreased HO-1 expression and activity in the vascular system may lead to the progression
of CKD, since vascular abnormalities are strongly linked with kidney dysfunction [3,4].

Induction of HO-1 improves hyperhomocysteinemia-induced AKI to CKD progres-
sion in mice. In this study, administration of the HO-1 inducer, cobalt protoporphyrin-IX,
significantly hampered ROS and kidney fibrotic lesions [27]. Hemin, another HO-1 in-
ducer, also improved the kidney function and decreased the expression of markers of
OS (as indicated by the levels of MDA) in IRI [28]. Ginkgo biloba extract attenuated the
production of ROS in HG-stimulated podocytes, and HO-1 inhibitor treatment abolished
these effects [29]. There is a strong link between HO-1 and mitochondrial function [30].
Mitochondria-targeted HO-1 attenuates ROS in kidney epithelial cells [31]. HO-1 induction
is cytoprotective against ROS-mediated OS in the kidney through an increase in the levels
of mitochondrial transporters and cytochrome c oxidase activity [30]. HO-1 overexpres-
sion decreased ROS levels, suggesting a decrease in levels of Nox, a heme-dependent
protein [32]. Therefore, the induction of HO-1 results in a superior cellular environment
due to its good antioxidant capabilities.

4. Functional Link between Nrf2 and HO-1

Since under electrophiles and ROS stress Keap1 is modified at its cysteine residues,
Nrf2 is released and translocated to the nucleus and binds to the ARE regions [94]. As
a result, Nrf2 induces transcription of ARE regulatory genes, including HO-1 in various
tissues and cells under OS conditions [95–98]. Considering the important cytoprotective
role of HO-1 in the kidney and other tissues [33,34], in this review, we have focused on the
Nrf2-HO-1 pathways (Figure 2).

Nrf2-induced HO-1 may protect the kidney from remote organ injury in mice and
rats [99]. HO-1 induction could be a potential therapeutic approach to prevent CKD
complications by activating antioxidative and antiapoptotic signaling. Yoh and colleagues
speculate that the decrease in HO-1 expression might be associated with the pathogenesis
of LN in Nrf2−/− female mice [100]. Also, adenine-induced OS and inflammation were
associated with kidney tubulointerstitial fibrosis with impairment of Nrf2 activation and
downregulation of its target gene products, including HO-1 [60]. Small molecule activator
of Nrf2, CDDO-Im (1-[2-cyano-3-,12-dioxooleana-1,9(11)-dien-28-oyl] imidazole), protects
against LPS-induced dysregulation of the innate immune response in mice. Specifically,
CDDO-Im treatment reduced LPS-induced ROS levels and inflammatory cytokines such as
TNFα and IL-6, as well as increased antioxidative genes such as HO-1, GCLC, GCLM, and
Nqo1 in Nrf2+/+ neutrophils but not Nrf2−/− neutrophils in mice [101]. Also, CDDO-
Me treatment attenuates retinal vascular degeneration following IRI and increases the
expression of HO-1 in wild-type, but not Nrf2−/−, retinas in mice [102], suggesting that
activation of Nrf2-dependent compensatory antioxidative pathways by CDDO compounds
may protect tissues or cells from OS-induced injury.

The protective effect of insulin-mediated HO-1 was through the PI3K/Akt pathway
and the Nrf2 transcription factor in mProx cells [103]. In HK-2 cells, the Nrf2 activator
sulforaphane increased HO-1 protein expression. HG increased the expression of vimentin
and FN and decreased E-cadherin expression, which were attenuated by the treatment
with sulforaphane [65], indicating an inhibitory effect of Nrf2-HO-1 on HG-induced EMT.
In mouse mesangial cells, Nrf2 overexpression upregulated Nrf2 and its downstream HO-1
expression under HG, while Nrf2 siRNA-treatment reduced the expression of Nrf2 and
HO-1, leading to an increase in ROS and TGFβ1 [61,104]. In another study, Nrf2 deficiency
upregulated the NF-kB and TGFβ1 signaling pathway and decreased the expression of
downstream antioxidants of HO-1 and Nqo1 in mouse mesangial cells [57], indicating
that Nrf2-dependent HO-1 expression limits the activation of NF-kB and inhibits pro-
inflammatory cytokines production. Besides, in human umbilical vein endothelial cells
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(HUVECs), 3-hydroxyanthranilic acid (HA) treatment increases ARE-driven luciferase
activity. TNFα-induced NF-kB/DNA-binding activity was suppressed by HA-induced
Nrf2 transcription and HO-1 activity, and the NF-kB/DNA-binding activity was restored
by treatment with tin protoporphyrin IX dichloride (SnPP, an HO-1 inhibitor) [105]. In
HUVECs, constitutively active PKCε enhanced HO-1 mRNA and protein levels, while
aortas or cardiac endothelial cells from PKCε-deficient mice showed decreased levels of
HO-1. Also, Ang II stimulated PKCε and produced HO-1 in a PKCε-dependent manner.
Nrf2 siRNA blocked PKCε-mediated HO-1 induction [106]. In rat pheochromocytoma
PC12 cells, dominant-negative Nrf2 significantly inhibited PI3K-induced HO-1 promoter
activity. Thus, PI3K is necessary to initiate activation of the HO-1 promoter through the
AREs in an Nrf2-dependent manner [107].
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Figure 2. The protective mechanism via the Nrf2-HO-1 pathway on CKD. When Keap1, which targets
Nrf2 for ubiquitination and proteasomal degradation, is decreased or inactivated, phosphorylated
Nrf2 is translocated into the nucleus, and transcription of downstream antioxidant enzymes is
activated. In particular, by HO-1, fibrosis, apoptosis, and inflammation are attenuated either directly
or indirectly through inhibition of OS, thus improving kidney damage. CKD, chronic kidney disease;
CO, carbon monoxide; GPx, glutathione peroxidase; GST, Glutathione-S-transferase; HO-1, Heme
oxygenase-1; Nqo1, NADPH quinone oxidoreductase; Nrf2, nuclear factor erythroid 2-related factor
2; SOD, superoxide dismutase; ROS, reactive oxygen species.

However, Nrf2-independent HO-1 expression has also been reported [108]. Bach1 is
regarded as a critical physiological repressor of HO-1. Higher levels of HO-1 mRNA were
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observed in the thymus, heart, lung, and liver in the bach1−/−mice [108]. Since HO-1 is
activated by Nrf2 [95–98], higher levels of HO-1 expression in the bach1−/− mice seem to
be due to Nrf2 activation. Surprisingly, the enhanced HO-1 levels in the Bach1-deficient
thymus were independent of Nrf2, since the expression of HO-1 was not affected by Nrf2
deficiency [108]. In addition, CO/HO-1 induce NQO1 expression via Nrf2 activation [85],
suggesting a crosstalk between HO-1 and Nrf2.

