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Abstract

Hepatitis B virus (HBV) infection remains a significant health burden world-wide, although vaccines help decrease this
problem. We previously identified associations of single nucleotide polymorphisms in several candidate genes with vaccine-
induced peak antibody level (anti-HBs), which is predictive of long-term vaccine efficacy and protection against infection
and persistent carriage; here we report on a haplotype-based analysis. A total of 688 SNPs from 117 genes were examined
for a two, three and four sliding window haplotype analysis in a Gambian cohort. Analysis was performed on 197 unrelated
individuals, 454 individuals from 174 families, and the combined sample (N = 651). Global and individual haplotype
association tests were carried out (adjusted for covariates), employing peak anti-HBs level as outcome. Five genes (CD44,
CD58, CDC42, IL19 and IL1R1) had at least one significant haplotype in the unrelated or family analysis as well as the
combined analysis. Previous single locus results were confirmed for CD44 (combined global p = 9.161025 for rs353644-
rs353630-rs7937602) and CD58 (combined global p = 0.008 for rs1414275-rs11588376-rs1016140). Haplotypes in CDC42, IL19
and IL1R1 also associated with peak anti-HBs level. We have identified strong haplotype effects on HBV vaccine-induced
antibody level in five genes, three of which, CDC42, IL19 and IL1R1, did not show evidence of association in a single SNP
analyses and corroborated the majority of these effects in two datasets. The haplotype analysis identified associations with
HBV vaccine-induced immunity in several new genes.
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Introduction

Hepatitis B virus (HBV) infection remains a significant health

burden world-wide, especially in parts of Asia and Sub-Saharan

Africa[1]. Approximately 2 billion people have been infected with

HBV and of these 350 million live with persistent infection. Some

600,000 deaths annually result from HBV infection. Infant

immunisation against infection has been available since the early

1980s and the vaccine is now routinely administered across many

regions where the disease is endemic. Vaccination in infancy is

95% effective and ameliorates most of the consequences of HBV

exposure. For example, long-term studies in The Gambia have

shown that infant immunisation is safe and that a good vaccine-

induced immunity, i.e. high peak antibody (anti-HBs) level,

correlates with vaccine efficacy long-term [2]. Thus, vaccination

is thought to reduce the risk of developing later complications,

including hepatocellular carcinoma. However, the efficacy of the

vaccine is not universal, vaccine failure has been observed in

approximately 5% of vaccinees[3], and infection, as shown by

seroconversion, can occur despite vaccination (‘‘breakthrough’’

infection) [2]. Vaccine-induced immunity is influenced by a

number of factors including type of vaccine, administration route,

age, gender, UV light exposure, smoking, co-infections, and

nutritional factors [4]. It is also thought that the immune response

to vaccination (as well as susceptibility to disease and disease

progression) is partially affected by host genetics, but our

understanding of the role of these factors is very limited. Family

and twin studies indicate that human genetic variation modulates

HBV vaccine-induced immunity, with heritability estimates in

Gambian twins ranging between 63–85% [5–11]. Case-control

association studies have also emphasized the influence of genetic

variation on vaccine-induced immunity, but these studies have

primarily concentrated on the HLA region, but most of these

reports are based on a small number candidate SNPs/genes

[12–15]. There are two exceptions: A recent study in Indonesians

based on the analysis of over 5000 SNPs across 914 genes in HBV

vaccine responders versus non-responders [16]; our own study

assessed 715 SNPs across 133 genes and their effect on peak HBV
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vaccine-induced antibody level in infant vaccinees from The

Gambia [17] However, in both of these cases only single SNP

association analyses were performed.

In a previous report we tested for association with vaccine-

induced peak anti-HBs, which is predictive of long-term vaccine

efficacy, as well as protection against infection and persistent

carriage, and identified single SNP associations in CD58

(rs1414275, rs1016140), IFNG (rs2069727), MAPK8 (rs3827680,

rs10857565), IL10RA (rs2508450, rs2229113) and CD44

(rs353644, rs7937602), and multi-marker associations in IFNG,

MAPK8, IL10RA at the Geometric Mean Titer (GMT) level of

.1.5 or ,0.6 at p#0.001 level (for details see table 3 and

supplementary table S2 in [17]). Here we extend our previous

investigation, performing a more in depth analysis of our data

from the same Gambian population of infant vaccinees, to include

an analysis of haplotypes and their possible associations with

vaccine response. This analysis was performed under the

assumption that in some cases haplotypes can detect associations

with genes that single SNP analyses cannot [18]. This assumption

is based on the fact that haplotypes define functional units of genes

and variation is structured into haplotypes that are likely to be

transmitted as units; in addition employing haplotype analysis

reduces the problem of testing individual associations, potentially

making haplotype analysis more powerful to detect associations

than individual SNPs. Additionally, it has been shown that

haplotype analyses can detect associations if there are multiple risk

alleles at a single locus when single marker analyses may not [19].

Therefore, we generated haplotypes and tested for association with

our outcome measure (peak anti-HBs level) and compared these

findings to previous single marker results.

