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Abstract
Classical susceptible–infected–removed model with constant transmission rate and removal rate may not capture real world 
dynamics of epidemic due to complex influence of multiple external factors on the spread and spatio-temporal variation of 
transmission rate. Also, explainability of a model is of prime necessity to understand the influence of multiple factors on 
transmission rate. Thus, we modified discrete global susceptible–infected–removed model with time-varying transmission 
rate, recovery rate and multiple spatially local models. We have derived the criteria for disease-free equilibrium within a 
specific time period. A convolutional LSTM model is created and trained to map multiple spatiotemporal features to trans-
mission rate. The model achieved 8.39% mean absolute percent error in terms of cumulative infection cases in each locality 
in a region in USA for a 10-day prediction period. Comparison with current state of the art methods reveals performance 
superiority of the proposed method. A perturbation-based spatio-temporal model interpretation method is proposed which 
generates spatio-temporal local interpretations. Global interpretations are generated by statistically accumulating the local 
interpretations. Global interpretations of transmission rate for a region in USA shows consistent positive influence of popu-
lation density, whereas, temperature and humidity have very minor influence. An experiment with what-if scenario reveals 
locality specific quick identification of positive cases, rapid isolation and improving healthcare facilities are keys to rapid 
convergence to disease-free equilibrium. A long-term forecasting of 160 days predicts new infection cases in a region in 
USA with a median error of 455 cases.

Keywords  Artificial intelligence · Discrete mathematics · Neural nets · Modeling and prediction

Introduction

Dynamical systems equations based on compartmental mod-
eling of epidemiology have been widely used to predict the 
spread of an epidemic. Susceptible–infected–removed or 
SIR model is one such simplified set of differential equa-
tions to model the spread. However, accurately determining 
parameter values like the transmission rate for a specific 

disease is a challenge. The dynamics of a disease may vary 
across space and time. Many external factors may influence 
the transmission rate. Considering a constant transmission 
rate for a disease, grossly oversimplifies the model, thus 
compromising accuracy. Secondly, knowing the factors 
influencing the transmission rate and the dynamics of the 
influence can provide a vivid understanding of the disease 
progression.

Incidence rate of an epidemic is defined as frequency of 
new observed infection cases, whereas, in vanilla SIR model 
the transmission rate (also known as contact rate) can be 
derived by dividing incidence rate with product of previous 
susceptibles and infected in a population. There are several 
different types of nonlinear incidence rate suggested in the 
literature [1–7]. However, most of them adopt some type of 
simple predefined function with few parameters to model the 
incidence rate. Simple functions have low representational 
capability. Thus, they may not capture the detail dynamical 
variations of the incidence rate caused by multiple factors. 
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We propose a Convolutional LSTM-based spatiotemporal 
model to map the transmission rate of Covid-19 with respect 
to multiple input features and thereby map the derived inci-
dence rate from transmission rate. The model can forecast 
incidence rate with high spatiotemporal resolution, pro-
vided availability of clean historical data in that resolution. 
Exploratory analysis reveals probable influence of external 
features on transmission rate and eventually helped in fea-
ture selection. A spatiotemporal local interpretation method 
of a black box model is proposed which in turn is used to 
explain the trained model. The explanations reveal local 
influence of different external features on the transmission 
rate. A generalized global explanation is also generated to 
find common influence of factors across multiple locations 
and over a period of time.

We experimented with available data of Covid-19 across 
multiple regions of USA and the model achieved 7.95% and 
0.19% mean absolute percent error in terms of forecasting 
transmission rate in each locality and cumulative total infec-
tion cases across the country in a 10-day prediction period, 
respectively. A quantitative comparison between the pro-
posed method and other prior art models reveals exceptional 
performance in forecasting of the epidemic spread. The gen-
erated explanations reveals high influence of population den-
sity, somewhat medium influence of gender ratio and median 
population age on the transmission rate, globally. There are 
minor influences of temperature and temperature deviation 
but barely any observable influence of humidity. However, 
local influences of features vary widely across multiple small 
regions. A criterion for disease-free equilibrium within a 
specific time period has also been derived for discrete SIR 
model with variable transmission and recovery rate. A long-
term forecast using the trained model and modified recov-
ery rate to satisfy disease-free equilibrium criteria reveals 
rapid dampening of active infection cases to reach the base-
line. However frequent spikes due to resurgence are seen in 
this scenario. A comparative study is made with forecasted 
dynamics using current normal recovery rate to reveal neces-
sary actions for rapid containment of the disease. The curve 
for long-term forecasting (in a specific region of United 
States) with current normal recovery rate faithfully follows 
the actual data with a median error of 455 cases per day in 
a 160 days prediction period.

The paper is organized as follows. We conduct a brief 
literature survey in the next section. The subsequent section 
briefly explains the discrete SIR model with variable trans-
mission rate followed by which, spatiotemporal modeling 
of transmission rate is discussed. Then influence of exter-
nal features on transmission rate are explained. After this, 
long-term forecasting of disease progression with a current 

normal scenario and a “what-if” scenario is explained. 
Before the last section, the key inferences from the study 
are discussed. The final section concludes the paper.

Related Work

Kermack and Mckendrick [8] modeled communicable dis-
eases using differential equations. Hethcote introduced the 
SIR model [9] where population is compartmentalized into 
susceptible, infected and removed groups. A set of differen-
tial equations modeled the dynamics of population in differ-
ent compartments. In traditional SIR model incidence rate or 
the number of new infections per unit time varies bilinearly 
with the number of infections and number of susceptible in a 
population considering the transmission rate as constant. How-
ever, assumptions like homogenous mixing, non-dependence 
on external factors, no psychological effects on population etc. 
may not be realistic in many cases. Thus, several authors [1–7] 
introduced different types of non-linear incidence rates mostly 
addressing the saturation and psychological effect. Saturation 
effect states that the incidence rate might slow down and satu-
rate as number of infected individuals increases due to low 
availability of susceptible individuals. Psychological effect 
on the population results in increased cautiousness among 
susceptible individuals as the epidemic spreads thus, slowing 
down the transmission rate. Most of the incidence rates stated 
above satisfy weakly non-linear property and are too simple 
to capture any arbitrary effects of the environment. SIR model 
with time varying transmission and recovery rate have been 
studied in [10] and threshold theorems are derived. Liu et al. 
[11] introduced a time varying switched transmission rate to 
model nonlinear incidence.

Hu et al. developed a modified stacked autoencoder model 
of the epidemic spread in China and they claimed to achieve 
high level of forecasting accuracy [12]. On observing a uni-
versality in the epidemic spread in each country, Fanelli 
and Piazza [13] applied mean-field kinetics of suscepti-
ble–infected–recovered/dead epidemic model to forecast the 
spread and provided an estimation of peak infections in Italy. 
Zhan et al. [14] integrated the intercity migration data in China 
with susceptible–exposed–infected–removed model to forecast 
an estimation of epidemic spread in China. Hong et al. [15] 
considered variable transmission rate of Covid19 and came 
up with variable R-naught factor of Covid-19. Xi et al. [16] 
used deep residual networks to model spatiotemporal char-
acteristics of the spread of influenza and experimented with 
real dataset of Shenzhen city in China. Paul et al. [17] used 
ensemble of ConvLSTM networks to forecast Covid-19 total 
infection cases.



