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An integrated single-tooth modeling scheme is proposed for the 3D dental model acquired by optical digitizers. The cores of
the modeling scheme are fusion regions extraction, single tooth shape restoration, and single tooth separation. According to the
“valley” shape-like characters of the fusion regions between two adjoining teeth, the regions of the 3D dental model are analyzed
and classified based on the minimum curvatures of the surface. The single tooth shape is restored according to the bioinformation
along the hole boundary, which is generated after the fusion region being removed. By using the extracted boundary from the
blending regions between the teeth and soft tissues as reference, the teeth can be separated from the 3D dental model one by
one correctly. Experimental results show that the proposed method can achieve satisfying modeling results with high-degree
approximation of the real tooth and meet the requirements of clinical oral medicine.

1. Introduction

As the 3D (three dimensional) dental model can be acquired
easily through different kinds of intra or extra oral measure-
ment methods including optical digitizers [1–3], CT (CBCT)
[4, 5] and MRI [6], CAD (Computer-Aided Design)/CAM
(Computer-Aided Manufacturing) has been introduced to
dentistry and achieved great success in clinical applications
[7–10] such as orthodontics, oral and maxillofacial surgery.
Dental restorations can be designed and manufactured much
more easily compared with traditional complex and labor-
intensive process. Pre- or postsurgery simulation can be
used to achieve assessment of dental skeletal relationships
and facial aesthetics, audit orthodontic outcomes with
regard to soft and hard tissues, and direct 3D treatment
planning.

In general, the 3D dental models (including 3D single-
tooth) used in CAD/CAM dentistry system are mostly
obtained by optical digitizers, which is typically represented
by using a watertight triangular mesh. The 3D dental model
is an integral model without obvious blending boundary
between the single-tooth and the soft tissues. Two adjoining
teeth sometimes are fused together and without obvious
tooth gap, due to teeth overlapping, lower measurement

precision, and limited resolution triangulating methods
during digitizing step. In order to satisfy the prerequisites
of manufacturing the dental restorations and assessing the
virtual dental behaviors, the teeth have to be independent
of each other and keep the original shape of the real tooth.
The accurate single-tooth shape restoration and extraction
techniques for the 3D dental model play a vital role in
CAD/CAM dentistry system.

Although the surface of the 3D dental model is extremely
irregular and complex, the fusion regions between adjoining
teeth and the blending regions between teeth and soft tissues
are distributed like “valleys” on the 3D dental model. So, the
regions of the 3D dental model can be analyzed quantitatively
by applying the corresponding geometric differential compo-
nent [11, 12]—minimum curvature. The regions identified
based on the geometric differential component are the
clustering of vertices with similar curvature behavior, which
may also include the nontarget regions. In graphics field,
the target regions are usually selected by using the window
polygon selection mapping method [13], which is difficult to
deal with the feature regions of the 3D dental models with
complex surface. In this paper, we propose a spatial polygon
selection method, of which the edge is straight “line” on the
3D dental model surface.
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After the fusion regions are selected and removed, the
corresponding holes will be generated on the 3D dental
model. Researchers have done lots of work on shape restora-
tion for the triangle mesh models. The existing approaches
can be classified into two main categories: the nongeometric
[14–16] and geometric [17–21]. (1) Non-geometric methods
are mainly based on the attributes of the boundary and its n-
ring neighbor vertices, in order to reconstruct the field func-
tion [14, 15] or implicit surface [16] which can describe the
missing part approximately. The corresponding restoration
surface patch is generated by using the isosurface extraction
method [22]. The restoration result of the nongeometric
methods is unique, which cannot achieve restoration with
given continuity, and the overall efficiency of these kinds
of algorithm is low. (2) In geometric methods, the hole
boundary is triangulated based on the mapping plane [20]
or spatial triangulation method [18] to get an initial surface
patch firstly, and then the initial surface patch is refined and
reshaped to obtain the restoration surface patch. The key
of the geometric methods is the triangulation of the hole
boundary and the following reshaping adjustment.

The blending region between two adjacent teeth with
obvious tooth gap is similar to a flipped “saddle” shape
surface, of which the left and right sides reflect the local shape
of the corresponding single-tooth, respectively. Because the
surface patch reconstructed by using the existing shape
restoration method represents the “whole” instead of the
“partial” nature of the model, if the holes formed after
the fusion regions being removed are directly filled without
being further processed, we will get the restoration results
similar to the original model which fails to satisfy the
biocharacteristics of the single-tooth (see Figure 1(c)). In
this paper, we propose a single-tooth shape restoration
approach: the hole is firstly divided into two subholes and
triangulated separately by using the occlusal plane as the
reference; secondly, the triangulation result corresponding
to each subhole is subdivided and reshaped as a whole
according to the biocharacteristics of the single-tooth.