5. Small Molecule Natural Products Activating Nrf2-HO-1 Signaling

A substantial quantity of natural products has been reported to confer renoprotection
and improve disease outcomes of the various types of CKD, primarily through activating
the Nrf2/HO-1 antioxidant defense systems and attenuating the proinflammatory signaling
pathways. Here, we reviewed the existing literature over the past decade to compile
comprehensive information on the kidney protective potential of naturally occurring
compounds. Experimental and disease models, the pathobiology involved, the research
outcomes, and the molecular markers altered by these compounds are summarized in
Tables 1 and 2 and Figure 3. To facilitate the discussion, we have categorized the kidney
protective effects of these natural compounds into two distinct chemical groups: phenolic
and non-phenolics. This categorization also highlights common bioactive compounds,
belonging to phenolic group which represents the largest chemical class showing enormous
bioactivity with the potential to be future drug candidates.

5.1. Phenolic Compounds

A significant number of phenolic compounds have shown protection against DKD
(Table 1). Administration of resveratrol, a versatile bioactive phenolic found in many
plant sources, including red grapes, peanuts, and berries, ameliorated diabetes-induced
changes in the kidney tissues of STZ-induced rats by attenuating inflammatory signaling
pathways through a mechanism that involved regulation of the NF-κB and Nrf2 signaling
pathways [125]. Alone or in combination with metformin, salvianolic acid A attenuated
diabetes-induced macrovascular and kidney injury in STZ-injected mice by activating the
Nrf2/ARE pathways [129]. In a similar experimental setup, Gong and colleagues reported
nephroprotective effects of a stilbenoid glucoside polydatin, which relieved HG-induced
kidney damage through activating the CKIP-1-Nrf2-ARE pathway [153]. In STZ-injected
mice, epigallocatechin gallate (EGCG) prevented diabetes-induced kidney damage by
upregulating Nrf2 expression, which was mediated by disrupting the Nrf2-Keap1 com-
plex [120]. Chlorogenic acid attenuated diabetes-induced kidney damage in STZ-injected
and HFD-fed Sprague-Dawley rats by mitigating OS and inflammation through a mech-
anism that involved modulation of the Nrf2/HO-1 and NF-kB signaling pathways [115].
Astaxanthin attenuated HG-induced OS and FN accumulation in glomerular mesangial
cells and improved the metabolic status and kidney morphology in STZ-induced dia-
betic rats [111]. These renoprotective activities of AST were attributed to its activation of
Nrf2/ARE signaling [111]. Sinapic acid prevented STZ-induced DKD in rats by attenu-
ating inflammation and OS through upregulating Nrf2/HO-1 signaling pathways [132].
Calycosin ameliorated kidney injury and dysfunction in HFD-fed/STZ-induced diabetic
rats by inhibiting inflammation, and OS through modulating the IL33/ST2, NF-κB, and
Nrf2 signaling pathways [114].
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Table 1. Kidney protective effects provided by phenolic compounds of phytochemicals targeting the Nrf2-HO-1 signaling pathway.

No. Modulator Chemical Class and Natural
Sources Experimental Model Disease Model Pathobiology Involved Major Research Outcomes Molecular Markers Ref.

Phenolic compounds

1 Ampelopsin Flavonoid; Ampelopsis
grossedentata HG-stimulated hGMCs OS OS, ECM accumulation Amelioration of OS and ECM

accumulation

↓ROS, ↓MDA, ↑SOD, ↓Nox2,
↓Nox4, ↓NADPH, ↓FN, ↓Col IV, ↑n-Nrf2,

↑HO-1,
[109]

2 Apigenin Flavonoid; common fruits and
vegetables HG-treated HK-2 cells Oxidative damage Oxidative damage

Decrease in apoptosis, inhibition
of OS, and inflammatory

response

↓LDH, ↓MDA, ↑SOD, ↑CAT, ↓TNFα,
↓IL-1β, ↓IL-6, ↑Nrf2, ↑HO-1 [110]

3 Astaxanthin
Xanthophyll carotenoid; algae,
shrimp, lobster, crab, salmon,

and other organisms

STZ-injected rat DKD ECM accumulation Amelioration of kidney injury ↓FN, ↓TGFβ1, ↓ICAM-1 [111]

HG-treated GMCs Kidney fibrosis OS Increase in antioxidative capacity
↓FN, ↓TGFβ1, ↓ICAM-1, ↑SOD,
↓MDA, ↓ROS, ↓DHE, ↑n-Nrf2,
↓keap1, ↓SOD-1, ↓Nqo1, ↓HO-1

Adriamycin-treated
BALB/c mice FSGS OS, inflammation Anti-inflammation,

antioxidation

↓TGFβ1, ↓collagen1, ↓α-SMA, ↓MDA,
↑GSH, ↑SOD, ↑CAT, (serum: ↓IL-1 β, IL-18),

↑Nrf2, ↓NLRP3
[112]

4 Baicalein
Flavonoid; roots of Scutellaria

baicalensis Georgi

Pristine -injected
BALB/c mice LN OS, inflammation

Attenuation of kidney
dysfunction, antioxidation,

anti-inflammation, inhibition of
MDSC expansion

↓IL-1b, ↓IL-18, ↓O2
¯˙,

↑ GPx, ↑Nrf2, ↑HO-1, ↓ NLRP3,
↓Casp-1, ↓mIL-1 β, ↓p-NF-kB [113]

LPS-primed
spleen-derived MDSCs OS, inflammation

↓ROS, ↓IL-1β, ↓IL-18, ↑Nrf2, ↑HO-1,
↓NLRP3, ↓mIL-1β/pro-IL-1β,
↓Casp-1-p20/pro-casp-1-p45,

↓p-NF-kB/NF-kB, ↓Ang-1, ↓p47phox,
↓GP91phox, ↓iNOS

5 Calycosin Isoflavone; root of Astragalus
membranaceus

HFD-fed/ STZ-injected
SD rat DKD Inflammation, OS,

fibrosis
Inhibition of inflammatory,

oxidative, and fibrotic events
↓IL-33, ↓ST2, ↓NF-kB p65, ↓TNFα, ↓IL-1 β,

↓IL-6, ↑Nrf2, ↓MDA, ↓TGFβ [114]

6 Chlorogenic
acid

Cinnamate ester; coffee, fruits,
and vegetables

STZ-injected and
HFD-fed SD rat DKD OS, inflammation

Relieve kidney injury, mitigation
of OS, inflammation

↓MDA, ↑SOD, ↑GSH-Px, ↑n-Nrf2,
↑HO-1, ↓IL-6, ↓TNFα, ↓IL-1 β, ↑c-NF-kB,

↓n-NF-kB, ↑IkBα, ↓p-IkBα, [115]

