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Introduction
In this study, we investigate the localization of microtubule 

(MT) minus ends within the Xenopus laevis meiotic spindle. 

This localization is important because it may refl ect the location 

of MT nucleation within the spindle. Since the discovery of 

centrosomes, models for the assembly and maintenance of 

mitotic and meiotic spindles have included a dominant role for 

spindle poles as MT nucleation centers (Wilson, 1937; Brinkley, 

1985). The “search-and-capture” model suggested that poles 

dominate spindle morphogenesis, anchoring the minus ends of 

MTs, whereas plus ends polymerize and depolymerize until 

some are stabilized by kinetochores (Kirschner and Mitchison, 

1986). Later models proposed that MTs could be stabilized 

“at a distance” by chromosomes, presumably via diffusible 

 factors such as RanGTP (Dogterom et al., 1996; Hyman and 

Karsenti, 1996; Carazo-Salas and Karsenti, 2003).

In anastral spindles, which are typifi ed by oocyte/egg 

meiotic spindles, centrosomes are unnecessary for spindle 

morphogenesis (Heald et al., 1996). Spindles assemble in an 

“inside-out” manner, with initial formation of MTs near chro-

matin, followed by condensation of minus ends into poles 

(Matthies et al., 1996; Gaglio et al., 1997; Endow and Komma, 

1998; Sköld et al., 2005). In some meiotic spindles, density 

 tapers off toward the poles in a manner suggesting that many 

MTs terminate before reaching the poles (Theurkauf and 

 Hawley, 1992). Studies in X. laevis egg extracts, which reca-

pitulate assembly of the anastral meiosis II spindle, show that 

chromosomes trigger an exchange of GTP on Ran, promoting 

MT nucleation in the absence of centrosomes, thereby proba-

bly explaining early steps in spindle assembly (for review see 

Gruss and Vernos, 2004). Continued production of RanGTP is 

also required for maintenance of the metaphase steady-state 

in anastral spindles (Mitchison et al., 2004; unpublished data), 

but it is unknown whether this is caused by stabilization or 

 nucleation activity downstream. Steady-state anastral spindles 

might be dominated by nucleation at chromatin, like during 

 assembly, or at poles assembled in response to Ran activation 

(Gruss et al., 2001; Nachury et al., 2001). Knowing the local-

ization of nucleating sites is, thus, central to understanding 

spindle morphogenesis. The search-and-capture picture is based 

on spatial separation between nucleating and stabilizing centers, 

and new models would be required to account for morphogenesis 

by other mechanisms. To this end, we sought to measure the 

 localization of minus ends within the spindle.

Previous work localized minus and plus ends using  serial-

section electron microscopy (McDonald et al., 1992; Ding et al., 

1993; Mastronarde et al., 1993), but this method is diffi cult 

to apply to large spindles and lacks reliable markers for end 

polarity. MT ends nearest to centrosomes were assumed to 

be minus ends (McIntosh et al., 1979; Mastronarde et al., 1993; 

O’Toole et al., 2003), which is an unreliable criterion if 

MTs are nucleated throughout the spindle. “Hook decoration” 

 (McIntosh and Euteneuer, 1984; Heald et al., 1997) allows 
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identifi cation of polarity, but is unsuitable for localizing ends 

because MTs elongate under the hook decoration conditions. 

γ-Tubulin complex is probably involved in nucleation, but our 

knowledge of its function is limited, so we cannot equate its 

 localization with that of minus ends. NuMA and other spindle 

pole proteins probably move to the most distal minus ends in 

the spindle via dynein-mediated transport (Merdes et al., 2000). 

Instead of using any of these to locate minus ends, we devel-

oped a quantitative optical method combining analysis of ori-

ented MT distributions with localization of plus ends by tubulin 

incorporation. Our analysis shows that MT minus ends are 

present everywhere in the spindle, with a minimum density 

near the chromosomes.

Results and discussion
Our method to calculate the density of plus and minus ends at a 

single location within a X. laevis extract spindle is shown in Fig. 1. 

Although we could not directly measure the density of minus 

ends, we could calculate the density of plus ends and the differ-

ence between the densities of plus and minus ends. The sum of 

these two quantities was the density of minus ends.