Methods

Study population
Demographic and hepatitis B specific serology data was

available from a survey of vaccine efficacy carried out in 2003

in The Gambia, which evaluated the magnitude and duration of

protective antibody responses induced by infant HBV vaccination

[2]]. The effect of host genetic variation on HBV vaccine-induced

immunity were assessed in this same population based on a larger

first screen of 715 SNPs in 662 infant vaccines and a much smaller

second screen (43 SNPs in 393 individuals) [17]. Of the 662

individuals that were part of the original single locus analysis [17]

we excluded 11 due to insufficient genotype data and used the data

on the remaining 651 infant vaccines for the present haplotype

analysis.

Briefly, study participants were recruited in the West Kiang

region in The Gambia who had been included in the HBV vaccine

programme, which has been running since 1984 [2]. Only non-

infected individuals were included, i.e. confirmed non-immune

children ,5 years old prior to 1985 and thereafter all those

vaccinated at birth (i.e. those deemed anti-HBc negative).

Concentrations of hepatitis B surface antibody at ,11 months of

age (peak anti-HBs) and anti-HBc status at follow-up surveys were

determined by radioimmunoassay (Sorin Biochemica) or EIA

(ETIAB-Corek Plus and ETI-AB-AUK; DiaSorin) in accordance

with the manufacturer’s instructions [2]. For the genetic study a

subset of vaccinees was genotyped, this first screen included all

core antibody (anti-HBc) positives and two randomly selected age-

group matched anti-HBc negative subjects to allow analysis of

‘‘breakthrough infection’’ as outcome as well as peak vaccine-

induced antibody level. However, due to small numbers of anti-

HBc positives, the present analysis was based on peak anti-HBs

level only.

The study participants were mostly residents of three villages

(plus 33 ‘others’ grouped with the village of Kantonkunda), the

great majority (625 or 96.01%) were of Mandinka origin, the

mean age was 13.4 (+/25.4), 47.9% were male, six different

vaccine regimes had been administered across the study

population and all had received 3 or 4 doses, with exception of

three individuals (who had received 2 doses). Relatedness within

families was established according to maternal ID. Individuals for

whom no information on peak anti-HBs level or date, peak anti-

HBs measurement time less than one month after the last

vaccination, no information on number of doses of vaccine, age

.5yrs at time of last vaccination and those belonging to vaccine

group 6 (n = 2) were excluded (for further details see [17] Table 1).

DNA was extracted from whole blood or PBMCs using a

standard salting-out method [20]. Ethical approval was granted by

the joint Gambia Government/MRC Ethics Committee, and the

Table 1. Haplotype effects for in unrelated, family and combined data sets for CD44 (rs353644-rs353630-rs7937602) a.

Unrelated (Unadjusted p = 0.07,
Adjusted p = 0.002*)

Family (Unadjusted p = 0.004*, Adjusted
p = 1.0)

Combined (Unadjusted p = 0.001*,
Adjusted p = 9.161025*)

Haplotype Haplotype Freq
Add Val
(95% CI) P-value

P-value
adjusted Freq

Add Val
(95% CI) P-value

P-value
adjusted

Add Val
(95% CI) P-value

P-value
adjusted

A-A-A 1-1-1 0.37 0.12
(20.38–0.63)

0.72 0.99 0.33 21.06
(22.08–0.04)

0.55 1.561023* 20.11
(20.30–0.069)

0.97 0.93

A-A-C 1-1-2 0.16 0.64
(20.15–1.42)

0.02* 0.82 0.14 2.21
(20.73–5.15)

0.76 0.02 0.57
(0.041–1.10)

0.02* 0.28

A-G-A 1-2-1 0.27 referent 0.08 0.76 0.33 referent 0.07 0.14 referent 0.71 0.27

G-G-A 2-2-1 0.17 0.41
(20.27–1.10)

0.91 0.90 0.15 1.03
(21.43–3.50)

6.461025* 0.43 20.24
(25.99–5.52)

0.01* 1.0

aEquivalent to SNP IDs 440, 441 and 442 in [17].
Adjusted p-values are corrected for measurement time (between last vaccination and peak antibody level assessment) and vaccine group (six regimes since 1984).
Asterisks denote results significant after correction for multiple testing. Additive values and 95% Confidence Intervals are given for haplotypes after adjusting for
measurement time and vaccine group. Correction for multiple testing using false discovery rate (FDR – q = 0.2) was performed separately in the unrelated, family and
combined data accounting for 1,376 tests in the unadjusted and 111 tests in the adjusted analysis, respectively 19. For specific haplotype tests correction for multiple
testing with FDR accounts for the number of haplotypes examined (4 haplotypes). Therefore anything ,0.05 in the adjusted or unadjusted analysis was significant after
correction for multiple testing.
doi:10.1371/journal.pone.0012273.t001
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LSHTM and Oxford University (OXTREC) Ethics Committees.

All subjects and/or legal guardians provided written, informed

consent.

Candidate genes/SNPs and genotyping
Details on the selection of candidate genes/SNPs and

genotyping methodology have been described in detail elsewhere

[17]. Briefly, candidate genes/SNPs thought to play a role in

immunity induced by immunisation against HBV or other

vaccines were screened. The gene selection was based on literature

searches, previous reported genetic associations, inclusion of gene

families and coverage of regulatory pathways. The SNP selection

was based on HapMap frequency data, validation, anticipated

success rate on the Illumina platform, gene size, distribution across

loci including 500 bp up- and down-stream of each gene. SNP

genotyping was performed on the Illumina BeadArray platform

(www.illumina.com). Assays with a failure rate of .10% and those

with a minor allele frequency (MAF) of ,1% were excluded; the

average call success rate of the remaining markers was 99.69%;

only data from the first genetic screen of our earlier study was used

for the present analysis. The original study consisted of 715 SNPs

in 133 genes. For the haplotype analysis genes were excluded if

there was only one SNP in a gene (10 genes, 10 SNPs) and/or if a

gene was located on the X chromosome (4 genes, 17 SNPs). X

chromosome markers were excluded because these markers are

best analyzed using gender stratification and our sample size is too

small for this analysis. Hence, a total of 688 SNPs from 119 genes

were ultimately included.