After the 3D dental model has been shape restored, the
single-tooth can be extracted from the 3D dental model.
Various techniques [23–25] have been proposed to segment
3D dental model, which are based on the plane view image
information of the 3D dental model. The above methods are
limited to segment dental models with mild malocclusion,
and missed interstices or wrong cuts will be introduced when
dealing with models with severe malocclusion. In this paper,
we propose a segmentation boundary extraction method,
which is applied directly on the 3D dental model and can
separate the single-tooth from the 3D dental model correctly.

The single-tooth modeling techniques of the 3D dental
model are very important and nontrivial (see Figure 1). In
this paper, we present an integrated modeling scheme, which
mainly includes the following steps.

(1) Digitize the 3D dental model through extra or intra
oral measurement method.

(2) Analyze, select, and remove the fusion regions
between the adjacent teeth.

(3) Restore the shape of the single-tooth.

(4) Analyze and select the blending region between the
teeth and soft tissues.

(5) Extract the segmentation boundary and separate the
tooth from the 3D dental model.

2. Digital Dental Model Acquisition

Traditional measuring devices used to measure dental casts
including dividers, calipers have provided the standard of
plaster model analysis [26, 27], but the manual measurement
techniques have disadvantages of being time consuming,
inaccuracte, and capable of making linear measurements
only in a few locations. With advances in computer and
optical technology, the dental cast can be digitized through
various scanning techniques [1–6]. The 3D dental model can
benefit CAD/CAM dentistry in accuracy, efficiency, and ease
of measurement of tooth size, arch form, and its dimensions.

In this paper, the 3D dental model is scanned from
plaster models with a commercially available 3D scanner
MCS-30 [28] depending on the structured light technique.
A video camera records the structured light distortions
after it has been projected over the study models, and then
the computer processes the recorded images and merges
them together to create a complete 3D dental model. The
precision of the 3D scanner MCS-30 with 1280∗1024 image
resolution can reach 10 μm. The average triangle numbers of
the mesh that can meet the clinical precision requirement are
usually no less than 20 thousands. The 3D dental model is
represented by using a watertight or 2-manifold triangular
mesh and usually stored as (Stereo-lithographic) STL or
(Virtual Reality Modeling Language) VRML format.

3. Feature Regions Analysis and Extraction

3.1. Notation. Let M be the 2-manifold triangular mesh
corresponding to surface S embedded in R3, V = {v1,
v2, . . . , vn} denote the set of vertices in M · −→n vi represents
the unit normal vector of vertex vi. We define NeiV 1(i) as
1-ring neighbors of vertex vi, and get n-ring neighbors
NeiVn(i) through recursively enlarging the radius of the
current neighborhood:

NeiV 1(i) = {i} +
{
j | ∃ edge

(
vi, vj

)}
,

NeiVn(i) = NeiV 1
(
NeiVn−1(i)

)
(n > 1)

(1)

NeiT1(i) is defined as the 1-ring neighboring triangles that
share vertex vi · |NeiV 1(i)|, |NeiT1(i)| denotes the set size
of NeiV 1(i) and NeiT1(i), respectively.

3.2. Differential Characteristics Analysis of the 3D Dental
Model. Let p be a point on surface S. Consider all curves
Ci on S passing through the point p. Every such Ci has an
associated curvature κi given at p. Of those curvatures κi,
at least one is characterized as maximal κmax and one as
minimal κmin, and these two curvatures are known as the
principal curvatures of S. In mathematics, the minimum
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(a) (b) (c) (d)

Figure 1: A general scheme of the single-tooth modeling.(a) Zoom view of the local region corresponding to the left first and second
molars. (b) Fusion region identified and removed. (c) Restoration result with the hole filled directly (d) Restoration result that satisfies the
biocharacteristics of the single-tooth.

curvature κmin is used to describe the hills (κmin > 0)
and valleys (κmin < 0) of the 3D models, while the
maximum curvature is used to describe ridges (κmax > 0)
and depressions (κmax < 0).

After a detailed analysis of the 3D dental model’ bioshape
characteristics, we find that the blending region between
the teeth and soft tissues, the fusion regions between
adjoining teeth, and regions including alveolar bone ridges
are distributed like “valleys” on the 3D dental model, while
the regions corresponding to the incisal edges, cusp tips
are “ridges” like. So, the feature regions of the 3D dental
model can be classified quantitatively by using the principal
curvature information.