Our technique required three steps. First, to obtain the end 

densities, we observed the fl ow of MTs in a portion of the spindle 

(Fig. 1 A, i [dashed box]). The amounts of leftward and rightward 

fl ow were proportional to the local numbers of MTs with their 

minus ends toward each pole. Second, we looked at how the num-

bers of MTs varied in space to fi nd the difference between the 

 local densities of minus versus plus ends (Fig. 1 B). Third, we 

measured the local density of plus ends by observing incorpora-

tion of labeled tubulin into the spindle (Fig. 1 C). We summed the 

results of steps two and three to fi nd the local density of minus 

ends. The process was repeated at many locations on the spindle-

pole axis to fi nd the spatial distributions of plus and minus ends.

Defi nitions
Throughout this paper, we rotate all spindles to be horizontal, 

then use “x” to denote position along the spindle-pole axis and 

“y” for the perpendicular direction.

We call MTs with plus ends to the left “left-pointing” and 

defi ne “right-pointing” analogously. The “MT number,” NL(x) 

or NR(x), is the number of left- or right-pointing MTs passing 

through a cross section of the spindle at point x. We can only 

measure NL(x) and NR(x) up to an unknown proportionally 

 constant c. The “plus end density at x” is the number of plus ends 

present in a 1-μm-wide window around x. The minus end den-

sity is similarly defi ned. The “fractional plus end density,” e+(x), 

is the fraction of MTs crossing x which have plus ends present 

in a 1-μm-wide window around x, i.e., the plus end density 

 divided by (NL(x) + NR(x)). The fractional minus end density, 

e−(x), is similarly defi ned. We will show that we can calculate 

fractional densities with no unknown proportionality constants.

Measurement of the number 
of left- and right-pointing MTs
We fi rst needed to fi nd the number of left- and right-pointing 

MTs that passed through a spindle cross section at position x 

(Fig. 1 A). We determined orientation by using the fact that all 

Figure 1. Schematic of method for determining the fractional 
densities of plus and minus ends in a portion of the spindle. 
(A) Measurement of the density of left- and right-pointing MTs. 
(i) Cross-correlation measures fl ow of speckles within the window 
(dashed box). The two peaks represent the fl ow toward each 
amount of the two poles. (ii) The volume of each peak gives the 
number of microtubules in the window fl uxing in each direction. 
MTs moving left are assumed to have plus ends pointing right. 
(iii) Orientation of MTs in the window. (B) Calculation of the differ-
ence between fractional densities of plus and minus ends. (i) The 
number of right-pointing MTs is compared with the number in the 
adjacent window to the right. The change measures the differ-
ence in the number of plus versus minus ends in the window. This 
is because MTs with no ends in the two windows extend through 
both. MTs with plus ends extend only through the left window, 
while those with minus ends only through the right window. The 
difference between fractional densities of minus versus plus ends 
for left-pointing MTs is calculated in a similar manner, by comparing 
the number of left-pointing MTs with the number in the window 
to the left. The total difference is the sum of the left- and right-
pointing differences. (ii) Difference between plus and minus end 
fractional densities. (C) Measurement of the density plus ends and 
calculation of the minus end fractional density. New tubulin incor-
porates into growing plus ends. The total number of plus ends in 
the window is found by measuring how quickly fl uorescence in-
tensity increases immediately after the addition of labeled tubulin. 
The fractional density of plus ends is added to the difference be-
tween plus and minus end fractional densities. This gives the frac-
tional density of minus ends in the window. (ii) Fractional density 
of minus ends in the window. 
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MTs in X. laevis extract spindles are thought to slide continu-

ously in the direction of their minus ends as they move poleward 

during metaphase. Leftward MT fl ow could thus be attributed to 

right-pointing MTs. We used speckle microscopy to visualize 

the sliding of MTs (Fig. 1 A, i) and cross-correlation (Westerweel, 

1997; Miyamoto et al., 2004) to quantify the sliding in each 

 direction (Fig. 1 A, ii). Thus, we obtained the number of left- 

and right-pointing MTs sliding through the window, up to an 

unknown proportionality constant, which was c NL(x) and 

c NR(x), respectively (Fig. 1 A, iii).