SN Computer Science           (2021) 2:465 	 Page 3 of 17    465 

SN Computer Science

Discrete Sir Model with Variable 
Transmission Rate

In SIR model the total population in a region is compartmen-
talized into three classes, namely susceptible (S), infected (I) 
and removed (R). Initially the whole population is in suscepti-
ble class. An individual can move from susceptible to infected 
class on contracting the disease. An infected individual can 
move to removed class by either getting recovered and immune 
to the disease or deceased. The dynamics of the disease spread 
can be modeled by the following set of differential equations

where �(t) is disease transmission rate or contact rate and 
�(t) is removal rate which is sum of recovery rate and mor-
tality rate. It is assumed the population size ( N  ) remains 
constant during the course of epidemic. S(t) , I(t) and R(t) 
are scaled as fraction of total population. Thus, the following 
equation holds true

From [10] we get the following ∀t > t0 , where r = R
(
t0
)
 , 

R(t) ≥ r∀t > t0 and I(t) ≥ 0

We consider discrete time steps in our modeling and meas-
urements are taken on daily basis. Thus, replacing differential 
with difference equation:

Solving for I(t):

Since 0 ≤ r < 1 ∶

(1)
dS

dt
= −�(t)S(t)I(t),

(2)
dI

dt
= �(t)S(t)I(t) − �(t)I(t),

(3)
dR

dt
= �(t)I(t),

(4)S(t) + I(t) + R(t) = 1.

dI

dt
= �(t)(1 − I(t) − R(t))I(t) − �(t)I(t) ≤ [�(t)(1 − r) − �(t)]I(t).

(5)I(t + 1) − I(t) ≤ [�(t)(1 − r) − �(t)]I(t).

(6)I(t) ≤ I
(
t0
) t−1∏

t0

[1 + �(u)(1 − r) − �(u)].

I(t) ≤ I
(
t0
) t−1∏

t0

[1 + �(u) − �(u)],

(7)I(t) ≤ I
(
t0
)
exp

(
t−1∑
t0

log[1 − �(u) − �(u)]

)
.

Expanding log as Taylor series and taking only the first 
term,

Considering a constant average difference between trans-
mission rate and removal rate � = � − �  within the period 
t0 = 0 and t = T  such that 0 ≤ � ≤ 1:

Considering NI(T) < 1 as disease-free equilibrium state, 
the upper bound of � can be derived as following such that 
the epidemic reaches baseline in time T:

Maintaining 𝜀 > 0 asymptotically converges the total 
infection count to 0 at exponential rate thus makes the dis-
ease-free equilibrium stable.

Assuming a constant mortality rate, from Eq. (10) it can 
be deduced that increasing the recovery rate will directly 
reduce the time span of the disease outbreak. However, there 
is a hard limit for the removal rate, �(t) ≤ 1 . But �(t) can 
be greater than 1, specially during initial outbreak when 
total infection count is low. In such situation dampening 
the spread of infection will not be possible only with treat-
ment facilities. Immediate restriction of mobility in area 
of outbreak and rapid isolation of infected individuals can 
reduce the transmission rate. Once it comes down below 1, 
enhanced treatment facilities can increase the recovery rate, 
thus reducing the span of the disease outbreak.

Spatiotemporal Modeling of Transmission 
Rate

The transmission rate � can vary spatially as well as tem-
porally based on multiple variables. Geographical location, 
weather conditions [18], human mobility [14], population 
statistics might be some of the impacting factors chang-
ing the dynamics of the spread. An exploratory analysis 
reveals probable dependency of multiple spatial and tem-
poral features on the transmission rate. Spatially co-located 
regions might have similar dynamics of the spread with high 
autocorrelation of transmission rate in a localized region. 
However distant regions may have dissimilar transmission 
dynamics with low correlation. Thus, a large geographic 
area has been divided into small regions called as grids. 
Each grid has been divided even further into smaller regions 
called pixels. A population within a pixel is assumed to be 
constant and transmission dynamics is modeled by separate 
SIR models for each pixel. Each grid consists of co-located 

(8)I(t) < I
(
t0
)
exp

(
−

t−1∑
t0

[𝛿(u) − 𝛽(u)]

)
.

(9)I(T) < I(0)exp(−𝜀T).

(10)𝜀 < log[NI(0)]∕T.
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regions which might be impacting each other’s transmis-
sion rate. Feature is constructed for each grid as multichan-
nel temporal sequence of matrices which in turn is used for 
training a ConvLSTM [19] network to model the transmis-
sion rate. Data has been obtained for a region in United 
States from multiple sources [20–26]. The time span of the 
data is from 2020-03-21 to 2020-05-11.

Feature Construction

Covid19 daily data for USA at county level are filtered by 
a spatial region of USA as shown in Fig. 1. The region is 
geospatially divided into M × N grids of equal sizes bounded 
by calculated latitudes and longitudes.

Figure 2a illustrates a grid bounded by latitudes and 
longitudes. The dotted line square is called as frame. The 
overlapping areas in all 4 directions in a frame allows flow 
of spatial influence from neighboring grids. A frame is 
in turn divided into L × L pixel. Each pixel represents a 

bounded area in geospatial region. Each pixel contains a 
value mapped to certain feature in the bounded geospatial 
region. Frame matrices are constructed for each feature 
and concatenated through a third axis called channels. For 
example, transmission rate and population density are two 
features and they represent two separate L × L matrices in a 
frame concatenated across a third axis. Some features like 
transmission rate, active infection fraction, weather etc. are 
distributed spatio temporally. Whereas, other features like 
population density, female fraction, median age are assumed 
time invariant and have no temporal component. Thus, they 
are only distributed spatially and copied along temporal axis. 
Population density has been log transformed to reduce skew-
ness and normalized. Other features are only normalized in 
0–1 scale. Daily transmission rate and removal rates at pixel 
level have been calculated as following, where i ∈ {1… n} 
denotes each pixel, ΔI+

i
(t) and ΔRi(t) are fraction of new 

cases in infected class and new individuals in removed class 
respectively at time t in pixel i . Ni represents population in 
pixel i and other notations hold usual meaning as stated in 
“Discrete sir model with variable transmission rate”:  

Each training sample of a frame is represented by a tensor 
of dimension T × L × L × C, where T is the total time span 
and C is number of channels or features. As shown in Fig. 2b 
each training sample is generated by sliding a time window 
of size W  +1 by 1, leaving behind a test case sample of time 
window size W ′ in the most recent period. Number of train-
ing samples for a frame can be calculated as T −W

�

−W − 1 . 
Thus, total number of training samples Strain for all frames 
can be calculated as Strain =

(
T −W � −W − 1

)
×M × N.