For the smooth triangular mesh model with uniform
triangles, the second-order differential components can
be solved by using the corresponding discrete differential
geometry operators with guarantee accuracy, which are
constructed based on the Laplace-Beltrami operator and
spherical mapping methods [11]. But when the triangle
shape is irregular and the mesh model is noisy, the cal-
culation results will have much deviation compared with
the real value. In this paper, we propose a local surface
fitting based method used to estimate the second-order
differential properties, which is proved to be robust and
accurate in the following experiments. The local shape of any
arbitrary complex surface can be described approximately by
an m (m ≥ 2)-order polynomial surface:

S(u, v) = (u, v,φ(u, v)
)
,

φ(u, v) =
∑
ak,s f

(
uk, vs

)
, 0 ≤ k + s ≤ m, k ≥ 0, s ≥ 0,

(2)

where ak,s is the polynomial coefficients, f (uk, vs) = ukvs,
(2) is the parameter representation of the m(m ≥ 2)-order
polynomial surface in the local coordinate system. For vertex
vi of the mesh model, the corresponding local coordinate
system Puvφ is determined as follows:

Let vi be the origin point of the local coordinate system.
φ axis coincides with the normal −→n vi of vertex vi. u, v are
orthogonal to each other in the tangents plane Ti of vertex vi.
When φ axis is paralleled to z-axis of the absolute coordinate
system Oxyz after being applied for by a series of rotation
and translation operation, u, v are also paralleled to x, y,
respectively.

Let KNb(vi) = {p1, . . . , pk} denote the k nearest neigh-
bors of vi in its n-ring neighbors NeiVn(i). We apply the

method proposed by Meyer et al. [11] to calculate the discrete
normal vector of the triangular mesh:

−→n vi = 1
4Amixed

n∑

j∈NeiV 1(i)

(
cotαi j + cotβi j

)(
vi − vj

)
, (3)

where αi j and βi j are two angles opposite to the edge
ei j by which vi and vj are connected. Amixed is the weighted
summation of triangle areas from NeiT1(i) of vertex vi.
After −→n vi is obtained, we can get the mapped vertices
KNb(vi)Puvφ = {q1, . . . , qk} of KNb(vi) = {p1, . . . , pk} in
the local coordinate system Puvφ, qk = (uk, vk,φk). After
Puvφ and the vertices KNb(vi)Puvφ = {q1, . . . , qk} are
determined, the local surface S(u, v) fitted to KNb(vi)Puvφ
can be obtained by using the weighted least square method.
In this paper, the corresponding least square error is

δ =
∑

qj∈KNb(vi)Puvφ

∣∣∣φ(uj , vj)− φj
∣∣∣2 · e−di, j /max(di, j ), (4)

where di, j = ‖qi − qj‖, 1 ≤ i, j ≤ k. In order to make the
local surface be solved with high efficiency, m = 2 is applied
in this paper. When k = 16∼20, the local surface can achieve
a better approximation of the real shape. According to the
first and second fundamental forms of S(u, v), the Gaussian
curvature κG and mean curvature κH at u = 0, v = 0 can
be solved. Because the differential characters of the mesh
model at vertex vi can be substituted by the differential
characters of the local surface S(u, v) at u = 0, v = 0, the
minimum curvature κmin(vi) of vertex vi can be calculated by
the following equation:

κmin(vi) = kH −
√
k2
H − kG. (5)

In order to make the solved minimum curvature by (5)
reflect the regional characters much more accurately, the
curvature values have to be smoothed and denoised further:

κmin(vi) =
∑

j∈nei1(i)

θi, jκmin

(
vj
)

, (6)

where θi, j = 1/‖vi − vj‖.
We draw a color map of the minimum curvature values

as shown in Figure 2 to visualize where the high- and low-
curvature areas locate. The highest and lowest curvatures
are corresponding to the red and blue color, respectively, the
remains are assigned colors between red and green according
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Figure 2: Minimum curvature color map of the 3D dental model

to the curvature values. As can be seen from Figure 2, the
region marked with blue can include the fusion regions and
blending regions clearly.

We compare the curvature evaluation method proposed
in this paper with that of Meyer et al. [11] by using the torus
model:

r(u, v) = r
(
x(u, v), y(u, v), z(u, v)

)
,

x(u, v) = (R + r cos v) cosu ,

y(u, v) = (R + r cos v) sinu, 0 ≤ u ≤ 2π, 0 ≤ v ≤ 2π,

z(u, v) = r sin v,
(7)

where R is the wheel radius and r is the tube radius. In this
paper, we choose R = 2 and r = 1 as the torus parameters.
We obtain the corresponding noisy torus model by adding
Gaussian noise with noise level h = 0.1, 0.3, 0.5, 0.7, 0.9, 1.0,
respectively. Figure 3 shows that the mean and Gaussian
curvatures are robust to noise, and the estimation results (see
Figure 4) are much more stable and reliable than those of
Meyer et al. [11] when the differential components of noise
model are calculated by the method proposed above.