Fig. 2 shows examples of the number distributions of 

right- (solid lines) and left-pointing (dotted lines) MTs, which 

were plotted as functions of position along the spindle pole 

axis. These data represent 14 spindles from fi ve extracts. The 

detailed distributions varied from spindle to spindle, refl ect-

ing the well-known variability in spindle morphology in the 

extract system, but the overall shapes were similar. The distri-

butions agree with those calculated using the more precise, but 

computationally demanding, method of tracking and counting 

individual speckles (Vallotton et al., 2004; Fig. S1, available at 

http://www.jcb.org/cgi/content/full/jcb.200511112/DC1).

Calculation of the difference between 
the densities of plus and minus ends
We used the results from the previous step to fi nd the difference 

in the local fractional densities of minus versus plus ends. We 

extracted this information from the spatial variations in the 

numbers of left- and right-pointing MTs (Fig. 1 B). To visua-

lize how this was done, consider two adjacent windows in 

the  spindle, and the number of right-pointing MTs in those 

 windows (Fig. 1 B, i). A MT that does not terminate between 

the windows extends through both, thus, giving rise to no change 

in MT number. A minus end implies an increase in MT number 

moving from left to right, whereas a plus end implies a decrease. 

These effects are additive, so the MT number increases with x 

when minus ends outnumber plus ends. Thus, we found the dif-

ference in the densities of minus versus plus ends on right-

pointing MTs by measuring their change in number from one 

window to the next. A similar analysis of the left-pointing MT 

numbers gave the difference in end densities for left-pointing 

MTs. The sum of these quantities, divided by the total number 

of MTs present, was the difference in fractional end densities 

for all MTs, e−(x) − e+(x) (Fig. 1 B, ii). Mathematically, it is 

written as follows:

 ( ) ( ) ( )⎛ ⎞
⎜ ⎟⎝ ⎠+( )  ( ) = ( )   ( ) ( ) + ( ) .- - -R RL L

d d
e x e x c N x c N x c N x c N x

dx dx
 (1)

The unknown proportionality constant c cancels, so the frac-

tional density difference is obtained in absolute units.

This analysis does not give the fractional densities of plus 

and minus ends separately, only the difference between them. 

Specifi cally, it cannot distinguish between a spindle made up 

of many short MTs, which would have a large number of both 

plus and minus ends, and a spindle with a smaller number of 

long MTs.

Measurement of the fractional plus 
end density
We needed an independent measurement of the fractional plus 

end density. We localized plus ends by pulsing labeled tubulin 

into extract and measuring its incorporation into preassembled 

spindles (Fig. 1 C, i). We assumed that tubulin is incorpo-

rated into MTs only at growing plus ends, so the initial rate at 

which fl orescence intensity increases is constant and propor-

tional to the local density of plus ends (Supplemental materials 

and methods, available at http://www.jcb.org/cgi/content/full/

jcb.200511112/DC1). From the rate of increase, we determined 

the fractional plus end density, e+(x). To visualize how this 

was done, imagine that the fractional plus end density is 0.2 

ends per micrometer per MT and that 75% of all plus ends are 

growing. Thus, 15% of the MTs in a 1-μm-wide window have 

 growing plus ends there. Assuming growth at the published rate 

of 10 μm/min (Verde et al., 1992), each of these ends will grow 

through the window in 6 s. Eventually, all MTs will be fully 

labeled. After 6 s, then, the intensity in the window will be 15% 

of its fi nal value. We thereby calculated the 6-s fractional in-

tensity increase to fi nd the fraction of MTs with growing plus 

ends in the window. We divided this by the estimated ratio of 

growing to total plus ends, 0.75, to fi nd the fractional density of 

all plus ends, growing or shrinking. Mathematically, it is written 

as follows:

 ( ) ( )+ = 0( ) =  ( , )  ( , ) ,g gt
d

e x I x t v  f  I x t
dt

 (2)

Figure 2. Oriented MT number distributions. Plots for 14 spindles showing oriented MT number distribution, in arbitrary units, versus position along the 
spindle-pole axis. Distributions for right-pointing MTs are given in solid lines, and distributions for left-pointing MTs are given in dotted lines. Spindle-pole 
positions, which were manually selected by the edge of visible fl orescence in spindle images, are marked with vertical dashed lines. The distance between 
tick marks on the x axis is 10 μm.
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where I(x,t) is the background-subtracted fl orescence intensity 

after summation in the y direction, at position x and time t after 

mixing. vg is the plus end growth velocity, fg is the fraction of 

plus ends which are growing, and tf is the  fi nal time.