The forecasting problem is framed as supervised learn-
ing problem. Given a sequence of observed multichannel 
frames of spatial data as matrices X1,X2 …Xt the objective 
of the model is to predict the next single channel frameYt+1 . 
The training samples are divided into input sequences of 
length W and output frames. The model forecasts the trans-
mission rate in each pixel in a frame for each timestep. Thus, 
the output frame consists of only one channel. The input 
training dataset ( Xtrain) can be represented as a tensor of 
size Strain ×W × L × L × C and the output dataset ( Ytrain ) 
as Strain ×W × L × L × 1 . For training, the input sequences 
are selected from all frames having non-zero total infec-
tion count. Figure 2b illustrates the sequence of a frame. 
The frames t-7 to t-3 represents an input training sequence 
( Xtrain) of lengthW . The output frame ( Ytrain ) for this train-
ing sample is t-2. Other training samples are generated 

�i(t) =
ΔI+

i
(t)Ii(t)[

Si(t − 1)Ii(t − 1) + N−2
i

]

(11)�i(t) = ΔRi(t)∕[Ii(t − 1) + N−1
i
].

Fig. 1   A region of USA divided in 18 × 30 grids. The red bubbles 
denote cumulative number of Covid-19 cases

Fig. 2   a Illustration of overlapping frames obtained by spatially 
dividing a geographical region. The bold lines represent latitudes and 
longitudes which separates the grids. The box with dotted line rep-
resents the frame with overlapping grids that is used for training the 
model. Each frame is divided  into L  ×  L pixels. The margin refers 
to number of pixels of overlapping region. b Illustration of tempo-
ral sequence of a frame. t-0 is the most recent frame. Xtrain, Ytrain are 
the training samples and Xtest, Ytest are testing samples
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by sliding the window W + 1 backwards in time by 1. The 
most recent frames t-0 and t-1 represents the test output 
frames ( Ytest ) and immediate sequence of frames t-6 to t-2 
is the test input sample ( Xtest ). The test set Xtest is repre-
sented by a tensor of size (M ∗ N) ×W × L × L × C and Ytest 
by(M ∗ N) ×W � × L × L × 1.

Table 1 presents a sample data for pixel 101 in grid 387 
which represents the counties New York and Bronx. The 
data shows values of different calculated fields based on new 
infection cases, new deaths, new recovery cases reported per 
day and the total population in the pixel. The data is shown 
for first 6 days only, starting from 2020-03-21. The values 
ΔI+

i
,ΔRi, Si and Ii are multiplied with total population Ni to 

illustrate the actual counts. The population Ni is calculated 
as 60% of the actual total population in the counties as it is 
assumed, based on reported R-naught factor of Covid-19, 
herd immunity [27] will be achieved once approximately 
60% population gets infected. The distribution of calculated 
�i is highly skewed with some outliers. Thus, value of �′

i
 is 

calculated by dividing �i with its 95th percentile value and 
hard limiting the maximum value to 1. The variable �′

i
 is 

finally used to construct the frames. rhi tabulates the rela-
tive humidity in the region on daily basis. NDi represents 
the normalized population density which varies spatially but 
temporally it is fixed.

Figure 3 illustrates the image of individual channels of 
the frames constructed from the data of grid 387 and its 
neighboring grids. Each frame is divided into 16 × 16 pix-
els including an overlapping margin of 4 pixel on all sides. 
Values of each pixel is represented in greyscale shade where 
a darker shade denotes higher value. The first three images 
(starting from top) depict the frames for transmission rate 
( �′

i
 ) in day 0, 2 and 5. Similarly, the next three images rep-

resent relative humidity. The last 3 represents population 
density, female fraction and median age and they do not vary 
temporally. The pixel marked in red circle is the pixel 101. 
These frames are combined to create a temporal sequence of 
multichannel images and fed into the model as training data.

Exploratory Analysis of Transmission Rate

The primary purpose of the exploratory analysis is to under-
stand the distribution of transmission rate and identify 

probable influence of different features on the transmission 
rate. Eight external features are analyzed against transmis-
sion rate to find probable influence. Among eight features, 
four are spatial features having no temporal component, 
namely population density, housing density, female frac-
tion and median age. The reason for choosing these external 
factors is twofold. First, other data like human mobility is 
not publicly available at county level resolution. Second, it 
can be presumed that these factors might affect the trans-
mission rate as dynamics of the virus might vary based on 
weather conditions, age and gender. Also, in general it is 
presumed that region with higher population density gener-
ally have higher transmission rate. Figure 4 illustrates scatter 
charts between average transmission rate and four spatial 

Table 1   Sample data for grid 
387 and pixel 101

Day ΔI+
i
∗ N

i
ΔR

i
∗ N

i S
i
1e

6∗ N
i

I
i
∗ N

i �
i
1e

4 �
i
1e

3 �′
i

rh
i

ND
i

0 549 19 3.5616 3459 1.82 6.485 0.31 0.39 1.0
1 918 23 3.5607 4354 3.24 6.647 0.56 0.73 1.0
2 814 32 3.5599 5136 2.7 7.348 0.46 0.71 1.0
3 1943 24 3.5580 7055 7.5 4.672 1.0 0.74 1.0
4 1131 31 3.5568 8155 3.67 4.393 0.63 0.64 1.0
5 844 450 3.5560 8549 2.49 5.517 0.43 0.46 1.0

Fig. 3   Images of different channels of frames constructed from grid 
387 across multiple days. Value of each pixel is represented in a 
grayscale shade. Darker shade represents higher value. Pixel 101 is 
marked in red circle
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features for multiple pixels. The color gradient represents 
log transformed cumulative number of infection cases in 
each pixel. Only those pixels are filtered which experienced 
at least 30 days of running infection cases and having at 
least 10 cumulative infection cases at the beginning of the 
observation period. Figure 4a, b displays scatter charts and 
regression lines of average transmission rate with respect 
to population density and housing density in each pixel, 
respectively. The two external features are log transformed 
and scaled to get upper bounded by 1. Log transformation 
reduces skewness and influence of outliers in the data. As 
observed in the charts the transmission rate is positively cor-
related with both the features which is quite intuitive. Places 
with high population density is expected to experience rapid 
spread of the disease. Locations with high population den-
sity also experienced highest number of cumulative cases. 
Figure 4c, 4d displays scatter charts and regression lines of 
transmission rate with respect to female fraction and median 
age of the population respectively. In Fig. 4c, 16 pixels have 
been filtered out having female fraction less than 0.45 to 
remove the skewness in the data. There is a slight positive 
correlation between female fraction and transmission rate. 
However, this might not invoke a suggestive idea about the 
dependency of this external feature on transmission rate 
as majority of the pixels resides in the range of 0.50–0.53 
female fraction with barely any trend in that range. Also, 
there is an indirect correlation as in general pixels with high 
female fraction have high population density. Median age 

has negative correlation with transmission rate. There is an 
indirect correlation in this case also, as in general pixels 
with high median age have low population density. Another 
intuitive assumption can be, population with high median 
age are less mobile thus restricting the spread of the disease.