Bioinformatics tools were used for SNP function prediction

(http://snpinfo.niehs.nih.gov/snpfunc.htm) and (http://fastsnp.

ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp) as well

as literature searches on associated candidate genes (www.pubgene.

org).

To see if there is a common thread across the five genes

associated with anti-HBs in this haplotype-based analysis, we used

a simple bioinformatics tool, PubGene (www.pubgene.org) that

searches PubMed for literature based on a single reference gene

and identifies other genes that are found in conjunction with it in

the literature.

Haplotype and statistical analysis
The study population comprised of both unrelated individuals

and individuals from families. The analysis was performed

separately on unrelated (197 independent individuals) and family

(454 individuals from 174 families) data. Additionally the

combined (unrelated and family datasets together – 651

individuals total) data was analyzed. For the combined analysis

unrelated subjects were assumed to have two missing parents and

parameters are set to give the likelihood contribution for the

family. Two, three and four haplotype sliding windows were

examined in unrelated, family and combined datasets for

association with peak HBV vaccine-induced antibody level, i.e.

the natural log of peak anti-HBs, using Unphased version 3.1.1

[21]. This software uses a quasi-Newton algorithm to maximize

the likelihood of each haplotype when an individual’s phase is

unknown. The global test of association is a likelihood ratio test

based on the null hypothesis that all of the haplotypes have equal

risk. The p-value is determined with the rare haplotypes (,0.05)

excluded. Additive values are calculated based on the change in

expected trait value due to a given haplotype relative to the

referent haplotype. The referent haplotype was chosen as the most

frequent haplotype; however, in the case of CD44 (rs353644-

rs353630-rs7937602), CD58 (rs1414275-rs11588376-rs1016140)

and CDC42 (rs2056974-rs2473316) where the most frequent

haplotype was also the most significantly associated with peak anti-

HBs level, the referent was chosen as the haplotype least

significantly associated in the unrelated, family or combined

analyses. The p-value for each individual haplotype is calculated

based on a score statistic for the effect of a given haplotype relative

to all other haplotypes, including rare haplotypes, pooled together.

The global test and the test for each individual haplotype may give

different results due to reduced power when all of the individual

haplotypes are parsed out. Therefore, more importance should be

given to the global test value as this represents the association for

the distribution of the haplotypes. No covariates were included in

the initial analysis. Genes that had one or more significant

haplotypes at p,0.1 in all three datasets (unrelated, family and

combined) and at least one haplotype significant at p,0.01 in the

combined data were carried forward for further analysis. There

were 1,376 tests performed for each haplotype analysis. Correction

for multiple testing was performed separately in the unrelated,

family and combined data using false discovery rate (FDR –

q = 0.2) [22]. Five genes met our selection criteria and were

included in follow-up analyses (Table S2), with adjustment for the

natural log of measurement time (between last vaccination and

peak antibody level assessment) and vaccine group (six regimes

since 1984). These covariates were selected because both are

known to affect peak anti-HBs level [2,17]. Number of vaccine

doses, gender and village did not or only minimally affect vaccine-

induced antibody level and were thus not included as covariates in

this analysis, nor was ethnicity (96.01% Mandinka). Correction for

multiple testing (111 tests) after adjustment for covariates was

performed separately in the unrelated, family and combined data

using false discovery rate (FDR – q = 0.2) [22]. Graphical

representation of significant results and haplotypes were per-

formed with Haploview (Figure 1 and Figure S1, adjusted and

unadjusted, respectively) [23]. Linkage disequilibrium (LD) was

calculated in Haploview using the unrelated dataset only,

according to default criteria [24].

Results

Summary of global haplotype association tests
Peak anti-HBs level was employed as the outcome measure

throughout. Of the 117 genes analyzed for haplotype association,

there were 92 genes with at least one haplotype that had a p-

value ,0.1, 80 genes with at least one p-value ,0.05 and 57

genes with at least one p-value ,0.01 (all unadjusted). Ten genes

had at least one haplotype that was significant (,0.1) in all three

analyses (unrelated, family and combined). Only five of these ten

genes had an association of at least one haplotype with p,0.01 in

the combined dataset, these genes were followed-up with

adjustment for measurement time and vaccine group. The

majority of global association tests were more significant than

individual haplotype results for our five top genes. In some cases

we see non-significant individual haplotype results, while the

global haplotypes are still very significant, which may be due to

an issue of power when all of the individual haplotypes are parsed

out. We consider the global test results the more important of the

values because it represents the association for the distribution of

haplotypes in one gene. Findings for CD44, CD58, CDC42, IL19

and IL1R1 are described individually below and summarised in

Tables 1, 2, 3, 4 and 5. All specific haplotype effects discussed

below were significant after correction for multiple testing with

FDR (q = 0.2). Previous single locus associations (adjusted for

measurement time and vaccine group only) are described in more

detail in our previous paper [17] and summarised in Table S1 for

ease of comparison.