HG-treated rat
mesangial cell line

(HBZY-1)

Mitigation of OS, inflammation,
increase in cell proliferation

↑n-Nrf2, ↑HO-1, ↑c-NF-kB, ↓n-NF-kB,
↑IkBα, ↓p-IkBα, ↓IL-6, ↓TNFα, ↓IL-1 β

7 Cryptotanshinone Quinoid diterpene; Salvia
miotiorrhiza bunge UUO-operated mice Kidney fibrosis OS, inflammation Attenuation of OS and

inflammation

↓collagen-1, ↓FN, ↓CD68,
↓CD3, ↑IkBα, ↓NF-kB p65, ↑SOD2, ↑CAT,
↑GSH, ↓MDA, ↑Nuclear Nrf2, ↓cytosolic

Nrf2, ↑HO-1

[116]

8 Curcumin
Curcuminoid; turmeric

(Curcuma longa)

5/6 nephrectomy
Wistar rat CKD OS, inflammation Protection of kidney function,

antioxidant, anti-inflammation

↓Nox4, ↑eNOS, ↓nitrotyrosine,
↓MCP-1, ↓Keap-1, ↑Nrf2, ↑GPx-1, ↑CAT,

↑SOD-1, ↓phospho serine D1R
[117]

0.25% Adenine -diet rat CKD OS, inflammation Amelioration of kidney function
and OS

↓IL-1 β, ↓IL-6, ↓TNFα, ↑cycstatin C,
↓adiponecitn, ↑sclerostin, ↑SOD,
↑Nrf2, ↑GSH reductase. ↓ caspase3

[118]

HG-treated NRK-52E
cells OS OS Increase in cell viability,

inhibition of EMT ↑E-cadherin, ↓α-SMA, ↑Nrf2, ↑HO-1 [119]
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Table 1. Cont.

No. Modulator Chemical Class and Natural
Sources Experimental Model Disease Model Pathobiology Involved Major Research Outcomes Molecular Markers Ref.

9
Epigallocatechin-

3
-Gallate

Polyphenol; Dried leaves of
tea plant (Camellia sinensis)

STZ-injected mice
DKD

Oxidative damage,
inflammation, Anti-OS

↓TGFβ1, ↓PAI-1, ↓ICAM-1, ↓VCAM-1,
↓MDA, ↓iNOS, ↓3-NT, ↑Nqo1, ↑HO-1,
↑t-Nrf2, ↑c-Nrf2, ↑n-Nrf2, ↑n-Nrf2/t-Nrf2 [120]

HG-cultured MMC
↑t-Nrf2, ↑c-Nrf2, ↑n-Nrf2, ↑Nqo1, ↑HO-1,

↓MDA, ↓iNOS, ↓VCAM-1,
↓ICAM-1, ↓COL4, ↓FN

NZB/W F1
lupus-prone mice LN OS Antioxidant and

anti-inflammation

↑Nrf2, ↓p47phox, ↑Nqo1, ↑HO-1, ↑GPx,
↓CD3, ↓F4/80, ↓NF-kB,

↓NLRP3, ↓IL-1 β, ↓IL-18, ↓casp1-p20,
[56]

UUO mice CKD OS, inflammation
Kidney function improvement,

prevention of OS and
inflammation

↑SOD, ↑CAT, ↑GSH-Px, ↓MPO,
↓TNFα, ↓IL-6, ↓IL-1 β, ↑IkBα, ↓p-IkBα,
↓NF-kB, ↑n-Nrf2, ↑HO-1, ↑t-bilirubin

[121]

10
Ethyl acetate

extract of
Saliva

miltiorrhiza

Diterpenoids, phenolic
compounds, flavonoids,

triterpenoids; dried root of
Salvia miltiorrhiza Bunge

STZ-injected mice DKD
Oxidative stress

Antioxidation, attenuation of
kidney dysfunction ↑Nrf2, ↑HO-1, ↑Nqo1, ↓Keap1 [122]

HG-treated
SV40-MES-13 MMCs hyperglycemia Antioxidation ↓ROS, ↑Nrf2, ↑HO-1, ↑Nqo1,

↓Keap1

11 Isoliquiritin Flavonoid glycoside; Chinese
licorice (Glycyrrhiza uralensis)

Cationic BSA-injected
SD rat MGN Inflammation and OS Antioxidative, anti-inflammatory

activities

↓Keap1, ↑Nrf2, ↓n-Nrf2, ↑c-Nrf2, ↑HO-1,
↑Nqo1, ↓MDA, ↓NO, ↑SOD, ↑CAT, ↑GPx,
↑GSH, ↓NF-kB p65, ↓nuclear NF-kB p65,
↑cyclic NF-kB, ↓IKKb, ↓p-IKKb, ↓TNFα,
↓IL-1 β, ↓COX2, ↓iNOS, ↓p38 MAPK,

↓p-p38 MAPK

[54]

12

Oleuropein,
peracety-
latedoleu-

ropein

Secoiridoid; olive leaves, roots,
and unprocessed olive drupes

Pristine -injected
BALB/c mice LN Inflammation and OS

Amelioration of kidney
abnormalities, inhibition of

proinflammation, antioxidation

↓MMP-3, ↓iNOS, ↓mPGEs-1, ↓PGE2, ↑Nrf2,
↑HO-1, ↓pSTAT3, ↓NF-kB-p65, ↑IkBα,

↓pp38, ↓pJNK, ↓pERK1/2
↓NLRP3, ↓ASC, ↓IL-18, ↓ IL-1β,

↓cleaved caspase-1, ↓cleaved caspase 11

[123]

13 Osthole Coumarin; Fructus Cnidii 2% adenine suspension
-received rat CKD Inflammation Protection of kidney function,

antiinflammation
↓TNFα, ↓IL-6, ↓IL-8, ↓NF-kB/p65,
↓TGFβ1, ↓MCP-1, ↑p-Akt/Akt, ↑Nrf2 [124]

14 Polydatin
Stilbenoid glucoside;

Polygonum cuspidatum Sieb.et
Zucc

STZ-injected diabetic
mice DKD OS

Improvement of antioxidative
effect and kidney dysfunction

↑CKIP-1, ↑Nrf2, ↑HO-1, ↑SOD1,
↓FN, ↓ICAM-1, ↓MDA, ↑t-SOD

HG-treated rat GMCs
↑Nrf2, ↓Keap1, ↑n-Nrf2, ↓n-CKIP-1, ↑ARE

binding activity, ↑HO-1, ↑SOD1, ↓DHE,
↓H2O2, ↓FN, ↓ICAM-1

15 Resveratrol
Phytoalexin; red grapes (Vitis
vinifera L.), peanuts (Arachis

spp.), berries (Vaccinium spp.)