Apart from four spatial features four other external spatio-
temporal features are analyzed to observe any influence on 
transmission rate. Figure 5 illustrates time lagged cross cor-
relation between transmission rate and other spatio-temporal 
features at pixel level. The external features are time lagged 
from 0 to 15 time steps and cross correlated with transmis-
sion rate for each lag. In the plot, pixels are arranged in 
increasing order of total infection cases. Figure 5a, b shows 
the plot of cross correlation of transmission rate with respect 
to average daily temperature and 3-day running window tem-
perature standard deviation, respectively. Average tempera-
ture is slightly positively correlated in time lag range of 0–5. 
In the plot, offset 15 denotes time lag 0 and offset 0 is time 
lag 15. The correlation with temperature variation varies 
widely across pixels. However, on average there is a minor 
positive correlation in time lag range of 5–15. For both the 
features pixels having high total infections have negative 
correlation with transmission rate in the time lag range 
of 0–10. Figure 5c, d shows the plot of cross correlation 

Fig. 4   Average transmission rate (contact rate) in pixels are plot-
ted against multiple features. The points are color coded based on 
normalized log transformed total patient count in each pixel. Plot of 
mean transmission rate against (a) scaled log transformed population 
density, (b) scaled log transformed housing density, (c) fraction of 
female population, (d) scaled median age

Fig. 5   Time lagged Cross correlation between transmission rate 
(Contact rate) and different features across multiple pixels. Plot of 
cross correlation of transmission rate vs a average temperature, b 
temperature standard deviation in 3-day period, c average relative 
humidity, d removal rate
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of transmission rate with respect to average daily relative 
humidity and daily removal rate, respectively. There is an 
overall positive correlation with respect of relative humidity 
specially in pixels with highest infection cases. Removal rate 
is mostly negatively correlated with transmission rate except 
in few pixels having high infection cases.

Correlation might not represent causality. Thus, we per-
formed granger causality test [28] of transmission rate with 
respect to different features. Granger causality is a statisti-
cal hypothesis test for finding if one time series can help 
improving the forecasting accuracy of another time series. It 
might not measure true causality rather it measures predic-
tive causality. Chi-squared test is chosen as the hypothesis 
testing method and minimum pvalues for each pixel are cal-
culated. Augmented Dickey–Fuller test [29] is performed to 
test stationarity of all timeseries. Table 2 displays the result 
of granger causality and Dickey–Fuller tests. The column ‘% 
of p value < 0.05’ represents percentage of pixels for which 
the granger causality test gave p value less than 0.05 for 
each feature. The column ‘% of ADF < 10%’ represents per-
centage of pixels for which the Dickey–Fuller test gave test 
statistic less than 10% critical value and having p value less 
than 0.1 for each feature. From the observed results it seems 
for majority of the pixels the weather features and removal 
rate have predictive causal relation with transmission rate. 
Also, for majority of the pixels the feature timeseries are 
stationary or weakly stationary.

ConvLSTM Model of Transmission Rate

Recurrent neural networks (RNN) are a class of artificial 
neural networks with nodes having feedback connections, 
thereby allowing it to learn patterns in variable length tem-
poral sequences. A simple RNN have a feedback loop which 
is associated with hidden state weights. Figure 6 illustrates 
an RNN unfolded in time. It has hidden states h(t) which 
changes with time. The inputs and outputs are represented by 
x(t) and y(t), respectively. The dependency on historical val-
ues of the sequence is captured by the relationship between 
the hidden states. Wh, Wx, Wy are the weights which are 
learnt through backpropagation during training. However, it 

becomes difficult to learn long-term dependencies for tradi-
tional RNN due to vanishing gradient problem [30]. LSTMs 
[31] solve the problem of learning long-term dependencies 
by introducing a specialized memory cell as recurrent unit. 
The cells can selectively remember and forget long-term 
information in its cell state through some control gates. We 
presume there might be long-term complex dependencies of 
several factors on transmission rate. Thus, LSTM seems a 
preferred choice for time series modeling. In convolutional 
LSTM [19] a convolution operator is added in state to state 
transition and input to state transition. All inputs, outputs 
and hidden states are represented by 3D tensors having two 
spatial dimensions and one temporal dimension. This allows 
the model to capture spatial correlation along with the tem-
poral one. In our model we configured multichannel input 
such that distinct features can be passed through different 
channels. Multiple convolutional LSTM layers are stacked 
sequentially to form a network with high nonlinear repre-
sentation. The final layer is a 2D convolutional layer having 
one filter which constructs a single channel output image as 
the next predicted frame.

The model is tested by feeding in input sequence of 
frames and next frame is predicted which in turn is com-
bined with other features along channel and appended with 
the input sequence. The new input sequence is fed to the 
model again to get the next predicted frame. This continues 
until forecasting completes for a desired time period. “Mean 
absolute percent error” (MAPE) and Kullback–Liebler (KL) 
divergence [28] are used to measure the accuracy of the 
model. The model predicts the transmission rate for a future 
time period for each pixel which in turn is used to calculate 
daily new infection cases ΔI+

i
(t) using Eq. (11). The removal 

rate is estimated as running average of previous 3-days and 
daily removed cases are calculated using Eq. (11). The active 
infection cases ( Ii(t)) and susceptibles ( Si(t)) are also calcu-
lated. Cumulative infection cases ( 

∑
ΔI+

i
(t) ) are calculated 

by summing up all new infection cases upto a certain day. 
MAPE of transmission rate is calculated at pixel level for 

Table 2   Granger causality test of transmission rate vs different fea-
tures

Feature % of p 
value < 0.05

% of ADF < 10%

Transmission rate NA 77.35
Average temperature 74.19 67.26
Temperature standard deviation 76.82 71.93
Average relative humidity 73.66 86.38
Removal rate 72.46 72.31

Fig. 6   A simple RNN unfolded across multiple timesteps
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the prediction period and averaged. The pixels with 0 sus-
ceptible population count are filtered out while calculating 
MAPE and KL divergence. Pixel MAPE is calculated as 
per Eq. (12), where G is set of all grids and G′ set of all 
pixels such that the frame for each corresponding grid have 
non zero cumulative infection count, W ′ is prediction time 
period, W ��

= T −W � is total time period in training set, �̂�
i
(t) 

and ��
i
(t) are predicted and actual scaled transmission rate for 

ith pixel at time t , respectively.