HBV Haplotype Analysis
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Figure 1. Graphical representation of LD and Haplotype associations with peak anti-HBs level (adjusted analysis 1). Solid lines indicate
significant (p,0.05) global and individual haplotype associations with anti-HBs levels. Dotted lines indicate a significant global association but no
individual haplotypic effects. Color of line denotes which study the significant association occurred in – black for the unrelated data, green for the
family data and red for the combined data (unrelated and family together). The measure of LD employed was r2. Associated genes: A) CD44, B) CD58
C) CDC42, D) IL19 and E) IL1R1. 1 Analysis adjusted for measurement time (between last vaccination and peak antibody level assessment) and vaccine
group (six regimes since 1984).
doi:10.1371/journal.pone.0012273.g001

Table 2. Haplotype effects in unrelated, family and combined data sets for CD58 (rs1414275-rs11588376-rs1016140) a.

Unrelated (Unadjusted p = 0.01,
Adjusted p = 0.02*)

Family (Unadjusted p = 0.001*, Adjusted
p = 0.04*)

Combined (Unadjusted p = 7.061026*,
Adjusted p = 0.008*)

Haplotype Haplotype Freq
Add Val
(95% CI) P-value

P-value
adjusted Freq

Add Val
(95% CI) P-value

P-value
adjusted

Add Val
(95% CI) P-value

P-value
adjusted

A-A-A 1-1-1 0.57 0.59
(20.10–1.27)

0.01* 0.23 0.56 20.09
(21.05–0.88)

6.861024* 1.0 0.40
(0.09–0.71)

1.661025* 2.061024*

G-G-A 2-2-1 0.32 0.10
(20.44–0.64)

0.28 0.60 0.32 20.54
(22.08–1.01)

0.06 1.0 20.009
(20.32–0.30)

0.02* 0.002*

G-G-C 2-2-2 0.10 referent 0.01* 0.36 0.12 referent 0.01* 0.65 referent 2.461024* 0.09

aEquivalent to SNP IDs 062, 063, and 064 in [17].
Adjusted p-values are corrected for measurement time (between last vaccination and peak antibody level assessment) and vaccine group (six regimes since 1984).
Asterisks denote results significant after correction for multiple testing. Additive values and 95% Confidence Intervals are given for haplotypes after adjusting for
measurement time and vaccine group. Correction for multiple testing using false discovery rate (FDR – q = 0.2) was performed separately in the unrelated, family and
combined data accounting for 1,376 tests in the unadjusted and 111 tests in the adjusted analysis, respectively 19. For specific haplotype tests correction for multiple
testing with FDR accounts for the number of haplotypes examined (3 haplotypes). Therefore anything ,0.05 in the adjusted or unadjusted analysis was significant after
correction for multiple testing.
doi:10.1371/journal.pone.0012273.t002
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CD44. In CD44 fifty haplotype associations with peak anti-HBs

level were identified in one or more unadjusted analysis (Table S3,

Figure S1). In the adjusted global test the most significant

haplotype in the unrelated and combined data sets consisted

of three SNPs (rs353644-rs353630-rs7937602; p = 0.002 and

p = 9.161025, respectively; Figure 1a; Table 1). The strongest

individual haplotype was A-A-A (p = 1.561023) in the family data

and this haplotype was associated with decreased peak anti-HBs

level relative to the referent A-G-A haplotype. This haplotype

included two SNPs previously found to correlate with peak anti-

HBs level in the single locus analysis; heterozygotes for rs353644

had increased antibody level and carriers of the variant allele for

rs7937602 decreased levels (Table S1).

CD58. Fifty two haplotype associations with peak anti-HBs

level were identified for CD58 in one or more unadjusted analyses

(Table S3, Figure S1). In the adjusted global analysis the most

significant haplotype in all three data sets (unrelated, family and

combined) consisted of three SNPs (rs1414275-rs11588376-

rs1016140) (p = 0.02, p = 0.04, and p = 0.008, respectively)

(Figure 1b, Table 2). The most significant individual haplotypes

were A-A-A (p = 2.061024) and G-G-A (p = 0.002) in the

combined data and these haplotypes associated with an increased

(A-A-A haplotype) and decreased (G-G-A haplotype) anti-HBs

level compared to the referent G-G-C haplotype. This haplotype

included both rs1414275 and rs1016140, which were associated

with decreased peak anti-HBs in the single locus analysis (Table

S1; note: rs11588376 and rs1414275 are in almost complete LD

r2 = 0.99).

CDC42. In CDC42 seventeen haplotype associations with peak

anti-HBs level were identified in one or more unadjusted analyses

(Table S3, Figure S1). In the adjusted global analysis the most

significant haplotype in all three data sets consisted of two SNPs

(rs2056974-rs2473316) (unrelated p = 0.007, family p = 0.004, and

combined p = 0.006) (Figure 1c, Table 3). The A-A haplotype was

the most significantly associated haplotype in the family

(p = 5.9610222) and the combined data (p = 0.02). This haplotype

was associated with decreased peak anti-HBs in the family data

and increased peak anti-HBs in the combined dataset compared to

the referent C-G haplotype. No single locus associations with peak

anti-HBs had been identified previously (Table S1).