STZ-induced Wistar rat DKD
OS Anti-inflammation, Anti-OS

↓iNOS, ↓NF-kB, ↓Nrf2, ↓NGAL, ↓IL-1β,
↓IL-6, ↓IL-8, ↓TNFα [125]

4-hydroxy-2-hexenal-
treated mouse cortical

collecting duct cells
(M1)

OS

↓nuclear p65, ↑cytosol IkB, ↑SIRT1,
↓Nox4, ↓COX2, ↑AQP2, ↓pERK/ERK,
↓pJNK/JNK, ↓pP38/P38, ↓Nrf2,

↑Keap1

[126]

16 Rotenone
Isoflavonone; seeds and stems
of jicama vine plant, the roots

of Fabaceae, etc.
UUO-operated mice Kidney fibrosis Mitochondrial

abnormality
Anti-OS, anti-inflammation,

anti-fibrosis

↓TBARS, ↓HO-1, ↓TNFα, ↓IL-1β,
↓ICAM1, ↓collagen I, ↓FN, ↓α-SMA, ↓PAI-1,

↓collagen III, ↓TGFβ,
↑mtDNA, ↑mtNd1

[127]

17 Salidroside phenylpropanoid glycoside;
plant Rhodiola rosea

HG-treated mouse
podocytes Apoptosis Apoptosis Improvement of cell viability

↓Caspase-9, ↓caspase-3, ↑HO-1, ↑p-ILK/ILK,
↑p-Akt/Akt, ↑p-ERK/ERK, ↑p-JNK/JNK,

↓p-p38/p38, ↑Nrf2
[128]
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Table 1. Cont.

No. Modulator Chemical Class and Natural
Sources Experimental Model Disease Model Pathobiology Involved Major Research Outcomes Molecular Markers Ref.

18 Salvianolic
acid A

Polyphenol derivative; root of
Salvia miltiorrhiza

STZ-injected mice
DKD OS Anti-OS

↓VCAM-1, ↑HO-1, ↓α-SMA,
↓NT, ↓DHE, ↑GPx-1 [129]

HG-treated HK-2 cells ↑HO-1, ↓α-SMA, ↓p65, ↓ROS

5/6 nephrectomized
SD rats CKD OS

OS attenuation,
↑t-SOD, ↑GPx, ↑CAT, ↓MDA, ↓ROS, ↓Nox4,

↑p-Akt/Akt, ↑p-GSK3β/GSK3β,
↑p-Nrf2/Nrf2, ↑HO-1 [130]

H2O2-treated/LPS-
treated HK-2

cells

Cell viability improvement,
decrease in OS

↑t-SOD, ↑GPx, ↑CAT, ↓MDA, ↓ROS, ↓Nox4,
↑p-Akt/Akt, ↑p-GSK3β/GSK3β, ↑n-Nrf2,
↑HO-1, ↓p-NF-kB p65/NF-kB p65, ↓ICAM-1,
↓p-NF-kB p65, ↓ICAM-1, ↑n-Nrf2, ↑HO-1

19 Silibinin Flavonoliganas: milk thistle
seeds Arsenic -induced rat CKD Inflammation Attenuation of OS, inflammation,

and apoptosis
↓TNFα, ↓iNOS, ↓NO, ↓NF-kB,

↓Caspase-3, ↓NADPH oxidase, ↑Nrf2 [131]

20 Sinapnic acid Hydroxycinnamic acid; wine,
vinegar STZ-injected rat DKD OS, inflammation Amelioration of OS and

inflammation

↑CAT, ↑GPx, ↑SOD, ↓TNFα, ↓IL-6, ↓NO2,
↓MDA, ↓TFGβ, ↑HO-1,

↑Nrf2, ↓NF-kB, ↑IkBα, ↑Bcl2,
↓Caspase3, ↓Bax

[132]

AQP2, aquaporin 2; α-SMA, α-smooth muscle actin; BSA, bovine serum albumin; CAT, catalase; CKD, chronic kidney disease; COX2, cyclooxygenase; DHE, dihydroethidium; DKD, diabetic kidney disease;
ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; eNOS, endothelial nitric oxide synthase; FN, fibronectin; GMCs, glomerular mesangial cells; GPx, glutathione peroxidase; GSK3β, glycogen
synthase kinase 3β; HFD, high fat diet; HG, high glucose; HO-1, Heme oxygenase-1; ICAM, intercellular adhesion molecule 1; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenase; LN, lupus
nephritis; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MDSCs, myeloid-derived suppressor cells; MGN, membranous glomerulonephritis; MMCs, mouse
mesangial cells; NGAL, neutrophil gelatinase-associated lipocalin; NLRP3, NLR family pyrin domain containing 3; Nqo1, NADPH quinone oxidoreductase; Nrf2, nuclear factor erythroid 2-related factor 2; MPO,
myeloperoxidase; NT, nitrotyrosine; OS, oxidative stress; PAI-1, plasminogen activator inhibitor-1; SOD, superoxide dismutase; STZ, streptozotocin; TBARS, thiobarbituric acid reactive substances; UUO,
unilateral ureteral obstruction; VCAM, vascular cell adhesion molecule 1.

Table 2. Kidney protective effects provided by non-phenolic compounds of phytochemicals targeting the Nrf2-HO-1 signaling pathway.

No. Modulator Chemical Class and
Natural Sources

Experimental
Model Disease Model Pathobiology

Involved Major Research Outcomes Molecular Markers Ref.

Non-phenolic compounds

1 Akebia Saponin
D

triterpenoid saponin;
Dipsaci Radix

STZ-injected mice

DKD OS, inflammation
Amelioration of kidney

damage, inflammation, OS,
and apoptosis

↓TNFα, ↓IL-1β, ↓IL-6, ↓MCP-1,
↓ROS, ↓MDA, ↓LDH, ↑SOD, ↑Bcl2,
↓Bax, ↓cleaved caspase3/caspase3,
↓cleaved caspase9/caspase9, ↑n-Nrf2,
↓p-NF-kB/t-NF-kB, ↑HO-1, ↑Nqo1,

↓p-IkBα/t-IkBα
[133]

HG-treated HK-2
cells

↓TNFα, ↓IL-1β, ↓IL-6, ↓MCP-1,
↓ROS, ↓MDA, ↓LDH, ↑SOD, ↑Bcl2,
↓Bax, ↓cleaved caspase3/caspase3,
↓cleaved caspase9/caspase9, ↑Nrf2,
↓p-NF-kB/t-NF-kB, ↑HO-1, ↑Nqo1,

↓p-IkBα/t-IkBα
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Table 2. Cont.

No. Modulator Chemical Class and
Natural Sources

Experimental
Model Disease Model Pathobiology

Involved Major Research Outcomes Molecular Markers Ref.