3.3. Post Processing of the Feature Regions. After the 3D dental
model has been analyzed based on the minimum curvature
information, the regions of the 3D dental model can be
classified and extracted according to the given curvature
threshold. However, the feature regions extracted usually
contain small pieces and holes (see Figure 5(a)). The small
pieces contained in the feature regions can be identified
efficiently according to the vertex neighboring relationship,
and can be removed from the feature regions automatically
when the vertex number of the small pieces is less than the
given value. We use the mathematical morphology operation
extended from the image field to fill the small holes and
smooth the feature regions boundaries. There are also four
main operators such as dilation, erosion, open and close
included in the 3D mathematical morphology operation
[29].

Let F′denote the index set of the vertices in the feature
regions. ∀ j ∈ F′ ⇒ vj ∈ M = (v1, . . . , vi, . . . , vn),
(1 ≤ j ≤ n), the dilation and erosion morphology operators
corresponding to the 3D models are defined as follows:

dilationn(F′) = {k | ∃ j ∈ F′ : k ∈ NeiVn
(
j
)}

,

erosionn(F′) = {k | NeiVn(k) ∈ F′
}
.

(8)

Dilation operation is used to “attract” the vertices
unmarked as feature vertices but lying inside or at the
boundary of the feature regions and can still keep the “shape”
of the feature region during dilating. Erosion operation
is used to delete undesired branches and will make the
feature regions seem much more smooth and thin. We obtain
the opening operation by consecutively dilating and then
eroding the feature region. The closing operation is obtained
by swapping the applying order:

openn(F′) = erosionn(F′) ◦ dilationn(F′),

closen(F′) = dilationn(F′) ◦ erosionn(F′).
(9)

Multiple application of opening and closing operation
can filter out the noise and artifacts of the feature regions
effectively. Figure 5(b) shows the feature region after being
applied for opening and closing operation.

3.4. Spatial Polygon Selection Method. As can be seen
from Figure 5(c), after being further processed, the feature
regions F′ can include the fusion regions between the adja-
cent teeth and the blending regions between the teeth and the
soft tissues completely. However, because the feature regions
extracted according to the given threshold are the clustering
of the vertices with similar curvature behavior, the nontarget
regions such as areas including alveolar bone ridges are also
extracted. In order to obtain the target regions accurately, the
feature regions have to be divided and selected interactively.
In this paper, we propose a spatial polygon selection method,
of which the edge is straight “line” on the 3D dental model
surface.

Let ps and pe denote the starting position and the
destination on the triangular mesh M. The spatial “line”
α = (ps, p1, . . . , pn, pe) between these two vertices on the
triangular mesh model can be solved approximately by using
the direction tracing method described as follows:

Let −→ni , −−→ni+1 be the normal of pi, pi+1. Assume Q with
unit length is the object being moved on the surface of the
triangular mesh. If pi is the current position, and pi+1 is the
next position Q going along the direction −−→pi pe as shown in
Figure 6(a), we do not change the direction −−→pi pe and make
sure that the pose of Q parallels to the normal −→ni when
Q is moving in the interior of a triangle or along an edge
until it get to pi+1. When Q is at pi+1, we change the moving
direction −−→pi pe into −−−−→pi+1pe, and the pose −→ni into −−→ni+1. Because
(p0, . . . , pi−1, pi, pi+1, . . . , pn) is piecewise linear continuous
and lies over the triangular mesh, pi and pi+1 must belong
to the same triangle. The line segment −−−→pi pi+1 is also the
intersection between the triangle which includes pi,pi+1 and
the normal section π at pi through −−→pi pe. We can obtain pi+1
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(a) (b) (c) (d) (e)

Figure 3: (a) Torus model with R = 2 and r = 1. (b) The accurate mean curvature plot of (a). (c) Gaussian noisy model with h = 0.5; (d)
Mean curvature plot of (c) by Meyer et al. [11]. (e) Mean curvature plot of (c) by the method in this paper.

0

1

2

3

4

5

6

7

M
ea

n
ab

so
lu

te
er

ro
r

fo
r

th
e

m
ea

n
cu

rv
at

u
re

0 0.2 0.4 0.6 0.8 1
Gaussian noise level

Method proposed by Meryer et al. [11]
Method in this paper

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

M
ea

n
ab

so
lu

te
er

ro
r

fo
r

th
e

G
au

ss
ia

n
cu

rv
at

u
re

0 0.2 0.4 0.6 0.8 1
Gaussian noise level

Method proposed by Meryer et al. [11]
Method in this paper

(b)

Figure 4: Average absolute error comparison. (a) Mean curvature. (b) Gaussian curvature.