Table 3. Haplotype effects in unrelated, family and combined data sets for CDC42 (rs2056974-rs2473316) a.

Unrelated (Unadjusted p = 0.03,
Adjusted p = 0.007*)

Family (Unadjusted p = 0.07, Adjusted
p = 0.004*)

Combined (Unadjusted p = 0.003*,
Adjusted p = 0.006*)

Haplotype Haplotype Freq
Add Val
(95% CI) P-value

P-value
adjusted Freq

Add Val
(95% CI) P-value

P-value
adjusted

Add Val
(95% CI) P-value

P-value
adjusted

A-A 1-1 0.77 8.58
(20.98–18.13)

0.09 0.08 0.67 21.05
(22.98–0.88)

0.10 5.9610222* 0.18
(20.26–0.62)

0.02* 0.02*

C-A 2-1 0.15 8.09
(21.43–17.61)

0.008* 0.08 0.19 22.44
(25.18–0.30)

0.02* 1.0 20.21
(20.79–0.37)

6.361024* 0.17

C-G 2-2 0.06 referent 0.43 0.87 0.09 referent 0.78 0.19 referent 0.49 0.89

aEquivalent to SNP IDs 023 and 024 in [17].
Adjusted p-values are corrected for measurement time (between last vaccination and peak antibody level assessment) and vaccine group (six regimes since 1984).
Asterisks denote results significant after correction for multiple testing. Additive values and 95% Confidence Intervals are given for haplotypes after adjusting for
measurement time and vaccine group. Correction for multiple testing using false discovery rate (FDR – q = 0.2) was performed separately in the unrelated, family and
combined data accounting for 1,376 tests in the unadjusted and 111 tests in the adjusted analysis, respectively 19. For specific haplotype tests correction for multiple
testing with FDR accounts for the number of haplotypes examined (3 haplotypes). Therefore anything ,0.05 in the adjusted or unadjusted analysis was significant after
correction for multiple testing.
doi:10.1371/journal.pone.0012273.t003

Table 4. Haplotype effects in unrelated, family and combined data sets for IL19 (rs12409415-rs2056225-rs2243158) a.

Unrelated (Unadjusted p = 0.15,
Adjusted p = 0.008*)

Family (Unadjusted p = 0.02, Adjusted
p = 3.261025*)

Combined (Unadjusted
p = 8.761024*, Adjusted p = 0.004*)

Haplotype Haplotype Freq
Add Val
(95% CI) P-value

P-value
adjusted Freq

Add Val
(95% CI) P-value

P-value
adjusted

Add Val
(95% CI) P-value

P-value
adjusted

A-A-C 1-1-1 0.67 referent 0.15 1.0 0.66 referent 0.06 1.0 referent 0.03* 0.09

A-T-G 1-2-2 0.13 20.77
(21.46–0.08)

0.43 0.54 0.13 8.19
(3.35–13.03)

0.95 1.0 0.10
(20.019–0.21)

0.63 0.03*

G-A-C 2-1-1 0.12 21.03
(21.89–0.16)

0.56 1.0 0.11 1.04
(21.17–3.26)

0.27 1.0 0.035
(20.11–0.18)

0.83 0.71

G-T-G 2-2-2 0.07 0.18
(20.62–0.97)

0.05* 2.261024* 0.09 2101.6
(2193.8–9.49)

0.03* 1.0 0.003
(20.23–0.24)

0.006* 0.65

aEquivalent to SNP IDs 118, 119, 120 in [17].
Adjusted p-values are corrected for measurement time (between last vaccination and peak antibody level assessment) and vaccine group (six regimes since 1984).
Asterisks denote results significant after correction for multiple testing. Additive values and 95% Confidence Intervals are given for haplotypes after adjusting for
measurement time and vaccine group. Correction for multiple testing using false discovery rate (FDR – q = 0.2) was performed separately in the unrelated, family and
combined data accounting for 1,376 tests in the unadjusted and 111 tests in the adjusted analysis, respectively 19. For specific haplotype tests correction for multiple
testing with FDR accounts for the number of haplotypes examined (4 haplotypes). Therefore anything ,0.05 in the adjusted or unadjusted analysis was significant after
correction for multiple testing.
doi:10.1371/journal.pone.0012273.t004
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IL19. Twenty four haplotype associations with peak anti-HBs level

were identified for IL19 in one or more unadjusted analyses (Table

S3, Figure S1). In the adjusted global analysis the most significant

haplotype in all three data sets consisted of three SNPs (rs12409415-

rs2056225-rs2243158) (unrelated p = 0.008, family p = 3.261025,

and combined p = 0.004) (Figure 1d, Table 4). The most significant

individual haplotypes were G-T-G (unrelated p = 2.261024) and A-

T-G (combined p = 0.03), both associated with increased peak anti-

HBs level compared to the referent A-A-C haplotype. This haplotype

included rs12409415, which showed an indication for association

with increased peak anti-HBs in the single locus analysis (Table S1).