KL divergence at pixel level is calculated for modified 
transmission rate in the prediction period to measure the dis-
similarity of distribution of predicted transmission rate with 
respect to actual. � is softmax function applied after scal-
ing a series in 0 to 1 scale and P(X) is probability distribu-
tion of X . Softmax is applied to convert transmission rate as 
probability distribution across pixels. Since KL divergence 
measures the dissimilarity between two distribution thus a 
lower value of it indicates better performance of the model:

MAPE is also calculated at grid and country level with 
respect to cumulative predicted infection cases across the 
region during the prediction period:

Model Test Results

The model is constructed by stacking 4 Convolutional LSTM 
layer sequentially and terminating the network with a Convo-
lutional 2D layer. Figure 7 Illustrates the ConvLSTM model. 
The final layer is followed by an exponential linear unit as 
activation. The input and other hidden Convolutional LSTM 
layers are followed by sigmoid activation. Each Convolu-
tional LSTM layer has 32 filters and kernel size 3 × 3. The 

(12)MAPEpixel =
1

W �|G�

|||||||

∑
W �

∑
∀i

|||𝛽�i (t) − 𝛽�
i
(t)
|||

𝛽�
i
(t)

|||||||
i ∈ G

�

(13)D
pixel

KL
=
�

∀i
P
�
�(�̂i

�(t))
�
log

⎛
⎜⎜⎜⎝

P
�
�(�̂i

�(t))
�

P
�
�
�
��
i
(t)
��

⎞
⎟⎟⎟⎠
.

(14)MAPEgrid =
1

�W �� �G�
�

∀t∈W �

�
∀g∈G

� ∑
i∈g NiΔÎ

+
i
(t) −

∑
i∈g NiΔI

+
i
(t)

∑
i∈g NiΔI

+
i
(t) +

∑
i∈g

∑
k∈W �� NiΔI

+
i
(k)

�
.

MAPEcountry =

(15)

1

�W ��
�

∀t∈W�

� ∑
i∈G� Ni

ΔÎ+
i
(t) −

∑
i∈G� Ni

ΔI+
i
(t)∑

i∈G� Ni
ΔI+

i
(t) +

∑
i∈G�

∑
k∈W� � Ni

ΔI+
i
(k)

�
.

input layer is configured to take tensors of size 16 × 16 × 8. 
Eight input features are constructed and fed into the model 
as separate channels. Namely transmission rate, population 
density, female fraction, median age, active infection frac-

tion, average temperature, temperature standard deviation 
and average relative humidity. The model is trained for 20 
epochs with batch size of 50 and mean squared error as loss 
function. Out of 11,378 samples 10,809 are used for train-
ing the model and 569 are used for validation. The model 
is trained and tested twice. Once with all the eight features 
another with only five leaving out the weather features.

The dataset has a time span of 51 days, out of which 
data from 42nd to 51st day is used for testing the model 
and rest for training and validation. Figure 8 illustrates 
the plot of training/validation loss and training/validation 
mean squared error (MSE). Both the loss and MSE con-
sistently decreased for training and validation as epochs 
increased. Table 3 displays the training, validation and test 
results of the model. Statistics suggests there is a minor 
improvement of overall accuracy when weather features 
are included while training the model. Pixel MAPE and 

Fig. 7   Illustration of ConvLSTM network used to model the trans-
mission rate of Covid19
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grid MAPE are below 10% in both the cases and country 
MAPE is below 1%. Predicted total infection cases at the 
end of prediction period is little overestimated than actual 
(1,330,525) when weather features are included in modeling 
and underestimated when weather features are not included. 
All future reference of trained model suggests the model 
has been trained with all eight features unless otherwise 
mentioned. Figure 9 illustrates different plots of predicted 
vs actual infection cases in 10-day prediction period. Fig-
ure 9a, b shows the plot of predicted vs actual new infec-
tion cases and cumulative infection cases per day in 10-day 
period. Figure 9c, d shows the plot of predicted vs actual 

log transformed total new infection cases and cumulative 
infection cases for each grid in 10-day prediction period. All 
the predicted curves closely approximate the actual values.  

Comparative Test Results

The prediction accuracy and resolution of the proposed 
model have been compared with few current state of the art 
epidemic models. Namely, susceptible–infected–removed 
(SIR), susceptible–exposed–infected–removed (SEIR) [32], 
susceptible–exposed–infected–recovered–dead (SEIRD) 
model [33] and ensemble of ConvLSTM networks [17]. For 
mathematical models the parameters are estimated using 
three different constraint-based optimization methods—
limited memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm (L-BFGS-B) [34], sequential least square program-
ming (SLSQP) and trust-constr from SciPy [35]. To make 
them a spatio-temporal model, separate model parameters 
are generated for each county. Comparison is done based 
on KL divergence of active Infection cases, county MAPE 
and country MAPE on cumulative cases. The metrices are 
calculated for a 10 day prediction period. Table 4 presents 
the comparison results. Evidently the proposed model 
(using Conv-LSTM) outperforms most of the state-of-the-
art methods.
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Fig. 8   Plot of loss vs epoch and mean squared error (MSE) vs epoch 
for both training and validation data set

Table 3   Model training, validation and test results

Metric Value with 
weather fea-
tures

Value without 
weather fea-
tures

Training mean absolute error 0.0140 0.0140
Validation mean absolute error 0.0043 0.0063
Pixel KL divergence 8.306 × 10−9 8.338 × 10−9

Pixel MAPE 7.95% 10.10%
Grid MAPE 8.39% 10.36%
Country MAPE 0.19% 0.25%
Predicted total cases (1,330,525) 1,331,175 1,328,605

Fig. 9   Predicted vs actual new and total infection count in a 10-day 
prediction period. Model is trained with all features. a Days vs scaled 
new infection count across all pixels. b Days vs scaled cumulative 
infection count across all pixels. c Grids vs logarithm of sum of new 
infection count. d Grids vs logarithm of sum of cumulative infection 
count
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Qualitative Comparison

There have been several works done on similar lines, how-
ever the novelty of the proposed method of forecasting 
lies both on the approach and the results. There have been 
several models proposed in the literature employing non-
linear [1–7] incidence rate. However, the non-linearity is 
mostly represented using simple predefined functions mainly 
assuming psychological and saturation effects. A fixed func-
tion for modelling incidence rate is not flexible to capture 
varying environmental factors that may affect the incidence 
rate. Few time-varying [10, 11] incidence rates are also pro-
posed but they do not consider spatial correlation. Whereas, 
the proposed method does not model the transmission rate as 
a predefined function, rather it is represented as a complex 
spatio-temporal function that is learnt by the neural network 
through training data. In comparison to these mathematical 
models the deep neural network can represent the model as 
arbitrarily complex function and can capture dynamics of 
influencing factors at much higher resolution. The model is 
flexible to accommodate any number of influencing factors 
as input (in separate channels). As shown in the experiments 
the transmission rate is modeled as a function of weather, 
population, gender ratio, median age and active cases frac-
tion. Along with that the model inherently captures the 
spatial and temporal influences. Modeling in this approach 
has twofold benefits. It improves the forecasting accuracy 
in many cases (as shown in the experimental results) and 
it allows to generate explanation of influencing features on 
the transmission rate (as shown in “Explaining influence on 
transmission rate”).