(a)

(b) (c)

Figure 5: (a) Feature regions extracted corresponding to vertices
marked with blue in the minimum curvature color map. (b) Feature
region before and after being applied for opening and closing
operation; (c) Feature regions of (a) after being processed further.

according to pi, pe and −→ni as shown in Figure 6(a). The
incident triangles of pi intersecting with the normal section
π may be more than one sometime. Let p1

i+1, p2
i+1, . . . denote

the intersection points. We choose p∗i+1 as pi+1 when the angle

between
−−−→
pi p

∗
i+1 and −−→

pi pe is the smallest of all the p∗i+1 ∈

(p1
i+1, p2

i+1 · · · ). Beginning with ps, p1, p2, . . . , pi, . . . is solved
in turn. When pi and pe are in the same triangle, we get the
3D “line” α = (ps, p1, . . . , pn, pe) (see Figure 6).

As shown in Figure 7(a), the edges of the spatial polygon
can be determined by a series of vertices on the 3D model,
which are selected interactively according to the profile of the
target region. The triangles are marked with “select”, of which
the three vertices fall into the inner of the spatial polygon
together.

4. Single Tooth Shape Restoration

After the fusion regions have been removed, the corre-
sponding holes are generated on the 3D dental model. The
holes are typical “saddle shape” and each one is shared by
two adjoining single-teeth (see Figure 1(b)). If the holes are
directly filled without being further processed, we will get
the restored model similar to the original (see Figure 1(c)).
The failure reason is that the hole belongs to two teeth
which are adjoining but independent from each other. If
the hole is filled as a whole, the boundary information
of the two independent teeth will be diffused into the
same restoration surface patch averagely, and cannot reflect
the biocharacteristics of the single-tooth. In this paper, we
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Figure 6: (a) Concept of the direction tracing method (b) Examples of “line” solved on the planar and spatial surface.

(a) (b)

Figure 7: (a) Fusion region extraction example by using the spatial polygon selection method; (b) Results of the fusion regions being
extracted and removed.

present a single-tooth shape restoration approach. In order
to achieve a best approximation of the original tooth, the
restoration process has to satisfy the following prerequisites.

(a) The restoration surface patch corresponding to the
missing part should be reconstructed in a way that
is minimally distinguishable from the surrounding
regions, and should also preserve the sampling
density of the original 3D dental model.

(b) There is no interference between the restored teeth
according to the independence properties of the
teeth. The blending region between the adjacent teeth
has to be natural and continuous.

Let B denote the hole boundary of the 3D dental
model. P represents the filling patch for B. Pmin, Prefine

and Pdeform are the surface patches corresponding to dif-
ferent filling stages: spanning triangulation, refinement,
deformation. Pfinal represents the final restoration result,
which meets the restoration prerequisites.

4.1. Hole Boundary Triangulation. In geometric methods,
the hole boundary is mostly triangulated based on the
mapping plane [20] or spatial triangulation method [18] to
get an initial surface patch. The mapping plane triangulation
methods convert the 3D hole boundary into the 2D polygon
by projecting it onto the mapping plane, which is fitted to the
boundary vertices by the least square method. The mapping
plane triangulation methods can achieve satisfying results
in dealing with the simple regular hole, which is home-
omorphic to a disc after projection. But for the complex
hole with sharp curvature changes along the boundary, there
will appear self-intersection in the projected 2D polygon.
Barequet and Sharir [18] give an interesting solution of the
3D polygon triangulating problem. The spatial triangulation

method [18] has order of O(N3) time complexity (N is
number of the boundary vertices), which is adaptable to deal
with the boundary with small vertices number, but difficult
to triangulate the big hole. In this paper, we proposed
a spatial triangulation method based on local optimized
weight rule, in which various influencing factors that may
affect the triangulation are considered completely.

We define Ω : B3 → L as the weight function, where
B = {vb1 , vb2 , . . . , vbn}, L is the weight set and Ω assigns a
weight for each triangle with three consecutive vertices of B.
LetA(vi) denote the sum of the adjacent angles of the current
vertex vi

A(vi) =
∑

j∈NeiT1(i)

Aj. (10)

During the triangulation process, when 0 < A(vbi ) < απ, after
the new triangle (vbi−1, vbi , vbi+1) is added as shown in Figure 8,
sharp corners or triangle with interior angle close to π will
be formed. In order to avoid such situations to appear, the
candidate triangle (vbi−1, vbi , vbi+1) should be assigned a weight
lless with lower choice priority when 0 < A(vbi ) < απ. we
found empirically that α = 1.2 can yield good results.

