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The photoplethysmography (PPG) is inevitably corrupted by many kinds of noise no matter whether its acquisition mode is
transmittance or reflectance. To enhance the quality of PPG signals, many studies have made great progress in PPG denoising
by adding extra sensors and developing complex algorithms. Considering the reasonable cost, compact size, and real-time and easy
implementation, this study proposed a simple real-time denoisingmethod based on doublemedian filterswhich can be integrated in
microcontroller of commercial or portable pulse oximeters without adding extra hardware. First, we used the boundary extension
to preserve the signal boundary distortion and designed a first median filter with the time window at approximately 78ms to
eliminate the high-frequency components of the signal. Then, through the second median filter with a time window which was
about 780ms, we estimated the low-frequency components. Finally, we removed the estimated low-frequency components from
the signal to obtain the denoised signal. Through comparing the multiple sets of signals under calmly sitting and slightly moving
postures, the PPG signals contained noises no matter whether collected by the transmittance-mode or the reflectance-mode. To
evaluate the proposed method, we conducted measured, simulated experiments and a strong noisy environment experiment.
Through comparing the morphology distortions, frequency spectra, and the signal-to-noise ratios (SNRs), the results showed that
the proposedmethod can suppress noise effectively and preserve the essential morphological features from PPG signals. As a result,
the proposed method can enhance the quality of PPG signals and, thus, can contribute to the improvement of the calculation
accuracy of the subsequent physiological parameters. In addition, the proposed method could be a good choice to address the
real-time noise reduction of portable PPG measuring instruments.

1. Introduction

The initial clinical application of photoplethysmography
(PPG) is to monitor the noninvasive blood oxygen saturation
(SpO
2
) and, furthermore, it has been widely used in the

assessment of the cardiovascular, respiratory, and hematolog-
ical status [1, 2].

The principle of PPG acquisition is to emit different
wavelengths of LED lights on the epidermis and to receive
the transmitted or reflected lights by using the photoelectric
sensors. The received optical density will vary as the blood
volume of the measuring site changes and can be recorded
by using electrical signals to form PPG which can be used
to derive the approximate formula for SpO

2
estimation based

on Lambert–Beer law [3, 4]. Compared with the fingertip

transmittance-modePPGmonitoring, themeasuring site and
the motion status are relatively flexible under the reflectance-
mode, and studies have shown that the reflectance-mode
way can achieve better SpO

2
measurement accuracy during

the perfusion [5, 6]. However, finger-tip transmittance pulse
oximeters are still playing the important role in clinical appli-
cations because of their stable performance, easy operation,
and low cost [7].

No matter whether the PPG signal is obtained by using
transmittance-mode or reflectance-mode, it will inevitably be
corrupted by many kinds of noise such as high-frequency
noise, power line interference, baseline drift, andmotion arti-
fact (MA), and these noises will affect the pulse rate analysis
and SpO

2
measurement accuracy [8]. To date, many studies

have proposed noise suppression methods for PPG signals.

Hindawi
BioMed Research International
Volume 2018, Article ID 4523593, 9 pages
https://doi.org/10.1155/2018/4523593

http://orcid.org/0000-0003-3599-2102
http://orcid.org/0000-0002-8878-8968
http://orcid.org/0000-0002-9136-5069
http://orcid.org/0000-0003-4279-098X
http://orcid.org/0000-0003-0008-6687
https://doi.org/10.1155/2018/4523593


2 BioMed Research International

(a) (b)

Figure 1: Pulse oximeters: (a) reflectance-mode, (b) transmittance-mode.

The high-frequency noise in PPG signal could be eliminated
by empirical mode decomposition (EMD) method [9]. The
power line interference could be reduced by a wavelet denois-
ingmethod integrated inDSP [10].Thebaseline drift could be
estimated by applying the wavelet multiresolution principle
[11, 12]. A real-time method based on a contour analysis
was implemented on a 32-bit ARM core microcontroller
to detect the pulse waveform segmentation and artifact
[13]. Due to the fact that MA can significantly distort the
morphology of the PPG signal, it is worthwhile to focus on
the removal methods. One of the commonly used approaches
is through adding the extra hardware, such as using the
accelerometer as the reference signal for MA cancellation
[14–16]. Another way is through designing the denoising
algorithms, including adaptive filter [17, 18], wavelet-based
method [19, 20], independent component analysis (ICA) [21,
22], singular value decomposition (SVD) [23], cycle-by-cycle
Fourier series analysis [24, 25], and higher order statistics
[26].