2 Allicin Diallyl thiosulfinate; garlic
(Allium sativum L.)

5/6 nephrectomy
Wistar rat CKD Fibrosis, OS Antihypertensive and

antioxidant effects
↑AT1R, ↑AT2R, ↑Nrf2, ↓Keap1,
↑CAT, ↑SOD, ↓HO-1, ↑eNOS [134]

3 Antroquinonol Enone; mushroom
(Antrodia camphorate)

Adriamycin -injected
BALB/c mice FSGS OS

Decrease in kidney
dysfunction, anti-OS,

anti-inflammation

↓desmin, ↓O2
•−, (serum, urine ↓ O2

•−,
↓NO), ↓DHE, ↓p47phox, ↑Nrf2, ↑GPx,
↓NF-kB p65, ↓MCP-1, ↓IL-6, ↓CD3,
↓F4/80, ↓Col I, ↓Col III, ↓Col IV,

↓TGFβ1

[135]

4 Artemisinin sesquiterpene lactones;
Asteraceae Artemisia annua STZ-injected rat DKD OS Amelioration of kidney

dysfunction and OS
↓MDA, ↑t-SOD, ↑GPx, ↓TGFβ1,
↑t-Nrf2, ↑n-Nrf2, ↑HO-1, ↑Nqo1 [136]

5 Aucubin iridoid glycoside; leaf of
Eucommia ulmoides

HFD-fed and
STZ-injected mice DKD OS, inflammation

Amelioration of kidney
dysfunction,

anti-inflammation, anti-OS

↓FN, ↓collagen IV, ↓MDA,
↑SOD, ↑CAT, ↑GSH/T-GSH, ↓TNFα,
↓IL-6, ↓IL-1β, ↓p65, ↓IkBα, ↑Nrf2,
↑HO-1, ↑Nqo1, ↑FOXO3α,

↓p-FOXO3α/FOXO3α, ↑SIRT1, ↑SIRT3,
↓Ac-FOXO3α/FOXO3α

[137]

6 Berberine
isoquinoline alkaloid;

Coptidis Rhizoma and Cortex
Phellodendri

STZ-injected mice DKD
OS Anti-fibrosis

↓α-SMA, ↓collagen-1, ↑Nrf2,
↑NQO1, ↑HO-1 [138]

HG-treated NRK 52E
cells EMT ↓E-cadherin, ↓α-SMA, ↑n-Nrf2,

↑Nqo1, ↑HO-1, ↓p-Smad2, ↓p-Smad3

7 Betulinic acid

pentacyclic triterpenoid;
from the outer bark of

white birch trees (Betula
alba)

STZ-injected SD rat DKD OS Anti-OS
↓IL-1 β, ↓IL-6, ↓MDA, ↑SOD, ↑CAT,
↑p-AMPK/AMPK, ↓p-IkBα/IkBα,
↓p-NF-kB/NF-kB, ↑Nrf2, ↑HO-1

[139]

8 Citral Terpeonids; Litsea cubeba
Adriamycin -injected

BALB/c mice FSGS
OS

Amelioration of kidney
dysfunction, anti-OS,

anti-inflammation,
anti-apoptosis

↓O2
¯˙, (serum, urine ↓O2

¯˙, ↓NO),
↓DHE, ↓p47phox, ↑Nrf2, ↑Nqo1,

↑HO-1, ↓desmin, ↓TUNEL, ↓Casp-3p17,
↓Casp-9p37, ↓Bax/Bcl2, ↓pNF-kB p65,

↓MCP-1, ↓ CD3, ↓F4/80

[140]

LPS-treated RAW
264.7 macrophages OS

↓NO, ↓NF-kB, ↓IL-6, ↓TNFα, ↓IL-1β,
↓p-ERK1/2(10min),
↓p-JNK1/2(15,30min)

9 Dioscin Steroid saponin; Dioscoreae
rhizoma

10% fructose -fed
mice CKD

Oxidative damage,
lipid metabolism,

fibrosis

Inhibition of inflammation,
lipid metabolism, OS, kidney

fibrosis

↓MDA, ↑SOD, ↑GSH-Px, ↓α-SMA,
↑SIRT3, ↑SOD2, ↓IL-1β, ↓IL6, ↓TNFα,
↓NF-kB, ↓HMGB1, ↓COX2, ↓c-Jun,
↓c-Fos, ↓SREBP-1c, ↓SCD-1, ↓FASn,
↓p-Akt, ↓p-FoxO1A, ↓ACC, ↑CPT1,
↑Nrf2, ↓Keap1, ↑GST, ↓TGFβ1,

↓p-Smad3, ↑Smad7

[141]
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Table 2. Cont.

No. Modulator Chemical Class and
Natural Sources

Experimental
Model Disease Model Pathobiology

Involved Major Research Outcomes Molecular Markers Ref.

10
Ergone (alisol B

23-acetate,
pachymic acid B)

steroid; Polyporus
umbellatus, surface layer of
Poria cocos, Alisma orientale

AngII- treated HK-2
and conditionally

immortalized MPC5
cells

CKD
OS, inflammation,

impaired Nrf 2
activation

inhibition of the
RAS/Wnt/b-catenin

signaling cascade

(HK-2) ↓Snail1, ↓MMP-7, ↓Twist,
↓FSP-1, ↓Col I, ↓Col III, ↓α-SMA,
↓vimentin, ↑E-cadherin, ↓NF-kB,
↓MCP-1, ↓COX2, ↑Nrf2, ↑HO-1

(podocyte) ↓Snail1, ↓MMP-7, ↓Twist,
↓FSP-1, ↑podocin, ↑nephrin,
↑podocalyxin, ↑synaptopodin,
↓desmin, ↑WT1, ↓Akt2, ↓NF-kB,
↓MCP-1, ↓COX2, ↑Nrf2, ↑HO-1

[142]

11 L-mimosine Amino acid; Mimosa pudica

Rats with remnant
kidneys after

subtotal
nephrectomy (5/6

nephrectomy)

CKD Fibrosis Improvement of kidney
function, inhibition of fibrosis

↑HIF-1α, ↑HIF-2α, ↑VEGF, ↑HO-1,
↑GLUT-1, ↓α-SMA, ↓collagen III [143]

12 Melatonin Endogenous indoleamine,
coffee, walnut, etc.

Pristine -injected
BALB/c mice LN OS, inflammation Attenuation of OS,

inflammation
↑SIRT1, ↑Nrf2, ↓TNFα, ↓NF-kB,
↓iNOS, ↓NLRP3, ↑CD31 [144]

13 Notoginsenoside
R1

Saponin; Panax notoginseng db/db mice DKD
OS

Anti-OS, decrease in
apoptosis

↓Collagen I, ↓TGFβ1, ↑Nrf2, ↑HO-1,
↓Bax/Bcl2, ↓Caspase-3, ↓Caspase-9 [145]

