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Rise of the Machines? Predicting Brivaracetam
Response Using Machine Learning

de Jong et al. Brain. 2021;144:1738–1750.

Accurate and individualized prediction of response to therapies is central to precision medicine. However, because of the
generally complex and multifaceted nature of clinical drug response, realizing this vision is highly challenging, requiring in-
tegrating different data types from the same individual into one prediction model. We used the anti-epileptic drug brivaracetam
as a case study and combine a hybrid data/knowledge-driven feature extraction with machine learning to systematically integrate
clinical and genetic data from a clinical discovery dataset (n = 235 patients). We constructed a model that successfully predicts
clinical drug response [area under the curve (AUC) = .76] and show that even with limited sample size, integrating high-
dimensional genetics data with clinical data can inform drug response prediction. After further validation on data collected from
an independently conducted clinical study (AUC = .75), we extensively explore our model to gain insights into the determinants
of drug response and identify various clinical and genetic characteristics predisposing to poor response. Finally, we assess the
potential impact of our model on clinical trial design and demonstrate that, by enriching for probable responders, significant
reductions in clinical study sizes may be achieved. To our knowledge, our model represents the first retrospectively validated
machine learning model linking drug mechanism of action and the genetic, clinical and demographic background in epilepsy
patients to clinical drug response. Hence, it provides a blueprint for how machine learning–based multimodal data integration
can act as a driver in achieving the goals of precision medicine in fields such as neurology.

Commentary

If we knew who would respond to which treatments ahead of
time, our jobs would be considerably easier. Sadly, we do not.
Furthermore, ‘gold standard’ randomized controlled trials assess
only average treatment effects within a groomed population,
oftentimes unpowered for one-at-a-time subgroup analyses.

Enter machine learning classification models, which have
been used widely in epilepsy1 and can break free of restrictive
regression assumptions. The concept of individualized prediction
is alluring. Even an experienced clinician’s gestalt is not per-
fect,2,3 and ‘big data’ offers the opportunity to more precisely
forecast treatment responses better than averages alone and
better than human predictions alone (here is one recent example
using gradient-boosted decision trees4).

de Jong et al5 recently asked, can we predict who responds to
brivaracetam? First, they acquired data6 randomizing 760 adults
with ongoing focal seizures 1:1:1 to placebo or brivaracetam
(100mg/day or 200mg/day). They defined ‘responders’ as >50%
reduction in seizure frequency at 12 weeks compared to baseline
(22% placebo vs ∼38% brivaracetam groups). Second, they
developed 4 ‘modalities’ (aka groups of predictors): 1) gene set-
wise mutational load scores, 2) polygenic risk scores, 3) SV2A
variants and 4) 106 clinical features. They started with just about
every known gene related to epilepsy or brivaracetam (∼20
million single nucleotide variants!), whittled to a mere 14 000.

Third, for the 235/497 brivaracetam-treated patients who gave
blood samples, they plugged these predictors into 5 machine
learning models to see which model would come out on top.
Models were judged based on the ‘area under the curve’ (AUC:
‘the probability that a random subject who experienced the out-
come had a higher predicted probability than one who did not),
where .5 is chance and 1 is perfect. Somemodels relied upon linear
assumptions (eg 1. discriminant analysis which reduces a gar-
gantuan number of variables into a smaller number of dimensions
separating responders from non-responders and 2. elastic net, like a
typical multivariable regression except also nudging coefficients
towards 0 to reduce overfitting in-sample noise). Others were
nonlinear (eg 1. gradient-boosted decision trees, like a plinko board
iteratively shrinking residuals and 2. neural networks).

They found the following:

1) Decision tree models (AUC .72-.76) outperformed the
others (AUC .63-.67). Considering any of the 3 genetic
modalities alone resulted in poor classification (AUC
.55-.58), considering clinical information alone resulted
in acceptable classification (AUC .71) and the ‘inte-
grated model’ combining all 4 modalities produced the
strongest classification (AUC .76). Basically, ability to
predict short-term ‘>50% reduction’ using all available
clinical plus genetic data was reasonable, though not
quite strong.
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2) The single most important variable predicting outcomes
was prior levetiracetam treatment (worse), and the next 5
most important predictors were also clinical (eg seizure
frequency and anxiety), followed by a microtubule
binding protein mutation, followed lower down the list
by SV2A variants.

So, have artificially intelligent machines hungry for whole-
genome sequences risen to finally replace clinical intuition? While
the authors and trialists have made heroic gains to complete this
computationally intensive work, my answer remains – not yet.