We found the densities and fractional densities of plus 

ends at each point along the spindle axis. Fig. 3 A (dotted lines) 

shows the distributions of fractional plus end densities from 

spindles assembled on four separate days, whereas Fig. 3 B 

shows the density distributions for the same spindles. Plus ends 

are broadly distributed throughout the center of the spindle, but 

their density drops sharply toward the poles.

The distributions were qualitatively similar to those ob-

tained by imaging the tip-tracking protein EB1 (Tirnauer et al., 

2004; unpublished data), but we chose to use the tubulin addi-

tion method because there was no way to calibrate the EB1 data 

to calculate the fractional plus end densities.

Averaging among spindles, we measured 0.08 plus ends 

per micrometer of MT, corresponding to an average MT length 

of �14 μm.

Calculation of the fractional minus 
end density
Our main goal in this study was to measure the localization of 

minus ends, for which we had no probe. Because at each posi-

tion we now knew the difference between the fractional densi-

ties of plus and minus ends, and also the fractional density  of 

plus ends from an independent measurement, we could  calculate 

the fractional minus end density, e−(x), as the sum of these two 

numbers (Fig. 1 C, ii). The density was then given by e−(x) 

times the number of MTs.

In Fig. 3 (A and B), we show a gallery of minus end frac-

tional density distributions (A, solid lines) and density distribu-

tions (B, solid lines). For each spindle, the minus end density 

was low at the equator and increased to broad peaks near the 

poles. The fractional density at the equator went as low as zero 

in spindles where antiparallel overlap was small, but was 

typically �0.1 minus end per micrometer per MT, rising to 

0.2 minus ends per micrometer per MT at the peaks.

Conclusions
Our method provides the fi rst way to optically localize MT ends 

of each polarity in an anastral spindle. It is currently the only 

way, as there is no reliable marker known for minus ends. Our 

analysis relies on two important assumptions; that all MTs mov-

ing left have their minus ends to the left, and that only plus ends 

incorporate new tubulin. The former is strongly expected from 

models in which motor proteins drive anastral spindle morpho-

genesis (Walczak et al., 1998; Miyamoto et al., 2004), but it has 

not been independently validated; if it is invalid, our method is 

not reliable. The latter assumption is supported by many obser-

vations of tubulin polymerization in cells, but also has not been 

independently validated for extract spindles. Our method has 

important limitations. It does not address kinetochore MTs, 

 because these are very small in number compared with inter-

polar MTs, and all our measurements are bulk observations, not 

single MT data. For a more in-depth discussion of limitations, 

see the Supplemental materials and methods.

Because it depends on all spindle MTs sliding poleward, 

on speckle imaging, and on tubulin pulse labeling, our method 

cannot be applied to live somatic cells or eggs. However, X. laevis 

extract spindles provide a useful model for spindle  assembly 

in general, and anastral morphogenesis in particular. Although 

their exact relevance to intact cell spindles can be  debated, the 

mechanisms they have revealed have proven generally relevant.

Figure 3. Plus and minus end density distributions. (A) A gallery of minus- (solid) and plus-end (dotted) fractional density distributions versus position along 
spindle-pole axis. The distance between tick marks on the x axis is 10 μm. Tick marks on the y axis represent 0.05 ends/μm, and dashed lines are at 
0 ends/μm. (B) Plots of minus (solid) and plus end (dotted) density distributions, for the same spindles shown in A. X ticks represent 10 μm, and the y axes 
are in arbitrary units with dashed lines at 0.
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We fi nd that minus ends are localized in a distinctive 

manner within the spindle, with a deep trough near chromo-

somes, rising to a broad peak nearer the poles, then decreasing 

at or slightly before the poles (Fig. 3, A and B). This picture 

of a steady-state spindle with plus and minus ends distributed 

throughout has not been considered in any theoretical models. 

It is inconsistent with search-and-capture models (Kirschner 

and Mitchison, 1986) and computational models based on as-

ters and motors (Nédélec, 2002) because minus ends are not 

located in discrete nucleating structures at poles.