We have seen the significant progress in the domain of
PPG denoising. However, the above methods include adding
extra hardware and requiring high-end microcontroller or
host computer where the complicated algorithm needs to
run and the PPG data needs to be transferred to, which
are all complicated and can be inapplicable due to the high
market share of the traditional pulse oximeter. Therefore,
considering the low cost, compact size, and real-time and
easy implementation, a denoising method based on double
median filters is proposed in this study.The proposed denois-
ing method can run on the ordinary microcontroller and can
be real-time. In other words, it is convenient enough to be
embedded in commercial two-wavelength pulse oximeters
without changing any hardware or transmitting the data to
the host computer for processing.

This study will first compare the reflected PPG with the
transmitted PPG signals under calmly sitting and slightly

moving postures and describe the principle of the denoising
method based on double median filters and its imple-
mentation steps. Then, we will conduct experiments using
measured signals, simulated signals, and the noisy signals
collected under the strong noise environment, respectively.
Finally, we will evaluate the performance of the proposed
denoising method through comparing the morphology dis-
tortions, frequency spectra, and SNRs.

2. Materials and Methods

2.1. The Measurement Devices. Most pulse oximeters are
designed based on the good linear relationship between
the oxygen saturation and the relative light intensity of
the 660 nm (red-light) and 940 nm (IR-light) wavelengths
received by the photodetector. The reflective pulse oximeter
used in the experiment was provided by Tianjin Synopsis
Technology Co., Ltd., China. The raw data can be collected
by the data acquisition software provided by the company
with the sampling frequency of 100Hz. The emitter and
photodetector are adjacent to each other with the measuring
site side by side, as shown in Figure 1(a). The prototype of
transmitted pulse oximeter was developed by Jilin University,
China, with the sampling frequency of 128Hz. The emitter
and photodetector are opposite to each other with the
measuring site in-between, as shown in Figure 1(b). When
the red-light and IR-light pass through the measuring site,
they will be received by the photodetector to produce PPG
signals, as shown in Figure 1.

2.2. PPG Signals Acquisition. A total of 10 volunteers partici-
pated in the experiment, 7 males and 3 females.Themean age
(mean ± std) was 26.20 ± 5.14 and the mean body mass index
(BMI ± std) was 21.79 ± 3.40. The volunteers were informed
about the study before the data was obtained. Table 1 shows
their basic personal information.
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Table 1: The basic personal information of subjects who participated in the experiment.

Subject Gender Age (year) Height (cm) Weight (kg) BMI
1 male 24 184 85 25.1
2 female 22 160 44 17.2
3 male 25 170 75 26.0
4 male 23 175 75 24.5
5 female 23 162 48 18.3
6 male 39 170 62 21.5
7 male 31 178 75 23.7
8 female 25 158 45 18.0
9 male 24 173 74 24.7
10 male 26 178 60 18.9
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Figure 2: PPG signals: (a) the transmittance-mode in sitting calmly, (b) the reflectance-mode in sitting calmly, (c) the transmittance-mode
in moving slightly, and (d) the reflectance-mode in moving slightly.

We used the above two devices to collect their multiple
sets of middle fingertips PPG signals under the calmly sitting
and slightly moving postures. Hardware filters can eliminate
some of the noise in PPG signals, but the signal was still
affected by respiration, random noise, and motion artifacts
during the measuring procedure, resulting in morphological
distortions in PPG signals. For the clarity of the subsequent
comparisons, the amplitude range of the signal was normal-
ized from 0 to 1 by using

𝑃𝑃𝐺1 (𝑖) = 𝑃𝑃𝐺 (𝑖) −min (𝑃𝑃𝐺 (𝑖))
max (𝑃𝑃𝐺 (𝑖)) −min (𝑃𝑃𝐺 (𝑖)) (1)

where 𝑖 = 1, 2, . . . , 𝐿, 𝐿 is the data length, 𝑃𝑃𝐺1 is the
normalized signal, and 𝑃𝑃𝐺 is the raw signal.