Deep learning-based spatio-temporal model has already 
been used to predict spread of epidemic [16]. But this has 
been applied in a small localized region ignoring many of 
the external factors. In comparison the proposed method has 
been applied to create a single neural network model for the 

whole country (USA) without compromising spatial granu-
larity. The data preparation method automatically divides 
the whole region into grid and pixels based on latitude and 
longitude, thus adjacency matrix of different locality (county 
in this case) is not needed. A Conv-LSTM-based ensemble 
spatiotemporal model has also been used to forecast epi-
demic spread [17]. However, this model directly tries to 
estimate the new infection cases instead of transmission 
rate and it does not consider external factors like weather, 
gender ratio. The time series of new infection cases is non-
stationary; whereas, transmission rate is usually stationary 
or weakly stationary. Thus, creating a long-term forecasting 
model in the earlier scenario is not feasible. Also, modeling 
transmission rate instead of new infection cases allows the 
standard SIR method to calculate new infection cases from 
transmission rate.

Explaining Influence on Transmission Rate

One of our goal of this study is to understand how different 
external features are influencing the transmission rate. We 
expect to find simple interpretable predictive influence rela-
tions between transmission rate and different features. One of 
the ways to find such relations is building an accurate predic-
tive model followed by explaining the predictions in terms of 
input features. As described in previous sections deep neural 
networks can model the dynamics of epidemic quite accurately 
due to its capability of high nonlinear representation. How-
ever, high accuracy is a tradeoff against model interpretability. 
Given the complexity of the Convolutional LSTM network 
used to model the transmission rate it is nearly impossible to 
find how each feature is influencing the transmission rate just 
by studying the weight matrices. Using a high bias predic-
tive model like linear regression or shallow decision tree not 
only reduces the accuracy but also drops interpretability [36]. 

Table 4   Model comparison 
statistics

The bolded values represent the best values in the comparison chart for each metric

Model Estimation method KL Div County 
MAPE (%)

Country 
MAPE (%)

Predicted total

SIR L-BFGS-B 2.78e−4 36.8 11.4 1,842,857
SIR SLSQP 3.43e−4 49.3 21.4 1,084,451
SIR trust-constr 2.78e−4 37.5 11.3 1,836,012
SEIR L-BFGS-B 4.15e−5 27.1 4.6 1,252,046
SEIR SLSQP 3.36e−5 24.7 3.7 1,264,722
SEIR trust-constr 2.27e−5 14.3 0.80 1,314,226
SEIRD L-BFGS-B 2.35e−4 66.7 37 871,625
SEIRD SLSQP 2.4e−5 50.9 4.7 1,294,801
SEIRD trust-constr 1.7e−  > 100  > 100  > 3,000,000
Conv-LSTM ensemble NA 7.49e−5 17.5 2.37 1,255,960
Conv-LSTM (proposed) NA 5.55e−6 18.2 0.19 1,331,175
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Simple models can serve as interpretable models but may fail 
to capture true relations among features globally. This problem 
can be solved by building simple local models and drawing 
local explanations of feature relations. However, there may 
not be enough data points available or data distribution may 
be highly skewed in a local region to confidently build a pre-
dictive model and draw interpretations on it. Thus, we use the 
trained Convolutional LSTM model as the global model and 
draw spatio-temporal local interpretations of it using locally 
perturbated synthetic data by satisfying a criterion called local 
fidelity [37]. Local fidelity suggests the explanations should 
be locally faithful with the model behavior. Local fidelity does 
not imply global fidelity however global fidelity implies local. 
To increase interpretability simple surrogate models can be 
trained with local data as it is expected that the response vari-
able varies with the features almost linearly in a local region. 
In fact, there is a tradeoff between local fidelity and interpreta-
bility that needs to be made. Model agnostic methods perturbs 
the input features in a local region around a single or a group 
of datapoints and feeds the model to obtain predicted response 
variable. This synthetic data is in turn used to train simple sur-
rogate models to obtain local interpretations of global model. 
There are several existing methods available in the literature 
to derive local interpretations of a model [37–39]. Few works 
also proposed methods to derive global explanations from 
local interpretations of any black box models [36, 40].

Spatiotemporal Locality of Transmission Rate

Deriving explanations from a black-box model requires opti-
mization of the following objective function, where G is set 
of interpretable surrogate models in a locality, f  is the global 
model to be explained, lx is the distribution function defining 
the locality of x , L is the loss function and Ωg is the complexity 
of the model g:

It is desirable to minimize both Ωg and L . However, in gen-
eral they are inversely proportional when the spread of lx is 
large. A very small spread of lx is also not desirable as it will 
oversimplify g to draw any meaningful explanations in the 
locality. Thus, a choice of lx is important to derive meaningful 
interpretations.

The locality of x is defined by a threshold distance in 
all directions from x both spatially and temporally and it is 
defined by the following tuple, where xs and xt are spatial and 
temporal components of observation x . ds and dT are spatial 
and temporal threshold distances from x to the boundary of 
locality:

(16)�(x) = argmin
g∈G

L
(
f , g, lx

)
+ Ωg.

(17)l(x) = {xs ± [0, ds), xt ± [0, dT )}.

Figure 10 illustrates spatiotemporal locality of obser-
vation x . Spatial locality is bounded by pixels up to ds in 
all directions from xs such that locality of xs is bounded 
by a square box of pixels of size (2ds + 1) × (2ds + 1) . No 
paddings are applied at the edges. Thus, perimeter, defin-
ing locality of pixels at the edges of a frame are trimmed. 
As illustrated in Fig. 10 temporal locality is also defined 
similarly. Combining spatial and temporal locality the local 
region of observation x is defined by a sequence of group of 
pixels with equal time lead and lag from x unless x resides 
on temporal edge of an input tensor in which case temporal 
locality is trimmed on the direction of the edge.

Perturbated data points are generated by randomly per-
turbing the pixel values of x following a uniform distribu-
tion. Perturbated distribution is calculated separately for 
each feature. The perturbated sample distribution is calcu-
lated as following, where U(k, k�) is uniform distribution 
with upper and lower bound as k , k′ , �(l(x)) is standard 
deviation of all observations in the locality of x and rand 
randomly selects one sample from two:

The spatial features are only perturbated spatially and 
same values are copied temporally along the correspond-
ing channel. The channels having temporal component are 
perturbated for different time slice within an input tensor. 
Each perturbated pixel in a time slice represents a separate 
feature. Input tensors are constructed using the perturbated 
values and passed through the blackbox model f  to generate 
a predicted output value. The set of all input perturbated data 
points of x and the corresponding predicted output values 
serves as the training dataset for the surrogate model g . Each 
input channel and the predicted values are normalized to 0 

(18)
Zx = {x + rand[U(−1,0)min(�(l(x)), x),U(0,1)min(�(l(x)), (1 − x))]}.

Fig.10   Illustration of spatio temporal locality
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mean and 1 standard deviation prior to training the surrogate 
model. Normalization is done to convert the features into 
same scale so that coefficients of a linear regression sur-
rogate model gives the relative influence of the features on 
the response variable. Thus, the loss function is defined as 
following, where the function S constructs the input tensor in 
the original representation from perturbated samples:

Though Zx can be created by perturbing all features of 
a pixel in each channel within an input tensor, however, in 
our analysis only a subset of all features are perturbated to 
produce Zx and to find effect of those features on transmis-
sion rate. Other features are kept constant as per the original 
observation. Intuitively this will explain the effect of the 
chosen features on the transmission rate in a single pixel area 
given all other parameters remain constant, including feature 
values of spatio temporal neighboring pixels.