IL1R1. In IL1R1 nine haplotype associations with peak anti-

HBs level were identified in one or more unadjusted analyses

(Table S3, Figure S1). In the adjusted global analysis the most

significant haplotype in the family and combined data sets

consisted of three SNPs (rs2287047-rs997049-rs3917299) (unre-

lated p = 0.001, family p = 0.02, and combined p = 0.02) (Figure 1e,

Table 5). The most significant individual haplotype was G-T-A

(unrelated p = 0.03), which was associated with decreased anti-

HBs level compared to the referent A-A-A haplotype. In the single

locus analysis there was an indication for association of a different

SNP, rs3917332, with increased peak anti-HBs identified previ-

ously (p = 0.12, Table S1).

Discussion

Peak anti-HBs level induced by vaccination against HBV

infection is indicative of long-term vaccine efficacy [2]. We have

identified significant haplotype effects with peak HBV vaccine-

induced antibody level in five genes (CD44, CD58, CDC42, IL19

and IL1R1) in a sample cohort of infant vaccinees (N = 651) from

The Gambia. These analyses were adjusted for measurement time

(between last vaccination and peak anti-HBs measurement) and

vaccine group, which are known to affect peak anti-HBs [2,17].

The majority of these effects were found in the separate analyses of

unrelated and family data. We previously reported correlations in

single SNPs and multi-marker analyses within CD44, CD58,

IFNG, MAPK8, IL10RA and to a lesser extent ITGAL in the

same study population. Our current analyses show that haplotypes

can detect associations with genes that single SNP analysis cannot,

supporting the original motivation for undertaking these analyses.

There are two differences in our current haplotype analysis

compared to our earlier single SNP and multi-marker logistic

regression models: First, in the present analysis we adjusted for

measurement time (inverse relationship) and vaccine groups (six

regimes since 1984) only because these factors exert strong effects

on vaccine-induced antibody level [2]. We did not, as previously

done, adjust for number of doses, age group, sex and village;

however, these covariates do not affect peak anti-HBs level, except

for a borderline effect of village. We thus deemed it unnecessary to

include these factors in our adjusted haplotype analysis. Secondly,

our haplotype analysis was run separately for unrelated and family

data initially; these two samples were then also analyzed together

(combined analysis), thus mirroring the single locus analysis. In

general, the global tests for the combined analysis reflected the

results obtained for the unrelated and family data, indicating that

combining unrelated and family data in the same model is

appropriate. In addition, our current results were corrected for

multiple testing, using FDR.

Although we did find strong associations with the two genes

(CD44 and CD58) that were also detected with single SNPs, we

found additional genes for which single SNP analyses failed to

detect associations. CD44 is a cell-surface glycoprotein which

affects IFNc expression that is involved in a wide variety of cellular

functions including lymphocyte activation, recirculation and

homing. A recent study in HBV transgenic and knockout mice

reported that CD44 affects the interaction between liver sinus

endothelial cells and cytotoxic T lymphocytes as well as IFNc
levels [12]. Immune responses to HBV vaccination may therefore

be altered by variation in the CD44 gene. Our three-SNP

haplotype association (rs353644-rs353630-rs7937602, Table 1)

confirms earlier findings of two individual SNPs (rs353644 and

rs7937602, Table S1) and was more significant than the single

locus associations, indicating that the haplotype is a better

predictor for peak anti-HBs level than the single markers alone.

Similarly, two previous single locus associations (rs1414275 and

rs1016140, Table S1) between variation in CD58 (LFA3) and peak

anti-HBs level were confirmed in the haplotype analysis,

comprising three SNPs (rs1414275-rs11588376-rs1016140,

Table 2). CD58, together with other T cell co-stimulatory

molecules, has been shown to increase the quantity and magnitude

in the avidity of T cells in recombinant poxvirus vaccine models in

Table 5. Haplotype effects in unrelated, family and combined data sets for IL1R1 (rs2287047-rs997049-rs3917299) a.

Unrelated (Unadjusted p = 0.001*,
Adjusted p = 0.85)

Family (Unadjusted p = 0.05, Adjusted
p = 0.02*)

Combined (Unadjusted
p = 0.005*, Adjusted p = 0.02*)

Haplotype Haplotype Freq
Add Val
(95% CI) P-value

P-value
adjusted Freq

Add Val
(95% CI) P-value

P-value
adjusted

Add Val
(95% CI) P-value

P-value
adjusted

A-A-A 1-1-1 0.41 referent 0.51 0.71 0.42 referent 0.04* 0.32 referent 0.25 0.56

A-A-G 1-1-2 0.18 0.03
(20.51–0.58)

0.08 0.70 0.14 0.079
(20.58–0.74)

0.16 0.98 0.08
(20.14–0.30)

0.02* 0.64

G-A-A 2-1-1 0.29 0.21
(20.15–0.57)

0.18 0.37 0.28 20.18
(20.82–0.45)

0.02* 0.30 20.11
(20.32–0.10)

0.48 0.36

G-T-A 2-2-1 0.09 20.45
(21.13–0.23)

0.53 0.03* 0.14 0.09
(20.53–0.71)

0.52 0.75 0.06
(20.14–0.27)