We employed 2000 representative samples which were
taken from the IR signals acquired by the transmittance and
by the reflectance oximeter, respectively, as shown in Figure 2.
The quality of the PPG signal under the sitting posture is
relatively good. Figure 2(a) illustrates the transmitted signal

which contained a small amount of high-frequency noise;
Figure 2(b) shows the reflected PPG signal with mild baseline
wander which may be caused by respiration. Under the
slightly moving posture, the morphologies of the transmitted
and reflected signal are both distorted due to the motion
artifacts, as shown in Figures 2(c) and 2(d), respectively.
Therefore, it is necessary to suppress the noise and to
preserve the essential morphological features, enhancing the
signal quality to improve the calculation accuracy of the
physiological parameters subsequently.

2.3. The Denoising Method Based on Double Median Filters.
According to the frequency of the major component of the
PPG signal and the spectral comparisons of the reflected and
the transmitted signals under the calmly sitting and slightly
moving postures, we designed a noise reduction method
based on double median filters.

The median filter is a nonlinear digital filter technique
which is very widely used to eliminate noise from digital
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Figure 3: Block diagram of the denoising method based on double median filters.

signals. It works bymoving through the signal entry by entry,
replacing each entry with the median of neighboring entries.
The pattern of neighbors is called the “window,” which slides,
entry by entry, over the entire signal [27].The window size is
the key step of the median filter design. In general, the larger
the window is, the lower the frequency of the fitted signal
is.

Through the simulation and measurement experiments,
the high-frequency noise can be suppressed effectively when
the window size is from 9 to 12 samples under the sampling
frequency of 128Hz; the low-frequency noise introduced
mainly by respiration and movement can be reduced better
when the window size is from 96 to 110.

In this application, the window size of the first median
filter,𝑊1, was set as 10 samples, corresponding approximately
to 78ms; that of the second median filter, 𝑊2, was set as
100 samples, corresponding approximately to 780ms. The
diagram of the denoising method is shown in Figure 3.

The main steps of the method are shown as follows.(1)Theraw signal after normalization is denoted as𝑃𝑃𝐺1.
In order to prevent the boundary distortion, we used the
boundary extension to process 𝑃𝑃𝐺1. The extension length𝑄 is related to the size of the window; here we chose 𝑄 =𝑊2/2 = 50, and the signal after extension is recorded as𝑃𝑃𝐺2, shown in

𝑃𝑃𝐺2 (𝑛) =
{{{{{{{{{

𝑃𝑃𝐺1 (1) , 1 ≤ 𝑛 ≤ 50
𝑃𝑃𝐺1 (𝑛 − 50) , 50 < 𝑛 ≤ 2050
𝑃𝑃𝐺1 (2000) , 2050 < 𝑛 ≤ 2100

(2)

(2)The first median filter with the window size𝑊1 = 10
was used to eliminate the high-frequency noise from 𝑃𝑃𝐺2;
then the signal after the processing is recorded as 𝑃𝑃𝐺3,
and the value of 𝑃𝑃𝐺3(𝑛) equals the one from the sequence𝑃𝑃𝐺2(𝑖) whose value corresponds to the minimum of the
expression∑𝑛+4

𝑖=𝑛−5
|𝑃𝑃𝐺2(𝑖)−𝑃𝑃𝐺3(𝑛)|, where 51 ≤ 𝑛 ≤ 2050,𝑛 − 5 ≤ 𝑖 ≤ 𝑛 + 4.(3)The second median filter with the window size𝑊2 =100 could be used to estimate the low-frequency noise of𝑃𝑃𝐺3 which is recorded as 𝑃𝑃𝐺4; then the value of 𝑃𝑃𝐺4(𝑛)

equals the one from the sequence 𝑃𝑃𝐺3(𝑖)whose value corre-
sponds to the minimum of the expression∑𝑛+49

𝑖=𝑛−50
|𝑃𝑃𝐺3(𝑖) −𝑃𝑃𝐺4(𝑛)|, where 51 ≤ 𝑛 ≤ 2050, 𝑛 − 50 ≤ 𝑖 ≤ 𝑛 + 49.(4) The denoised signal 𝑃𝑃𝐺5 can be obtained by sub-

tracting 𝑃𝑃𝐺4 from 𝑃𝑃𝐺3, as shown in

𝑃𝑃𝐺5 (𝑛) = 𝑃𝑃𝐺3 (𝑛) − 𝑃𝑃𝐺4 (𝑛) , 51 ≤ 𝑛 ≤ 2050 (3)

3. Results and Discussion

3.1. The Experiment for Measured Signals. In the measure-
ment experiment, the above two devices were used to collect
multiple sets of transmitted and reflected PPG signals, of
which the 10 subjects were under the calmly sitting and
slightly moving postures. For convenient comparison, we
continued to use the signals in Figure 2 to represent the
denoising results.