First, despite the hype surrounding machine learning, caution
is required. In assumption-free models fed an enormous number
of features, overfitting in-sample noise is a real concern.
However, de Jong et al did find (truly surprisingly) good ex-
ternal validation (AUC .75) against 47 patients from a second
RCT.7 Even so, it is an uphill battle getting clinicians to trust
complex unfamiliar methods, using either routinely available
variables classified in non-routine ways or else non-routine
variables, without clearly demonstrating superiority over sim-
pler models. Another crucial point is that, machine learning or
not, no model is exonerated from underlying data limitations.
For example, it is not clear how meaningful a >50% relative
seizure reduction is with only a small absolute difference be-
tween groups (median 1.75 vs 1.26 seizures/week at follow-up;
seizure-freedom rate of 4% in the 100 mg/day group7), the data
are based on refractory patients rather than all-comers, the se-
lection process determining which patients contributed blood
samples seems unclear, a ‘responder’ rate among the treated does not
disentangle placebo effect and enrolling refractory epilepsy implies
regression to the mean (the most severe cases tend to ‘respond’
towards average no matter what you do).

Second, individualized treatment prediction incorporating
genetics was another source of possible hype. Indeed the ‘in-
tegrated model’ encompassing extensive genetics plus clinical
information (AUC .76) outperformed a model with clinical
information alone (AUC .71). However, despite incredible
statistical significance (P = .0000019) owing to an enormous
feature space, improvements were slim – a boost in discrimination
of .05 from genome-wide spelunking is not headline news,
especially considering the currently huge expense, ambiguity
and delay entailed in obtaining whole-genome sequencing.
SV2Avariants, the most targeted hypothesis here, also predicted
outcomes only trivially better than chance (AUC .58) and
substantially worse than clinical information alone (.71). Even
thousands of additional SNPs chosen specifically for their
relevance to epilepsy resulted in virtually no better than chance
discrimination (AUC .55). From this author reconstructing
Figure 4B,6 considering only treatment group and prior lev-
etiracetam in a mere 2-variable logistic regression produces an
AUC .64, better than any presented machine learning genetics-
based modality.

Third, even if the AUC had been 1, it would be a mistake to
declare ‘mission accomplished’. To be useful (‘all models are
wrong, but some are useful’), a model must not only demon-
strate external validity but also be disseminated to and usable by

others (the authors do not show their actual decision tree for others
to use) and should estimate outcome probabilities comparing
treatment versus no treatment (showing only what might happen
under ‘treatment’ lacks the key comparison to ‘no treatment’).
And even then, it would remain far from given that the right
clinical answer aligns with the ‘predicted’ answer. Just because
a patient is predicted to have a <50% relative response rate does
not rule out benefit, nor does predicting a >50% response rate
necessarily rule in treatment. Even if we perfectly predicted this
particular outcome, the next step remains entailing sometimes a
complex net-benefit analysis balancing absolute (not just relative)
benefits and harms (not just benefits).

Estimating individualized treatment responses ahead of time
is a central goal for twenty first century precision medicine. I do
want to emphasize the usefulness of data-driven predictive models
intended to assist the clinician (some existing examples8,9) – we
need more, and de Jong et al have conducted important (and hard)
work. Next steps could be larger training datasets capturing more
variation to improve predictiveness, and future changes in the genetics
landscape (discovering more genes, cost reductions) could further
change the game. Still, we are currently far from having ‘realized the
vision of precision medicine’, and clinicians are still often left with
the conventional trial and error approach to antiseizure medications.

By Samuel W. Terman, MD MS

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to
the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship,
and/or publication of this article.

References

1. Abbasi B, Goldenholz DM. Machine learning applications in ep-
ilepsy. Epilepsia. 2019;20:2037-2047.

2. Hoffmann TC, Del Mar C. Clinicians’ expectations of the benefits
and harms of treatments, screening, and tests: A systematic review.
JAMA Int Med. 2020;4229(3):407-419.

3. Gracia CG, Chagin K, Kattan MW, Ji X, Kattan MG, Crotty L, et al.
Predicting seizure freedom after epilepsy surgery, a challenge in
clinical practice, Epilepsy Behav [Internet]. 2019;95:124-130.
Available from: DOI: 10.1016/j.yebeh.2019.03.047.

4. van Doorn WPTM, Stassen PM, Borggreve HF, Schalkwijk MJ,
Stoffers J, Bekers O, et al.. A comparison of machine learning
models versus clinical evaluation for mortality prediction in patients
with sepsis. PLoS One [Internet. 2021;16(1):1-15. Available from:
DOI: 10.1371/journal.pone.0245157.

5. de Jong J, Cutcutache I, Page M, Elmoufti S, Dilley C, Fröhlich H,
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