0.37 0.75

aEquivalent to SNP 145, 146, 147 IDs in [17].
Adjusted p-values are corrected for measurement time (between last vaccination and peak antibody level assessment) and vaccine group (six regimes since 1984).
Asterisks denote results significant after correction for multiple testing. Additive values and 95% Confidence Intervals are given for haplotypes after adjusting for
measurement time and vaccine group. Correction for multiple testing using false discovery rate (FDR – q = 0.2) was performed separately in the unrelated, family and
combined data accounting for 1,376 tests in the unadjusted and 111 tests in the adjusted analysis, respectively 19. For specific haplotype tests correction for multiple
testing with FDR accounts for the number of haplotypes examined (4 haplotypes). Therefore anything ,0.05 in the adjusted or unadjusted analysis was significant after
correction for multiple testing.
doi:10.1371/journal.pone.0012273.t005
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mice [25]. It is not clear whether these effects were due to the

generation of more effector cells from naive T cell populations, the

expansion of memory T cell populations, or both. Comparable

responses may occur in response to HBV vaccination, and it is

possible that CD58 gene variation reduces such responses, in line

with our observation of consistently decreased peak anti-HBs level

in carriers of the variant alleles for the associated SNPs. We should

point out that effects due to haplotype and single SNPs are not

identical because the increases or decreases in peak anti-HBs for

haplotypes is described relative to a referent haplotype. Therefore,

directionality of the association may differ from the results for the

associated allele at a single SNP because different effective

referents are used.

Our previous single locus analyses (Table S1) showed no

(CDC42) or merely trends of association (IL19 and IL1R1) with

level of peak anti-HBs. The haplotype analysis was thus able to

detect significant novel associations for these three genes with

vaccine-induced antibody level. CDC42 is a Rho GTPase that

regulates signalling pathways and thus cellular functions, including

cell morphology, migration, endocytosis and cell cycle progression.

Activation/blocking of Rho GTPases, including CDC42, appears

to affect infectivity, replication and possible metastatic effects of

HBV [26] and HCV [27]. Our results suggest that there may be

subtle modulation of HBV vaccine-induced immunity based on

two polymorphisms (rs2056974-rs2473316) in CDC42. A homo-

logue of IL10, IL19, is a key immune-regulatory cytokine, which

activates monocytes to release IL6 and TNFa; it can promote Th2

immune deviation through a positive feedback loop resulting in

more IL4- and fewer IFNc-producing cells. It’s own production is

regulated by IFNc [28]. Our haplotype results imply that the

three-SNP haplotype rs12409415-rs2056225-rs2243158 confers

protection by leading to an increased peak anti-HBs level. Finally,

IL1R1 is a receptor for IL1a, IL1b and the IL1 receptor

antagonist and thus involved in a multitude of cytokine-induced

and inflammatory responses. Haplotypes in IL1R1 have been

correlated with fever after smallpox vaccination [29]. Whether this

translates into alterations in vaccine-induced antibody level was

not described. We did not see a clear pattern of increased or

decreased anti-HBs level with a three-SNP haplotype (rs2287047-

rs997049-rs3917299) and out of the five associated genes IL1R1

showed the least significant associations.

Previous single locus associations in MAPK8, IL10RA and IFNG

(and to a lesser extent ITGAL) were not confirmed in the haplotype

analysis. It has been proposed that an analysis based on haplotype

analysis is more powerful than that based on individual SNPs in

the presence of multiple susceptibility alleles [19]. This argument

may be supported by our data that provides evidence of

association in some but not all of our haplotye analyses in these

genes. For example, several haplotypes in IL10RA are at or near

significant levels meeting our criteria, but all of the haplotypes

showing suggestive evidence of haplotype association contain the

marker rs4252279 (Table S3). This may indicate that only a single

variant near that SNP affects anti-HBV level in response to

vaccination [19].

All of our associated polymorphisms are either intronic or

located in/near the 39 or 59 UTR regions, and are thus unlikely to

be of direct relevance; for CD44, CD58, CDC42, IL19 cluster

together (see Table S1). In IL1R1 the haplotype correlated with

peak anti-HBs level spanned almost the whole length of the gene.

This suggests that for the former four genes there may be a single

functional variant located nearby, whereas for IL1R1 there may be

several polymorphisms that affect an increase or decrease of

vaccine-induced antibody level. The possible functional implica-

tions of SNPs were assessed using freely available bioinforma-

tics tools (http://snpinfo.niehs.nih.gov/snpfunc.htm and (http://

fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp).

None of the associated SNPs appears to affect transcription factor

binding sites, splicing, introduce a stop codon or similar. The only

exception was CD44 rs1016140 which lies in a transcription factor-

binding site and thus could affect gene expression. This emphasizes

the assumption that functional variants were not genotyped, but are

in LD with associated haplotypes.

To see if there is a common thread across the five genes

associated with anti-HBs in this haplotype-based analysis, we used

a simple bioinformatics tool, PubGene (www.pubgene.org) that

searches PubMed for literature based on a single reference gene

and identifies other genes that are found in conjunction with it in

the literature. Of note, four of the genes we identified in our

haplotype analysis, CD44, IL19, IL1R1 and CD58, all have one

other gene that is frequently co-referenced – IFNc. This may

suggest that the effects of these genes are mediated via a common

pathway, although we recognize that this approach is highly biased

by the current state of the literature and potentially by our

candidate gene selection comprising genes implicated in immune-

regulatory processes with the inclusion of gene families and

coverage of regulatory pathways. Also, we found that at least one

of the genes identified in the single SNP analyses, ITGAL, is

associated with CD58 in the literature.