The red curves in Figure 4 are the noise suppressed by
using our proposed method. Figure 4(a) is the raw transmit-
ted PPG signal (blue curve) under the sitting posture, named
as TPPGS, and Figure 4(b) is that under the slightly moving
posture, named as TPPGM; their corresponding denoised
signals are shown, respectively, in Figure 4(c), named as
DTPPGS, and in Figure 4(d), named as DTPPGM.

Figure 4(e) is the raw reflected PPG signal (blue curve)
under the sitting posture, named as RPPGS, and Figure 4(f)
is that under the slightly moving posture, named as RPPGM;
their corresponding denoised signals are shown in Fig-
ure 4(g), named as DRPPGS, and in Figure 4(h), named as
DRPPGM.

From visual comparison of the morphology and the
smoothness of the signals before and after denoising, the
noise is well suppressed, and the quality of the PPG signals
is improved by the denoising method.

For quantitative evaluation of the method, we performed
spectral analysis of the PPG signals from Figure 4. The
frequency of the major component of PPG signal is gener-
ally concentrated in 0.5-10Hz; hence, the frequency values
plotted in Figure 5 are set from 0 to 30Hz for convenient
observation. Figures 5(a)–5(h) correspond to the spectra of
TPPGS, of DTPPGS, of TPPGM, of DTPPGM, of RPPGS,
of DRPPGS, of RPPGM, and of DRPPGM, respectively. It
can be found that the high frequency near 25Hz and the low
frequency near 0.5Hz are well eliminated.

3.2. The Experiment for Simulated Signals. We compared the
denoising effects of the proposedmethod and awavelet-based
method. The wavelet-based method can remove baseline
wander aswell as partialmotion artifacts effectively.However,
it should be run on the host computer and it is not real-
time. We used a fraction of good quality signals to be the
reference signal. The noisy signals could be synthesized by
adding simulated noise to the reference signal. Then, the two
denoising methods were compared by using SNR.

𝑆𝑁𝑅 = 20 log
10
( 𝑁∑
𝑛=1

𝑠 (𝑛)2
|𝑥 (𝑛) − 𝑠 (𝑛)|2) . (4)
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Figure 4: The denoising results by using the method based on double median filters: (a) TPPGS and the noise (red curve), (b) DTPPGS, (c)
TPPGM and the noise (red curve), (d) DTPPGM, (e) RPPGS and the noise (red curve), (f) DRPPGS, (g) RPPGM and the noise (red curve),
and (h) DRPPGM.

We used 2000 representative samples from good quality
reflected signals to be the reference signal, as shown in Fig-
ure 6(a). The simulated noise for baseline wander and partial
motion artifacts is shown in Figure 6(b).The simulated noise
being superposed on the reference signal synthesized a noisy
signal, which is shown in Figure 6(c). We continue to add
10 dB white Gaussian noise to synthesize another noisy signal
which contains not only the baseline wander and partial
motion artifacts, but also the random noise, as shown in
Figure 6(d). After using the wavelet-based method (please
see [11, 12] for details), the denoised signal of Figure 6(c) is
shown in Figure 6(e), and that of Figure 6(d) is shown in
Figure 6(f). After using our proposed method, the denoised
signal of Figure 6(c) is shown in Figure 6(g), and that of
Figure 6(d) is shown in Figure 6(h).

The corresponding SNRs of the signals fromFigure 6 were
calculated. The comparison results are listed in Table 2.

The SNR calculated by using the noisy signal in Fig-
ure 6(c) is 7.6857 and those using the denoised signals in
Figures 6(e) and 6(g) are 16.2620 and 12.7598, respectively;
the SNR calculated by using the noisy signal in Figure 6(d)
is 5.7739 and those using the denoised signals in Figures 6(f)
and 6(h) are 6.1874 and 11.3860, respectively.

By comparing the morphology in Figure 6 and the SNR
in Table 2, we can see that the quality of the signal is

Table 2: The comparison results of SNRs.