In the 2-manifold triangular mesh model, the better
number of neighboring triangles is usually 5 to 8. In order
to avoid too many new generated triangles converge at the
same boundary vertex, the number of the vertex 1-ring
neighboring triangles has to be limited during triangulation.
So, when |NeiT1(i)| > 8, the vertex vbi should be removed
firstly, which means that the candidate triangle (vbi−1, vbi , vbi+1)
should be assigned a weight lbigger with higher choice priority.
At the same time, when the current vertex’ 1-ring neigh-
boring triangles are projected onto their own tangent plane,
there should be no intersection between the projected edges
except at the current vertex itself. So, the new added triangle
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Figure 8: Abnormal results of the triangle being added when A(vbi ) < απ. (a) Form sharp corner; (b) Generate triangle with interior angle
close to π.

(vbi−1, vbi , vbi+1) has to satisfy the nonintersection projection
condition at vbi−1,vbi ,vbi+1 simultaneously.

When |NeiT1(i)| ≤ 8,A(vbi ) > απ, the weight of the
candidate triangle (vbi−1, vbi , vbi+1) should be determined by
its own geometric attributes such as edge length, area, and
interior angle. In order to obtain a triangulation surface
patch with moderate internal changes, the edges should
be distributed along the boundary averagely similar to a
curtain covering at a window, and the vertices of the edges
should be the pairs relative nearest to each other in space.
So, the candidate triangle (vbi−1, vbi , vbi+1) should be weighted
according to its corresponding edge length. The smaller the
perimeter of the triangle is, the higher choice priority it will
have.

Based on the analysis of the influencing factor which will
affect the triangulation results, weight functions Ω, lless, and
lbigger are described as follows:

Ω
(
vbj , v

b
i , vbk

)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(∥∥∥ei j

∥∥∥ + ‖eik‖ +
∥∥∥ejk

∥∥∥
)

when
∣∣NeiT1(i)

∣∣ ≤ 8,

A
(
vbi
)
> απ,

lless when 0 < A
(
vbi
)
< απ,

∣∣NeiT1(i)
∣∣ ≤ 8,

lbigger when
∣∣NeiT1(i)

∣∣ > 8,

−∞ when intersection

after projection,
(11)

where lless(vbj , v
b
i , vbk) = −(π/Asum)∗RC , lbigger(vbj , v

b
i , vbk) =

(|NeiT1(i)|/8)∗RC , and RC is the radius of the model’
bounding sphere. We apply the following procedure to
implement the triangulation process:

vbn+1 = vb1 , vbn+2 = vb2 (12)

Step 1. Compute all the weights Ω(vbi−1, vbi , vbi+1) accord-
ing to the weight function given above for each trian-
gle (vbi−1, vbi , vbi+1) with three consecutive vertices of B, and
insert the weights into L in which the weight is sorted using
an AVL tree.

Step 2. Select the maximum lmax from the weight set L,
and insert its corresponding triangle (vbi−1, vbi , vbi+1) into MC .

Remove the weights of the triangles Ω(vbi−2, vbi−1, vbi ), Ω(vbi−1,

vbi , vbi+1) and Ω(vbi , vbi+1, vbi+2) from L that include vertex vbi .

Eliminate vertex vbi from B, and then BH = {vb1 , vb2 ,
. . . , vbi−2, vbi−1, vbi+1, vbi+2, . . . , vbn}. Compute the weights Ω(vbi−2,

vbi−1, vbi+1), Ω(vbi−2, vbi−1, vbi+1) of the triangle (vbi−2, vbi−1, vbi+1),

(vbi−1, vbi+1, vbi+2), and insert them into L.

Step 3. Execute Step 2 iteratively until the vertex number of
B is less than three, and obtain the initial surface patch Pmin.

4.2. Subhole Division. In order to reconstruct the sur-
face patch with the shape of the flip “saddle”, the hole
boundary B has to be divided into two subholes B1, B2 as
shown in Figure 11(a). Each subhole is corresponding to its
own tooth. The end points of the bridge edge, by which the
hole boundary is bridged to form two separate subholes,
are two points farthest to the occlusal plane on the buccal
and lingual side of the hole boundary respectively, and can
be selected automatically by using the occlusal plane as the
reference. In this paper, the occlusal plane is fitted with four
reference points (including the buccal cusp tips of the left and
right first molars, and the mesiobuccal points of the left and
right first permanent molars) as shown in Figure 9.

The subhole B1 (B2) is first filled in with a local
optimized triangulation Pmin

1 (Pmin
2 ) of its 3D contour (see

Figure 11(b)). The initial subfilling surface patches Pmin
1 ,

Pmin
2 combine a complete initial filling surface patch Pmin for
B together (see Figure 11(c)).