The only other larger scale report investigating candidate

SNPs/genes (mostly non-HLA) in relation to HBV vaccine

response was published recently [16]. They reported on

associations with SNPs in BTNL2, C5, CCL15, FOXP1, HLA-

B, HLA-DRA, HLA-DRQB1, IL6ST, KLRF1, LILRB4, LY6H,

MBL2, TGFB2, TGFB3, and TNFSF15. There are significant

differences between our and this recent study: The population

background (Gambians compared to Indonesians), the timing of

anti-HBs level measurement (median 9 weeks (i.e. peak)

compared to 6 months post vaccination), the number of doses

of vaccine administered (mostly 3 or 4 compared to 2 doses), the

outcome measures (peak anti-HBs level quantitatively compared

to vaccine responders/non-responders categorised into those with

anti-HBs .100IU/l or ,10IU/l), and the age at vaccination

(infancy compared to .5 years). Therefore, a direct comparison

is not possible. However, we repeated the above exercise of

searching the literature for links between genes flagged up in our

first report (MAPK8, ITGAL, IL10RA, IFNG, CD44, CD58)

[17], this current haplotype report (CD44, IL19, IL1R1, CD58,

CDC42) and the study by Davila et al (see gene list above) [16].

We noted that each of these genes (with exception of BTNL2 and

KLRF1) has been co-referenced with one or more of the others

and IFNG remains the strongest link, followed by CD44 (see

Figure S2. Although this analysis is only based on a literature

search, it serves to reinforce the idea that several genes affecting

HBV vaccine-induced immunity fall into a common pathway. It

would be interesting to see whether screening a larger number of

IFNG SNPs (associated in both Gambians and Indonesians in the

first stage analyses) and using an anti-HBs level in a more

comparable manner might shed more light on the possible effect

host genetic variation in this gene on HBV vaccine-induced

antibody level. Similarly, a further screen including the hits from

the Indonesian study not previously screened in Gambians would

be warranted.

In conclusion, in this current analysis we identified haplotype

associations with peak HBV vaccine-induced antibody level in

CD44 and CD58 that include individual SNPs previously identified

to associate with this outcome. Additionally, haplotypes in CDC42,

IL19 and IL1R1 associated with peak anti-HBs level. These

haplotypes did not include SNPs previously identified to associate
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with peak anti-HBs level in a single locus analysis at the GMT

.1.5 or ,0.6 and p#0.001 level. Therefore, novel associations

with HBV vaccine-induced immunity that would have been

missed with the traditional single locus analysis have been

identified in this haplotype screen. Biological mechanisms and

pathways underlying immune-responses induced by vaccination

identified through genetic association studies (e.g. possibly IFNc
associated molecules in our example), will ultimately help to

further the development of vaccines and reduce disease burden

globally.

Supporting Information

Figure S1 Graphical representation of LD and Haplotype

associations with anti-HBs level (unadjusted analysis) Solid lines

indicate significant (p,0.05) global and individual haplotype

associations with anti-HBs levels. Dotted lines indicate a significant

global association but no individual haplotypic effects. Color of

line denotes which study the significant association occurred in:

black for the unrelated data, green for the family data and red for

the combined data (unrelated and family together). The measure

of LD employed was r2. Associated genes: A) CD44, B) CD58 C)

CDC42, D) IL19 and E) IL1R1.

Found at: doi:10.1371/journal.pone.0012273.s001 (0.72 MB TIF)

Figure S2 Graphical representation of bionetwork of candidate

genes associated with HBV vaccine-induced antibody level in our

previous analysis (Hennig et al 2008) and the current haplotype

analysis in Gambians or the report by Davila et al 2010 in

Indonesians. A simple bioinformatics tool, PubGene (www.

pubgene.org), was used to search PubMed based on reference

genes and identifying other genes that are found in conjunction

with it in the literature. All candidate genes were shown to be

linked in the literature with exception of BTNL2 and KLRF1.

IFNG and CD44 were found to have the highest number of co-

references with other candidate genes associated with anti-HBs. A)

Centered on IFNG (connection count 26, article count 49278), B)

Centered on CD44 (connection count 17, article count 6717).

Hennig BJ, Fielding K, Broxholme J, Diatta M, Mendy M, Moore

C et al. Host genetic factors and vaccine-induced immunity to

hepatitis B virus infection. PLoS ONE 2008; 3(3): e1898. Davila S,

Froeling FE, Tan A, Bonnard C, Boland GJ, et al. (2010) New

genetic associations detected in a host response study to hepatitis B

vaccine. Genes Immun. 2010 Apr;11(3):232-8.

Found at: doi:10.1371/journal.pone.0012273.s002 (0.92 MB TIF)

Table S1 Single SNP analysis results for CD44, CD58, CDC42,

IL19 and IL1R1 (adjusted for measurement time and vaccine

group only).

Found at: doi:10.1371/journal.pone.0012273.s003 (0.06 MB

DOC)

Table S2 Adjusted 1 global p-values for five genes (CD44,

CD58, CDC42, IL19, IL1R1) that were followed up in the

haplotype analysis.

Found at: doi:10.1371/journal.pone.0012273.s004 (0.13 MB

DOC)

Table S3 Global unadjusted haplotype associations with anti-

HBs level in unrelated, family and combined data for all 117 genes

assessed as part of the haplotype analysis.

Found at: doi:10.1371/journal.pone.0012273.s005 (1.15 MB

DOC)
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