AGEs-treated HK-2
cells

Mitochondria
injury

↓LDH, ↓ROS, ↑n-Nrf2, ↑HO-1,
↓Bax/Bcl2, ↓Cspase-3, ↓Caspase-9,

↓TGFβ1, ↓collagen I

14 Obacunone
Triterpenoid limonoid;

citrus and other plants of
the Rutaceae family

HG-treated
NRK-52E cells OS OS

Inhibition of OS,
mitochondrial injury, and

apoptosis

↑SOD, ↑GSH, ↑CAT, ↓ROS, ↓JC-1
monomer/aggregate,

↑p-GSK3β/GSK3β, ↓n-Fyn, ↑n-Nrf2,
↑Nqo1, ↑HO-1, ↑SOD, ↑GSH, ↑CAT,
↓c-CytC/m-CytC, ↓cleaved caspase3

[146]

15 Oleanolic acid
Triterpenoid; olive oil,
Phytolacca Americana,

Syzygium spp, garlic, etc.

Cyclosporine
-treated ICR mice

Chronic
nephropathy

Inflammation,
fibrosis

Antioxidation,
anti-inflammation

↓α-SMA, ↑HO-1, ↑nuclear/total Nrf2,
↑SOD1, ↓MDA, ↓urinary 8-iso-PGF2α,
↓urine 8-oxo-dG, ↓Bax/Bcl2, ↓active

caspase-3

[147]

16 Pyrroloquinoline
quinone

In soil and foods such as
kiwifruit and human breast

milk

HG-treated HK-2
cells OS OS Decrease in OS, inflammation

and cellular senescence

↓IL-1β, ↓TNFα, ↓NF-kB, ↓p16,
↓p21, ↓ROS, ↑SOD2, ↑CAT, ↓keap1,
↑Nrf2, ↑HO-1, ↑Nqo1, ↑GST,

↑GPx3,

[148]
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Table 2. Cont.

No. Modulator Chemical Class and
Natural Sources

Experimental
Model Disease Model Pathobiology

Involved Major Research Outcomes Molecular Markers Ref.

17 Sinomenine Alkaloid; Sinomenium
acutum

UUO-operated ICR
mice CKD Fibrosis, OS Anti-fibrosis, antioxidation

↑E-cadherin, ↓α-SMA, ↓FN,
↑HO-1, ↑Nqo1, ↑Nrf2, ↑SOD, ↑GPx,
↑CAT, ↑SOD2, ↓p-Smad3, ↓β-catenin [149]

TGFβ-
treated/H2O2-

treated HEK293 cells,
TGFβ-treated

RAW264.7 cells

↑E-cadherin, ↓α-SMA, ↓FN,
↑HO-1, ↑Nqo1, ↑Nrf2, ↑SOD,
↑GPx, ↑CAT, ↑SOD2, ↓p-Smad3,

↓β-catenin

18 Sulforaphane
Isothiocyanate

(organosulfur compound);
Cruciferous vegetables

such as broccoli, brussels
sprouts, and cabbages

STZ-injected and
meglumine

diatrizoate-injected
Wistar rats

DKD, CIN OS
Renoprotective ↓MDA, ↓8-oxo-dG, ↑Nrf2, ↑HO-1,

↓IL6, ↑Caspase3 [150,151]

Meglumine
diatrizoate-treated

NRK-52E cells
Cell viability ↑Nrf2, ↑HO-1, ↓IL6

F344 rat kidneys
transplanted Lewis

rat
CRAD OS

OS alleviation, kidney
functional and
morphological
improvements

↓MDA, ↓8-isoprostane, ↓ox-LDL,
↓8-oxo-dG, ↑SOD, ↑CAT, ↑GPx, ↑GR, ↑

γ-GCS, ↑Nrf2, ↑HO-1, ↑Nqo-1
[151]

19 Trigonelline

Alkaloid; traditional herbs
(especially fenugreek),

coffee bean, soybean, and
other edible food plants

Oxalate-induced
MDCK cells EMT Fibrosis

Attenuation of EMT,
prevention of cell migration

and ROS overproduction,

↓FN, ↓vimentin, ↓α-SMA,
↑ E-cadherin, ↑ZO-1, ↓MMP9,

↓ROS, ↑Nrf2
[152]

AGEs, advanced glycation end products; AngII, angiotensin II; α-SMA, α-smooth muscle actin; AT1/2R, angiotensin II receptor type 1/2; CAT, catalase; CIN, contrast induced nephropathy; CKD, chronic
kidney disease; COX2, cyclooxygenase 2; CRAD, chronic renal allograft dysfunction; DHE, dihydroethidium; DKD, diabetic kidney disease; EMT, epithelial-to-mesenchymal transition; eNOS, endothelial
nitric oxide synthase; FSGS, focal segmental glomerulosclerosis; γ-GCS, γ-glutamine cysteine synthase; GPx, glutathione peroxidase; GR, glutathione reductase; GSK3β, glycogen synthase kinase 3β; GST,
Glutathione-S-transferase; HFD, high fat diet; HG, high glucose; HIF, hypoxia-inducible factor; HMGB1, high-mobility group box 1; HO-1, Heme oxygenase-1; iNOS, inducible nitric oxide synthase; LDH, lactate
dehydrogenase; LN, lupus nephritis; LPS, lipopolysaccharide; MCP-1, monocyte chemoattractant protein-1; MDA, malondialdehyde; MDCK, Madin-Darby canine kidney; MMP, matrix metalloproteinase;
NLRP3, NLR family pyrin domain containing 3; Nqo1, NADPH quinone oxidoreductase; Nrf2, nuclear factor erythroid 2-related factor 2; OS, oxidative stress; ox-LDL, oxidized low-density lipoprotein; RAS,
renin-angiotensin system; SOD, superoxide dismutase; STZ, Streptozotocin; UUO, unilateral ureteral obstruction.
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Figure 3. Protective effects of small-molecule natural products on OS in CKD. Osthole and SAA
enhance the activation of the Akt/Nrf2/HO-1 signaling pathway with suppression of NF-kB and
TGFβ1, consequently attenuating OS, inflammation, and fibrosis. OB induces the phosphorylation
of GSK3β, which inhibits Fyn-mediated Nrf2 nuclear export, and activates the transcription of
Nrf2-driven antioxidant genes. Expression of SIRT1, which inhibits NF-kB activity, and the activation
of Nrf2 are enhanced by aucubin, melatonin, and RSV, which also upregulates SIRT3, resulting in
amelioration of kidney injury. Dioscin upregulates SIRT3 level, promotes Nrf2, and suppresses Keap1
expression, resulting in inhibition of inflammation, lipid metabolism, OS, and kidney fibrosis. PD
increases the CKIP-1 expression level and promotes the interaction of CKIP-1 with Nrf2, consequently
activating the Nrf2-ARE antioxidative pathway. Allicin, AST, curcumin, EASM, EGCG, ILQ, and
PQQ attenuate OS via the Nrf2/HO-1 signaling pathway with inhibition of Keap1, and they also
reduce TGFβ-mediated fibrosis and NF-kB-induced inflammation. In the cases of an anti-fibrotic
effect of apigenin, ASD, baicalein, BA, CGA, CTS, ERG, OL, and SFN, AMP, antroq, artemisinin,
berbeine, calycosin, SA, SIN, and TRIG, they are mediated not only by upregulation of the Nrf2/HO-1
antioxidant signaling pathway and downregulation of NF-kB-induced inflammation, but also via
TGFβ suppression. Treatments with citral, NGR1, OA, SAL, and silibinin have potency for anti-
apoptotic effects with regulation of Bcl2/Bax and caspase3. The decrease in the NLRP3 inflammasome
was also observed in treatments with baicalein, EGCG, and OL. L-mimosine activates HIF1α, which
upregulates renoprotective HIF target genes, such as VEGF, HO-1, and GLUT1, and decreases fibrosis
markers. AMP, ampelopsin; Antroq, antroquinonol; ASD, akebia saponin D; AST, astaxanthin; BA,
betulinic acid; CGA, chlorogenic acid; CTS, cryptotanshinone; EASM, ethyl acetate extract of Salvia
miltiorrhiza; EGCG, Epigallocatechin gallate; ERG, ergone; GSK3β, glycogen synthase kinase 3β;
HIFα, hypoxia-inducible factor α; ILQ, isoliquiritin; NGR1, notoginsenoside R1; OA, oleanolic acid;
OB, obacunone; OL, oleuropein; PD, polydatin; PQQ, pyrroloquinoline quinone; RSV, resveratrol;
SA, sinapic acid; SAA, salvianolic acid A; SAL, salidroside; SFN, sulforaphane; SIN, sinomenine;
TRIG, trigonelline.