Interpreting Prediction of Transmission Rate

In our analysis Zx is created by perturbing the following fea-
tures only. Population density, female fraction, median age, 
weather at 4th, 5th and 6th time lag. Weather includes aver-
age daily temperature, 3-day temperature standard deviation 
and average daily relative humidity. Apart from the weather 
features the other three features have no temporal compo-
nent. So, for them the perturbated values are copied tempo-
rally in the input tensor during reconstruction. The weather 
features from 4th to 6th time lag are chosen by assuming 
the average incubation period of Sars-Cov-2 is between 4 
and 6 days. The spatial ( ds) and temporal ( dT ) distance for 
defining locality is taken as 1. The perturbated samples for 
each feature are generated by Eq. (18). Local interpretations 
are carried out for each pixel which experienced at least 10 
cumulative infection cases on 21st March 2020. The objec-
tive is to deduce the influence of aforementioned features on 
the transmission rate in each pixel given all other parameters 
remain constant. 250 perturbated input samples are gener-
ated for each pixel. The samples are reconstructed in tensor 
format and fed to the model to obtain the predicted transmis-
sion rate and together they form the input output samples. 
For each pixel a linear regression surrogate model is trained 
with the training samples. The coefficients of each feature 
denote the influence on the transmission rate.

Figure 11 illustrates the feature influence chart for dif-
ferent pixels in grid 387. We choose grid 387 as it experi-
enced highest number of cumulative infection cases with 
nearly 10% of total infection cases in USA as of 1st May 
2020. Only those coefficients are plotted which have p 
value < 0.05. The features whose absolute value of median 

(19)

L
(
f , g, lx

)
=

∑
z∈Zx

(h(f (S(z))) − g(h(z)))2, where h(z) = (z − z)∕�(z).

and standard deviation across all days are less than 0.05, 
are considered unimportant and filtered out from the plot. 
The counties covered by each pixel in grid 387, which have 
nonzero population, are stated in Table 5. The influence val-
ues are smoothened using 3rd degree polynomial. New York 
& Bronx have somewhat positive influence of population 
density (pop den) and female fraction (f perc) on transmis-
sion rate. Median age (med age) has positive effect in the 
mid period and negative on early and later days. 6th day 
time lag temperature (T6 temp) has slight negative effect on 
later days. On average Putnam also have positive influence 
of population density, median age and female fraction. How-
ever, population density and female fraction shows negative 
influence on later days. 4th time lag, 5th time lag and relative 
humidity (T4 rh & T5 rh) have slight negative impact on 

Fig. 11   Feature influence chart by day, for pixels in grid 387. a Influ-
ence chart of pixel covering the area of New York and Bronx, b influ-
ence chart of pixel covering the area of Putnam, c median influence 
chart by day for grid 387, d median influence chart per pixel in grid 
387

Table 5   County names for each pixel in grid 387

Pixel County Pixel County Pixel County

85 King & Queens 133 Rockland 166 Putnam
101 New York & Bronx 134 Westchester 171 Middlesex
102 Nassau 151 Fairfield 182 Dutchess
122 Suffolk 153 New Haven 184 Litchfield
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average. At grid level population density and female fraction 
positively impacts transmission rate on daily basis. Median 
age has minor positive impact on earlier days and negative 
impact on later days. Figure 11d shows median of influence 
across all days for different pixels in grid 387. Population 
density and female fraction have positive impact across all 
pixels. Median age closely resembles a sinusoidal curve 
which implies that its influence varies widely across pixels. 

Figure 12 illustrates the global effects of the features on 
transmission rate. To generate global interpretations local 
surrogate models are built for each pixel with 100 pertur-
bated samples. For each feature the distribution of influ-
ence values for all pixels with nonzero population is plotted 
against time. Considering the median of the distribution, 
population density and female fraction have positive impact 
across all days; whereas, median age has negative impact. 
Temperature has minor positive impact, temperature stand-
ard deviation has minor negative impact and relative humid-
ity barely has any noticeable impact on transmission rate. 
From this study it is clear local influence of features at pixel 
and grid level may widely deviate from global average. This 
is important as spread of infection is highly skewed region-
ally such that few hotspots contribute majority of the infec-
tion cases. Thus, studying the local influence of features can 
shed light on the local dynamics of the spread and at the 

same time global influence charts provides a general idea of 
the influence on spread.

The accuracy or fidelity of explanations with respect to 
the base model is measured by the R-squared obtained by 
training all the surrogate models. R-squared measures the 
explainability of the variance in the input feature set. Higher 
value denotes better fitment of the model with respect to the 
data and consequently better faithfulness with  respect to the 
base model in a local region of data. Figure 13a illustrates 
the histogram of R-squared of all the surrogate models used 
to generate global explanations. Figure 13b, c shows the his-
togram for grid 387 and pixel 101 in grid 387, respectively. 
The median in all the cases lies close to 1 which suggests 

Fig. 12   Global Influence of different features on transmission rate

Fig. 13   Histogram of R-squared of the surrogate models. The red ver-
tical line denotes the median. Histogram for a all the surrogate mod-
els used to generate global explanations, b surrogate models used to 
generate explanations for grid 387, c surrogate models used to gener-
ate explanations for pixel 101 in grid 387
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faithfulness of the surrogate model with respect to the base 
model in local regions. The base model is already evaluated 
and proven to accurately represent the real-world dynam-
ics of the spread. Thus, it can be presumed the generated 
explanations closely approximates the real-world scenario.

Long‑Term Forecasting of Disease 
Progression

Classical SIR model assumes a constant transmission rate 
and it typically predicts a smooth bell curve of active infec-
tion cases with respect to time with a single peak. However, 
transmission rate may vary with respect to multiple external 
factors including intervention methods like lockdown. A var-
iable transmission rate may result in periodic subsidence and 
resurgence of the spread of infection and in turn producing 
multiple peaks of active infection cases along time. Along 
with this the recovery rate may also change due to multi-
ple intervention methods like enhancing hospital facilities, 
improving treatment procedure etc. As shown in Eq. (10), 
recovery rate is very important in achieving disease-free sta-
ble equilibrium state. In general, the average removal rate 
(recovery rate + death rate) over a period should exceed aver-
age transmission rate to reach the disease-free equilibrium. 
Considering the death rate to be constant and quite small 
compared to recovery rate of Covid-19, the time required to 
reach the equilibrium state is inversely proportional to the 
difference between recovery rate and transmission rate. In 
our experiments we used the trained model to do long-term 
forecasting of the epidemic with current normal parameters 
and compared with an “what if” analysis by modifying the 
removal rate.