4.3. Refinement. Because the edges in the initial surface
patch Pmin are the direct connections between boundary
vertices, the surface patch Pmin has to be refined according
to the boundary information to obtain a further surface
patch Prefine, which approximates the density of the sur-
rounding mesh. The mesh density is usually measured based
on the average length of the edges. In this paper, the bigger
triangle (vi, vj , vk) is split into three smaller ones by using “1-
3” face splitting method, in which the new added vertex is
the centroid vc = (vi + vj + vk)/3 of the triangle (vi, vj , vk),
and the interior edges are relaxed while splitting to maintain
a Delaunay-like triangulation (see Figure 10).

4.4. Reshaping. Prefine is still a surface patch with C0

continuity both at the boundary and the internal. The surface
patch Prefine has to be reshaped in order to generate a surface
patch, which can both reflect the local characteristics of
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B1

B2

B4

B3

(a) (b)

Figure 9: (a) B1, B2, B3, and B4 are the corresponding reference points. (b) The occlusal plane fitted to the four reference points.
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Split Edge swap
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Figure 10: (a) Refinement and optimization mechanism. (b) Surface patch before and after being refined.

(a) (b) (c)

(d) (e)

Figure 11: (a) Hole bridged to divide into two separate subholes. (b) Triangulation of the subhole. The corresponding shaded and wireframe
surface patches. (c) After completely filling of the entire hole. (d) After refinement. (e) After reshaping adjustment.

(a) (b) (c)

Figure 12: The values of λ determines the deformation degree of the restoration patch. From left to right: the refined mesh patch deformed
with λ = 0.7, λ = 0.85, and λ = 1.0.
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Table 1: The detailed information of the 3D dental models.

Bounding box size (unit: mm)
Vertex (V)/Triangle numbers (T)

Before shape modeling After shape modeling

Model in Figure 16 68.3∗38.1∗50.05 131508 (V)/262140 (T) 148020 (V)/295164 (T)

Model in Figure 17 67.4∗28∗49.8 145548 (V)/290116(T) 186849 (V)/372608 (T)

Table 2: Time consumption and number of vertices (V)/triangles (T) generated at different stages in shape restoration with C1 continuity.

Number of boundary
vertices

Generate Pmin Generate Prefine (including
time consumed

Generate Pfinal (including
time consumed

O (N3) time complexity of
Barequet and Sharir [18]

O(N logN) time
complexity of method in

this paper
during generating Pmin) during generating Prefine)

241 91.40s (241V/239T) 0.015s (241V/239T) 0.297s (4581V/8826T) 1.005s (5264V/10182T)

437 191.844s (437V/435T) 0.016s (437V/435T) 0.392s (6031V/11636T) 1.232s (6844V/12962T)

587 1408.14s (857V/855T) 0.031s (857V/855T) 0.173s (2663V/4628T) 0.677s (2733V/4828T)

1769 12762.3s (1769V/1767T) 0.062s (1769V/1767T) 0.328s (4559V/7342T) 1.104s (4743V/7986T)

CP(i) = 2 CP(i) = 4 CP(i) = 6

Current vertex
Non-feature vertex
Feature vertex

Figure 13: Examples of vertex’ complexity computation.

the missing part and have a good degree of visual reality. In
this paper, we design a reshaping adjustment scheme based
on the discrete Euler-Lagrange equation. The reshaping
adjustment scheme is described as follows.

Let S : Ω → R3 be the smooth surface corre-
sponding to M. S∗ denotes the k-order partial derivatives,
and δΩ stands for the surface boundary. The quadratic
energy function [30] for the surface is

Ek(S) =
∫
Fk(Su···u, Su···uv, . . . , Sv···v). (13)

In order to actually compute the solution to the above
optimization problem, we apply variational calculus to
derive the corresponding Euler-Lagrange equation which
characterizes the minimizers of(13)

ΔkS(x) = 0, x ∈ Ω \ δΩ

Δ jS(x) = bj(x), x ∈ δΩ, j < k,
(14)

where Δ is the Laplace Operator, bj ( j < k) is the boundary
constraints. In order to ensure the efficiency and stability
of algorithms, the value range of k are limited to 1 ≤ k ≤

3. When we use a triangle mesh as the underlying surface
representation, the Laplace operator is discretized as

Δ(vi) = 2
Area(vi)

∑

j∈NeiV 1(i)

(
cotαi j + cotβi j

)(
vi − vj

)
, (15)

where Area(vi) is the area sum of the vertex’ 1-ring neigh-
boring triangles, and αi j and βi j are two angles opposite to
the edge ei j . The higher order Laplace operator can be solved
iteratively

Δ
k
(v) = Δ

(
Δ
k−1

(v)
)
. (16)

And then, (14) becomes a linear equation with sparse matrix
⎡
⎣ Δ

k

0 | IF

⎤
⎦
⎛
⎝P
F

⎞
⎠ =

⎛
⎝0

F

⎞
⎠, (17)

where P = (v1, . . . , vp) are the free vertices interior of the
surface patch. F = ( f1, . . . , fF) are the constraint vertices
with Ck−1 boundary continuity. For k = 1, k = 2, and
k = 3, the surface solved from (17) is corresponding to
a membrane with minimization surface area, a thin plate
with minimization bending, and a surface with minimization
curvature variation, respectively.