Noisy
signals

Denoised signals
by using the

wavelet-based method
by using the proposed

method
7.6857 16.2620 12.7598
5.7739 6.1874 11.3860

improved after denoising. Comparing Figures 6(c), 6(e), and
6(g), the noise is reduced well. Although the denoised effect
by the wavelet-based method (SNR is 16.2620) is better
than that by the proposed method (SNR is 12.7598), the
wavelet-based method needs to run on the host computer
and is not real-time. Comparing Figures 6(d), 6(f), and 6(h),
the wavelet-based method is good at reducing that kind of
low-frequency noise, but not the random noise, and the
denoised effect of the proposed method (SNR is 11.3860) is
much better than that by the wavelet-based method (SNR is
6.1874).

3.3. The Experiment for Strong Noisy Signals. During the
experiment, it happened to start a suction electromagnetic
vibrator that greatly increased the environmental noise
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Figure 5: Comparisons of spectral analysis before and after denoising: (a) spectrum of TPPGS, (b) spectrum of DTPPGS, (c) spectrum
of TPPGM, (d) spectrum of DTPPGM, (e) spectrum of RPPGS, (f) spectrum of DRPPGS, (g) spectrum of RPPGM, and (h) spectrum of
DRPPGM.

in the measurement. At that time, we collected the raw
signal by using the reflective oximeter. The representative
2000 samples are shown in Figure 7(a). Figure 7(b) is
the spectrum of the raw signal, and the noise is severe
in the signal. Figure 7(c) is the denoised signal using the
method based on double median filters, and Figure 7(d)
is the spectrum of the denoised signal. By comparing the
morphology and spectrum of the signal before and after
denoising, the validity of the denoising method is further
verified.

The above denoising experiments used measured signals,
simulated signals, and the strong noisy signals. By com-
paring the morphology, frequency spectrum, and SNR of
the signals before and after denoising, the results demon-
strated the effectiveness and practicability of the proposed
method.

4. Conclusion

In this study, a simple, real-time PPG denoising method
based on double median filters was proposed, which could

be integrated in microcontroller of commercial or portable
pulse oximeters without adding extra hardware. The exper-
iments were conducted using measured signals, simulated
signals, and the noisy signals collected under the strong
noise environment. Through evaluating the denoising effects
(morphology, frequency spectrum, and SNR comparisons
of the signals), the experimental results showed that the
proposed method can remove the noise well and enhance
the quality of PPG signals. The proposed method has
the potential to improve the calculation accuracy of the
subsequent physiological parameters and can be a con-
venient solution to the real-time noise suppression for
portable pulse oximeters as well. For future research, we
will collect more PPG signals from volunteers to compare
the noise reduction effects through the calculation accu-
racies of physiological parameters (such as HR and SpO

2
)

before and after denoising using the proposed method
and traditional methods. And then, results will further
reveal the feasibility and possibility of embedding the
proposed method into commercial portable pulse oxime-
ters.
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Figure 6: Comparisons of the proposed methodwith the wavelet-basedmethod. (a)The reference signal, (b) the simulated noise for baseline
wander and partial motion artifacts, (c) the simulated noisy signal with baseline wander and partial motion noise, (d) the simulated noisy
signal withmultinoise, (e) the denoised signal of Figure 6(c) by using thewavelet-basedmethod, (f) the denoised signal of Figure 6(d) by using
the wavelet-based method, (g) the denoised signal of Figure 6(c) by using the proposed method, and (h) the denoised signal of Figure 6(d)
by using the wavelet-based method.
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Figure 7: Spectral analysis of the reflected PPG signal before and after denoising under strong noise background: (a) the raw PPG signal, (b)
the spectrum of the raw signal, (c) the denoised PPG signal, and (d) the spectrum of the denoised signal.
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Abbreviations

PPG: Photoplethysmography
SpO
2
: Noninvasive blood oxygen saturation

MA: Motion artifact
EMD: Empirical mode decomposition
ICA: Independent component analysis
SVD: Singular value decomposition
BMI: Body mass index
SNR: Signal-to-noise ratio
TPPGS: Transmitted PPG signal
DTPPGS: Denoised transmitted PPG signal
TPPGM: Transmitted PPG signal under moving
DTPPGM: Denoised transmitted PPG signal under

moving
RPPGS: Reflected PPG signal
DRPPGS: Denoised reflected PPG signal
RPPGM: Reflected PPG signal under moving
DRPPGM: Denoised reflected PPG signal under

moving.
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