Wang et al. demonstrated restoration of kidney function by EGCG relieving oxidative
and inflammatory damage in UUO, which is attributed to the regulatory roles of this
common tea polyphenol on the NF-κB and Nrf2/HO-1 signaling pathways [121]. In a
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subsequent study, Wang et al. reported that the administration of cryptotanshinone at 50
and 100 mg/kg/day prevented OS and inflammation by suppressing NF-κB signaling
and activating Nrf2 signaling in a mouse model of UUO [116]. Rotenone, a mitochondrial
complex I inhibitor, ameliorated chronic obstructive kidney injury through attenuating
mitochondrial OS, inflammation, and fibrosis [127].

Silibinin (75 mg/kg day) significantly reversed arsenic (As)-induced biochemical
changes in the kidney, reduced lipid peroxidation, and improved the antioxidant defense
system [131]. These nephroprotective effects of silibinin against As-induced CKD were
attributed to its antioxidant, anti-inflammatory, and metal chelating properties [131]. Co-
administration of osthole (40 mg/kg, intravenously) along with 2% adenine suspension
attenuated inflammatory damage in a rat model of CKD through a mechanism that involved
downregulation of NF-κB and TGFβ1 and activation of PI3K/Akt/Nrf2 signaling [124].

EGCG protected against LN in mice by activating the Nrf2 antioxidant signaling path-
way and inhibiting the NLRP3 inflammasome [56]. In a similar study, Li et al. showed that
baicalein improved pristane-induced LN symptoms in mice through preventing inflamma-
tion and OS by a mechanism that involved activation of the Nrf2/HO-1 signaling pathway
and upregulation of NLRP3 expression [113]. Mice fed oleuropein- and peracetylated
oleuropein-supplemented diets experienced a lower intensity of pristane-induced kidney
damage. These protective effects of oleuropein and peracetylated oleuropein against LN
were attributed to its activating role of HO-1/Nrf2 signaling and its suppressive effect on
the JAK/STAT, NF-κB, MAPK, and NLRP3 inflammasome signaling pathways [123].

Curcumin protected against the changes in kidney functions in 5/6 nephrectomy,
an experimental CKD model, through activating the Nrf2-Keap1 and kidney dopamine
pathways, an effect that was comparable to the standard agent mycophenolate mofetil [117].
Curcumin ameliorated adenine-induced alteration of kidney functions, including hyper-
tension and albuminuria, in a rat model of CKD by attenuating inflammation and OS
through activating Nrf2 signaling [118]. Liu et al. demonstrated kidney protective effects
of isoliquiritin against cationic BSA-induced MGN in an experimental rat model, which
was attributed to its antioxidative (activation of Nrf2 signaling) and anti-inflammatory
properties (inhibition of NF-κB signaling) [54].

Moreover, resveratrol, curcumin, ampelopsin, and apigenin were shown to have
attenuating effects against oxidative damage in various cellular models of kidney in-
jury [109,110,119,126]. Besides, salidroside has anti-apoptotic effects in HG-treated mouse
podocytes, showing therapeutic promise in the management of kidney disease [128].

5.2. Non-Phenolic Compounds

Like phenolics, several non-phenolic compounds have been shown to protect against
DKD (Table 1). Most notable is sulforaphane, which improved kidney morphological
and functional alterations in STZ-injected and meglumine diatrizoate-injected diabetic
rats through activation of the Nrf2/HO-1 pathway [150]. Sulforaphane treatment also
resulted in functional and morphological improvements of CRAD by attenuating OS
through inducing the Nrf2-HO-1/Nqo1 signaling pathway [151]. Artemisinin prevented
OS-induced kidney damage in STZ-injected DN. These renoprotective effects of artemisinin
were due to its inhibitory role on the TGFβ1 regulator and its activating role in the Nrf2
signaling pathway [136]. Betulinic acid ameliorated DKD in STZ-induced rats, which was
mediated by activating the AMPK/NF-κB/Nrf2 signaling pathway [139]. Akebia Saponin
D protected against diabetes-induced kidney damage and improved kidney function by
antioxidant and anti-inflammatory functions, which was attributed to its activation of
the Nrf2/HO-1 pathway and its inhibition of the NF-κB pathway [133]. In STZ-induced
diabetic mice, berberine can ameliorate tubulointerstitial fibrosis via activating the Nrf2
pathway and inhibiting the TGFβ/Smad/EMT signaling pathway [138]. Aucubin, a natural
iridoid glucoside, improved symptoms of DKD through inhibiting NF-κB activation and
inducing the SIRT1/SIRT3-FOXO3a signaling pathway in HFD/STZ-induced diabetic
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mice [137]. Notoginsenoside R1 protected against OS and ameliorated DKD in db/db mice
through upregulation of Nrf2-mediated HO-1 expression [145].