The continued presence of minus ends throughout a spin-

dle where all MTs are moving poleward implies either that 

 minus ends are continuously produced in the center of the spindle 

by nucleation or severing, and then moved poleward, or that 

 minus ends are static in position and depolymerize continuously; 

distinguishing between these alternatives requires a method for 

dynamic imaging of minus ends. We currently favor the moving 

end hypothesis for several reasons: TPX2, a Ran target impli-

cated in MT nucleation, moves continually poleward at the fl ux 

rate, possibly in association with minus ends (Mitchison et al., 

2004); Minus ends produced in S2 cell kinetochore fi bers that 

are not attached to poles move toward the pole and only begin 

depolymerizing when they reach it (Maiato et al., 2005); and the 

Ran pathway, which can trigger MT nucleation, continues to 

operate in steady-state metaphase spindles, and there is no known 

reason nucleation near chromosomes should cease after spin-

dles are assembled.

We favor a model in which maintenance of the metaphase 

steady-state in anastral spindles depends on continuous nucleation 

of MTs in a wide region around the chromosomes, followed 

by sorting and movement toward poles with minus ends neither 

polymerizing nor depolymerizing (Fig. 4). As existing minus 

ends are moved outward, they are joined at each point in the 

 nucleation region by newly created ends, so their density increases 

from a minimum at the chromosomes. Other mechanisms, such 

as nucleation from the poles, may coexist with this process. 

The continuous nucleation proposed in this work is consistent 

with proposed functions of RanGTP (Carazo-Salas et al., 1999, 

2001), but our data go a step further, emphasizing that Ran-driven 

nucleation is probably central to maintenance of the metaphase 

steady-state, as well as to initial spindle assembly. It is also con-

sistent with recent observation of diffuse nucleation in S2 cells 

(Mahoney et al., 2006).

Our model makes testable predictions for the behavior of 

minus ends; because a single round of dynamic instability for 

a MT lasts, on average, �1 min, while reaching the pole from 

the chromosomes takes �8 min at the fl ux rate, minus ends 

would have to last for several cycles of dynamic instability. Our 

model then suggests a factor that stabilizes minus ends as they 

travel, possibly the same as the nucleator. To test this prediction, 

we need a reliable marker for minus ends that can be visualized 

optically, together with biochemical information on how MTs 

are nucleated—and how minus ends are transiently stabilized, 

if indeed they are—by the Ran pathway.

Materials and methods
Preparation and imaging of X. laevis extracts
We prepared X. laevis egg extracts and assembled spindles after one cycle 
of DNA replication (Desai et al., 1999). We performed fl orescence speckle 
microscopy (Waterman-Storer et al., 1998) using X-rhodamine–labeled 
 tubulin (Invitrogen) at 25 μg/ml. Images were acquired at 20°C on a micro-
scope (either E800 or 90i; Nikon) with 60×/1.4 NA or 100×/1.4 NA 
objectives (Plan Apo DIC; Nikon), immersion oil (Deltavision), and a cooled 
charge-coupled device camera (MicroMAX; Princeton Instruments [or 
ORCA-ER; Hamamatsu]) using Metamorph imaging software (Universal 
 Imaging Corp.). 4–5 μl of spindle reactions were squashed under 18 × 
18 mm coverslips and imaged by wide-fi eld microscopy, with the focal 
plane in the middle of each spindle. We typically acquired 18 frames per 
spindle at 5-s intervals and 400-ms exposures.

Calculation of oriented MT number distributions
Each spindle was rotated to align its pole–pole axis with the x axis. Cross-
correlations were calculated between sequential frames as a function of the 
x and y displacements ∆x and ∆y. These were averaged over the temporal 
sequence, as described in Miyamoto et al. (2004; Fig. 1 A, ii). A profi le 
of the resultant surface was calculated along a line, near parallel with the 

Figure 4. Model of steady-state spindle formed by chromosomal nucleation 
and stochastic MT loss. A steady-state spindle might be maintained through 
chromosomal nucleation, poleward sliding of MTs caused by the fl ux 
 mechanism, and MT slowdown upon approach to the poles. (1) MTs are 
nucleated in a region around the chromosomes. (2) They initially point in 
random directions, but are sorted by motors to be parallel with the domi-
nant MT orientation at the point of nucleation. (3–6) The MTs are moved 
poleward by a fl ux mechanism. Throughout the process, MTs and their 
 minus ends disappear stochastically. As MTs disappear, new ones are con-
tinuously nucleated near the center.
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∆x axis, passing through the two peaks that represented leftward and right-
ward fl ow. To estimate the volumes of the two peaks, this profi le was fi t 
 using Matlab (Mathworks) to a sum of two Gaussians plus a background 
term. The numbers of left- and right-pointing MTs were obtained from the 
integrated intensities under the peaks, up to an unknown proportionality 
constant (see Supplemental materials and methods).