A 160 days forecasting is carried out for the grid 387. 
Since weather features barely impacts transmission rate in 
grid 387 thus the model trained without weather features 
is used for forecasting. “What if” analysis is done by set-
ting high removal rate to expedite disease-free equilibrium 
and compared with current normal forecasting by setting 
removal rate as running average of past 5 days. In “what 
if” analysis, removal rate is set as per Eq. (10) by set-
ting T = 200 with upper hard limit as 0.2. As removal rate 
changes daily active infection cases which in turn impacts 
future transmission rate and due to upper hard limit of 
removal rate the value of � in some pixels is less than 
upper bound calculated by Eq. (10). From Fig. 14a, b, it 
is evident that number of active infection cases reduced 
much faster in the “what if” analysis and most of the pixels 
hit near baseline state at least once within 200-day period. 
However rapid periodic resurgence of the disease is seen 
in this case. As recovery rate has upper hard limit thus in 
some cases resurgence with high transmission rate resulted 
in destabilizing disease-free equilibrium. The growth is 

again quickly dampened due to high recovery rate in future 
periodic resurgences. This can be empirically explained by 
the fact that population gets cautious and maintains social 
distancing with low intermixing when infection cases are 
high and vice versa. Figure 14c, d suggests there is rapid 
periodic resurgence of new infection cases in “what if” 
analysis compared to current normal and multiple short 
new infection periods are seen. The resurgences in some 
cases (pixel 85, 101) are stronger compared to current 
normal. Thus, it is evident, by only increasing recovery 
rate abruptly, infection spread may not be controlled fully 
unless other intervention methods are adopted to prevent 
spike of transmission rate during resurgence periods. Fig-
ure 15a, b shows the plot of daily active infections when 
only pixel 101 and 102 are subjected to modified recovery 
rate, respectively, and other pixels are set with current 

Fig. 14   Plot of daily log transformed active infection cases and new 
infection cases for each pixel in grid 387. a Daily active infections 
with normal running average removal rate, b daily active infections 
with modified removal rate to expedite disease-free equilibrium, c 
daily new infections per pixel with normal running average removal 
rate d daily new infections with modified removal rate

Fig. 15   “What if” analysis with increased recovery rate for specific 
pixels in grid 387. Daily active infections with normal running aver-
age removal rate for all pixels except a pixel 101 and b pixel 102, 
where recovery rate is set to a high value in the forecast period
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normal recovery rate. In both the cases there is a quick 
dampening of active cases in 101 and 102 pixels and resur-
gence spike is shorter and weaker compared to Fig. 14b. It 
is evident there is spatial influence of neighboring active 
cases on transmission rate. One explanation can be, iso-
lated intervention measures to dampen the spread does not 
breaks the cautiousness and preventive measures among 
the population. This makes determining an ideal recovery 
rate for a region a complex optimization problem. 

Figure 16 shows active infection cases at grid level 
quickly reaches baseline in “what if” scenario compared 
to current normal, but it is not eradicated fully. There are 
also small periodic spikes in future. The current normal 
scenario suggests unless strict intervention actions are not 
taken to reduce transmission rate or recovery rate it is 
going to take long time to reach the baseline. The trace 
of new infection cases suggests the trend is quite simi-
lar in both the scenarios with more frequent and stronger 
spikes in “what if” scenario. In current normal scenario 
the model estimates a total of 379,371 new infection cases 
and 509,160 removed cases in 160-day period. In “what 
if” scenario it estimates 349,139 new infection cases and 
712,624 removed cases. However, Fig. 16c suggests most 
of the removal happens in initial 50 days of forecast period 
due to abrupt increase of removal rate in forecast period. 
In real world such abrupt increase of removal rate may 
not be possible. However, on an average if the difference 
between removal rate and transmission rate can be main-
tained as per Eq. (10) it is possible to dampen the spread 
of infection within desired time period. Figure 17 illus-
trates the plot of predicted vs actual new infection cases 
for 160-day prediction period for grid 387 and 384. Fig-
ure 17a shows the plot of predicted vs actual values for 
grid 387 and Fig. 17b shows the plot for grid 384. The 

median error for grid 387 is 455 cases per day and for grid 
384 is 18 cases per day. Thus, the long-term prediction of 
the proposed model follows the actual curve quite faith-
fully, though the training data was of much shorter dura-
tion (41 days) compared to the forecast period (160 days). 

Discussion

The study reveals both downward and upward trends of 
active infection cases in the long-term forecast period and it 
nearly matches with the actual data. The proposed method 
can be used to model the epidemic spread of any country 
with high spatiotemporal resolution as the data preparation 
method is generic and does not need any country specific 
geospatial information. It only needs the boundary latitude 
and longitude of the country. The model can be used for both 
short term and long-term forecasting. The study also reveals 
the transmission rate varies widely across different locality 

Fig. 16   Comparison of fore-
casted infection spread between 
current normal scenario 
and “what if” scenario with 
increased recovery rate for grid 
387. Trace of a active infection 
cases, b new infection cases 
and c removed infection cases 
in “what if” scenario. Trace of 
d active infection cases, e new 
infection cases and f removed 
infection cases in current nor-
mal scenario

Fig. 17   Comparison of forecasted new infection cases and actual 
new infection cases in grid 387 and grid 384. Plot of a forecasted 
new infection cases and actual new infection cases with median error 
of 455 in grid 387, b forecasted new infection cases and actual new 
infection cases with median error of 18 in grid 384, in 160 days pre-
diction period
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and time. Thus, a single parametric model for a wide region 
and a long period of time will grossly misrepresent the actual 
dynamics. The transmission rate also varies in complex man-
ner with respect to multiple external factors. Thus, simple 
functional approximation will also oversimplify it. As per 
the influence charts the influence of some of the features like 
gender ratio and median age varies widely across multiple 
localities in a region in USA. Whereas, population density 
has consistently positive influence on the transmission rate 
and weather features have very minor influence. The what-if 
analysis presents a case study to reveal necessary steps for 
dampening the spread of the epidemic in a region in USA. 
The model can be used to calculate recovery rate in a locality 
to reach disease-free equilibrium in a specific period of time. 
Though in our analysis we took recovery in strict sense; 
however, it may not refer to complete recovery. Identification 
and complete isolation of a patient such that there is negligi-
ble chance of further spread of the infection from the patient 
may also be referred to recovery. Thus, maintaining high 
recovery rate, rapid and strict isolation of infected patient 
and intervention methods to reduce transmission rate are 
the keys to rapid convergence to disease-free equilibrium.

Conclusion

A thorough study on the transmission rate of Covid19 in 
USA revealed several insights. Key influencers are identi-
fied. However, there might be other influencers like human 
mobility, demographics, government interventions etc. On 
availability of those feature data, proposed methods may 
be applied to find influences. These methods can also be 
applied to other countries. Though a threshold condition is 
derived for disease-free equilibrium, yet it is not straightfor-
ward to determine ideal recovery rate to rapidly dampen the 
infection spread due to complex dependency of transmission 
rate. A general solution method may be investigated to solve 
this optimization problem and come up with ideal regional 
recovery rate. The predictive model can also be enhanced to 
predict other parameters like recovery rate.
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