Sinomenine ameliorated kidney fibrosis in UUO-operated ICR mice by preventing OS
through Nrf2 activation and interfering with pro-fibrogenic signaling of TGFβ/Smad and
Wnt/β-catenin [149]. Allicin can protect against 5/6 nephrectomy-induced hypertension
and kidney dysfunction (uremia, high serum creatinine, and albuminuria) through acti-
vating the Nrf2/Keap1 antioxidant defense system, an effect that was similar to, or even
better, than that of losartan [134]. Administration of L-mimosine at a later stage of kidney
ablation (from week 5 to week 12) caused transient activation of hypoxia-inducible factors
(HIF-1α and HIF-2α proteins), increased expression of VEGF, HO-1, and GLUT-1, and a
reduction in fibrosis markers [143].

Dioscin prevented high fructose-induced kidney damage via attenuating SIRT3-
mediated OS and inflammation and adjusting lipid metabolism and TGFβ1/Smad sig-
naling to inhibit kidney fibrosis [141]. When treated with ergone, alisol B 23-acetate, and
pachymic acid B, these compounds prevented ECM accumulation in HK-2 cells and atten-
uated podocyte injury by inhibiting Ang II-induced RAS/Wnt/β-catenin axis activation
and thereby ameliorating tubulointerstitial nephropathy [142]. Oleanolic acid treatment of
cyclosporine-treated ICR mice ameliorated tubulointerstitial fibrosis in chronic nephropa-
thy by activating the Nrf2/HO-1 signaling pathway [147]. Trigonelline can prevent the
effects of oxalate-induced EMT in kidney tubular epithelial cells, offering a promising
anti-fibrotic agent in the management of CKD [152].

Melatonin can protect against pristane-induced LN in mice, and this effect was attributed
to its enhancing role on the Nrf2 signaling pathway and its ability to inhibit kidney NLRP3
inflammasome activation [144]. Also, obacunone and pyrroloquinoline quinone have shown
promise in CKD for their antioxidant and anti-inflammatory potential [146,148].

6. Conclusions and Future Perspectives

OS has been involved in the pathobiology of CKD and thus, developing a treatment
strategy targeting OS might be a potential option against CKD. Cells have their own
antioxidant defense system to tackle the effects of OS, and Nrf2-HO-1 signaling is an
important antioxidant defense system against various diseases, including CKD. Several
recent clinical trials are investigating the protective potential of phytochemicals, such as
resveratrol, curcumin, and sulforaphane, in CKD patients. In those studies, the expression
of Nrf2 and HO-1 were set as outcome measures (Table 3), although Nrf2 activates HO-1
under OS in many preclinical settings of CKD. Targeting Nrf2-HO-1 may provide a means
of controlling OS. Pharmacological modulators that can activate Nrf2-HO-1 antioxidant
systems offer promise for the treatment of diseases associated with OS-associated kidney
injury. In this perspective, several phytochemicals have been described to protect against
kidney injury by activating Nrf2-HO-1 systems, suggesting that they could be used to
design novel therapeutic agents for treating CKD.

Although the kidney protective actions of the mentioned phytochemicals are promis-
ing, their protective effects have only been studied in preclinical settings. Although few
clinical trials are ongoing, they may fail in clinical studies. For instance, resveratrol has
been proven to be a potent kidney protective agent that activates the Nrf2-HO-1 pathway
in various cells, but it has shown poor bioavailability. Thus, it needs advanced drug de-
livery systems, such as nanoparticle-mediated drug delivery, in order to achieve proper
doses of the drug. Likewise, investigating the detailed molecular mechanism of the kidney
protective effects of these phytochemicals is important to discover which cellular defense
system between the Nrf2 and HO-1 pathways is involved. Also, it would be useful to study
the pharmacokinetics as well as pharmacodynamics of these phytochemicals on the gender
differences in CKD.
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Table 3. Antioxidant natural compounds used for treating CKD patients.

Compound Conditions or Disease Phase of Clinical Trials Outcome Measures Clinical trials.gov Identifier
or Ref.

Curcumin

Curcumin
(320 mg/day, for 8 weeks) CKD Phase III (2013.2-2014. 4,

101 participants)

Oxidative stress markers (MDA,
GSH, GSSG), antioxidants (GPx,

SOD, CAT, Nrf2 activity.
NCT01831193 [154]

Curcumin supplementation
(500 mg of curcumin and 5 mg of

piperine/day, for 12 weeks)
CKD

Not applicable
(2018.2–2021.12,
31 participants)

Antioxidants (Nrf2, GPx, HO-1)
and inflammatory biomarkers
(NF-kB, IL-6, TNFα) in blood

samples

NCT03475017 [155]

Curcumin supplementation
(500 mg of curcumin and 5 mg of

piperine/day, for 12 weeks)

CKD, Peritoneal dialysis,
hemodialysis

Not applicable
(2020.10–2021.10,
30 participants)

Antioxidants (Nrf2, GPx, HO-1)
and inflammatory biomarkers

(NF-kB, IL-6, TNFα, CRP, IL-18,
TBARS, inflammasome) in blood

samples

NCT04413266

Curcumin, NFE2L2 A > G
(400 mg/2 times/day, for up to

24 weeks)

CKD, Type 2 diabetes
mellitus,

Polymorphism

Phase II/III (2018.8–2019.4,
176 participants)

Antioxidants (Nrf2, SOD, HO-1,
GPx) NCT03262363

Resveratrol

Resveratrol
(500 mg/day, for 4 weeks) CKD Phase III (2013.01–2014.12,

20 participants)

Antioxidants (Nrf2, GPx, HO-1)
and inflammatory biomarkers
(NF-kB, IL-6, TNFα) in blood

samples

NCT02433925

Resveratrol
200 mg/2 times/day, for

6 weeks)

CKD, Endothelial
dysfunction

Not applicable (2019.1–2021.
8, 25 participants) Oxidative stress NCT03597568

Sulforaphane

Sulforaphane
(4 g L-sulforaphane/day, for
2 months + 4 g corn starch

colored with chlorophyll /day,
for 2 months)

CKD
Not applicable
(2021.1–2022.12,
122 participants)

Antioxidants (Nrf2, GPx, HO-1)
and inflammatory biomarkers
(NF-kB, IL-6, TNFα) in blood

samples

NCT04608903

CAT, catalase; CKD, chronic kidney disease; CRP, C-reactive protein; GPx, glutathione peroxidase; GSH, reduced glutathione; GSSG, oxidized glutathione; HO-1, Heme oxygenase-1; MDA, malondialdehyde;
Nrf2, nuclear factor erythroid 2-related factor 2; SOD, superoxide dismutase; TBARS, thiobarbituric acid reactive substances.

trials.gov
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