Cross-correlations were found for windows 22 pixels wide (�3 μm), 
which were spaced every 1 μm along the length of the spindle, to obtain 
distributions of oriented MT number as a function of position (Fig. 2).

Calculation of fractional end fractional density differences
Oriented MT number distributions were smoothed in Matlab using a 20-pixel-
wide moving-average fi lter. Left- and right-end number differences were ob-
tained from the derivatives, computed moving left to right for right-pointing 
MTs and right to left for left-pointing MTs. The left and right end number differ-
ences were summed and then divided by the total MT number at each point 
to obtain the fractional end density difference. We focused on the midplane 
of each spindle, where the mean angle of MTs in the z direction was mini-
mal, to minimize the effects of MTs entering or departing the plane of focus.

Plus end localization
3 μl of preformed spindles in extract that had been assembled with speckle-
level X-rhodamine–labeled (red) tubulin were mixed on the slide with 2 μl 
of extract preequilibrated with 50 μg/ml green Alexa Fluor 488–labeled 
(Invitrogen) tubulin, squashed under a coverslip, and imaged as soon as 
possible (within 10–30 s) using a dry 40×/0.95 NA lens and ORCA-ER 
camera. After observation of incorporation of the green tubulin until near 
steady-state (�3 min), the objective was switched to a 60×/1.4 NA oil 
lens, and a speckle sequence of the same spindle was recorded for use in 
calculating oriented MT distributions. The median intensity, calculated in a 
region outside the spindle, was subtracted from each frame. New tubulin 
incorporation was measured as the intensity, recorded as a function of po-
sition along the spindle-pole axis (x) and the time elapsed after mixing (t), 
and summed along the direction perpendicular to the spindle-pole axis (y). 
At each point, the initial tubulin incorporation rate as a fraction of the fi nal 
intensity was calculated from the increase of the intensity over the fi rst 10 
frames. This was divided by the published velocity of MT plus end growth, 
which was 10 μm/min (Verde et al., 1992), and the fraction of growing 
plus ends, 0.75 (Supplementary materials and methods), to obtain the 
fractional plus end density (Fig. 3 A, dotted lines). The fractional plus 
end densities were multiplied by the total MT number found from the 
cross-correlation to obtain plus end density distributions in the same 
(arbitrary) units as the latter (Fig. 3 B, dotted lines.) For more information, 
see Supplemental materials and methods.

Minus end localization
At each point, the fractional end density difference was added to the frac-
tional plus end density to obtain the fractional density of minus ends (Fig. 
3 A, solid lines.) Minus end density distributions, in arbitrary units, were 
found by multiplying the fractional density by the total MT number as calcu-
lated from cross-correlation analysis (Fig. 3 B, solid lines.)

Computer simulation
To test our analysis, we created data using Matlab, simulating MT cre-
ation, growth, shrinkage, fl ux, and the addition of labeled tubulin at a 
given time point. The images produced were analyzed using the same 
methods as for real data to calculate the distributions of plus ends, frac-
tional end fractional density differences, and the distribution of minus 
ends. The calculated distributions agreed well with the real distributions 
(Supplemental materials and methods; Fig. S2, available at http://www.
jcb.org/cgi/content/full/jcb.200511112/DC1).

Online supplemental material
The Supplemental materials and methods describe the calculation of dy-
namical cross-correlations, plus end density measurements and simulations, 
and internal consistency checks. Fig. S1 compares our cross-correlation 
method with the speckle-tracking method described in Vallotton et al. 
(2004) and frames from an image sequence of a spindle after green tubu-
lin addition. Fig. S2 shows the results of the computer simulations to test the 
analysis techniques. Online supplemental material is available at http://
www.jcb.org/cgi/content/full/jcb.200511112/DC1.
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