According to the geometric characteristics of the tooth
surface, the surface patch obtained after being reshaped
should be a surface with minimum bending variation. So,
the constraint parameter k is assigned the value 2 in this
paper. During the deformation stage, the triangles that have
greater shape change should be refined again. If we apply
Pdeform as the final result Pfinal directly, small interference
will appear between the adjoining teeth sometimes (see
Figure 12). We use the following equation to control the
deformation degree:

Pfinal = Prefine + λ
(
Pdeform − Prefine

)
, 0 < λ ≤ 1. (18)

Figure 12 shows the restoration results with λ assigned
different values. The value of λ determines the deformation
degree of the restoration patch.
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(a) (b) (c) (d)

Figure 14: Procedure of segmentation boundary extraction and single-tooth separation. (a) 3D dental model with extracted feature regions.
(b) after peeling. (c) after pruning. (d) single-tooth separation.

(a) (b) (c)

Figure 15: Triangulation results comparison. (a) Bunny model with complex hole. (b) Triangulation result by Barequet and Sharir [18]. (c)
Triangulation result by the method in this paper.

5. Single Tooth Extraction

After the 3D dental model has been shape restored, the
single-tooth can be extracted from the 3D dental model.
The differential information of the 3D dental model is re-
analyzed and processed by using the methods proposed
above. As can be seen from Figure 14(a), the feature regions
identified based on the minimum curvature value can
include the blending regions completely, and has already
possessed the coarse profile of the segmentation boundary.
The feature regions are still too coarse to be accepted as
the segmentation boundary. We have to peel the vertices of
the region boundary inward until obtaining its skeleton with
width of one vertex. The key step of the boundary extraction
is how to judge a vertex should be peeled or not, and the
skeleton must follow the original topology of the feature
region. In this paper, the segmentation boundary extraction
procedure is designed based on the vertex complexity [29]

∀i ∈ F′; let Cnei(i) denote the 1-ring neighborhood of
vertex vi ordered counter clockwise. ∀k ∈ Cnei(i); if k ∈
F′ at the same time, we record Cnei(i)k = 1 or Cnei(i)k = 0.
With the above assumption, the vertex complexity CP(i) of
vi is defined as follows (see Figure 13):

CP(i) =
k≤m∑

k=1

∣∣Cnei(i)k − Cnei(i)k+1

∣∣. (19)

If CP(i) ≥ 4, vertex vi is defined to be complex.
If Cnei(i) ⊆ F′, vertex vi is defined as center vertex. The
neighbor of the center vertex is called satellite vertex, when
its corresponding complexity is no less than zero. During the
boundary extracting, the center vertex and complex vertex
are marked as feature vertices that should be preserved. If the
center vertex is removed, small close ring will be formed in

the inner of the feature region, and the regional connectivity
will be undermined if the complex vertex is removed. The
set of satellite vertices is denoted by FS, center vertices by FC ,
and complex vertices by FCP. Then, we obtain the set of
candidate vertices FD that will be removed as follows.

FD = FS ∩ FCP ∪ FC. (20)

We remove one vertex from the candidate set FD each
time, and recalculate its neighboring vertex’ complexity
simultaneously. The set FS, FC , FCP and FD are updated after
each removing. The removing and updating operation is
iterated until the “shape” of the feature regions does not
change anymore.

The skeleton obtained after being applied for the above
operation also contains unnecessary open branches as shown
in Figure 14(b). Because the segmentation boundary used to
extract the single-tooth is a set of closed rings. The branches
can be identified and pruned by deleting the line segment
from the skeleton iteratively, which has at least one endpoints
only connected with itself. Sometimes, there will be small
redundant close rings existing, which is need to be removed
interactively. After pruning, we obtain the segmentation
boundary as shown in Figure 14(c). Figure 14(d) shows
the single-tooth extracted according to the segmentation
boundary.

6. Experimental Results and Analysis

In order to verify the validity and adaptability of the
proposed method, we have conducted a series of experiments
on various types of 3D models. Figures 16 and 17 show
the modeling results of the two typical kinds of 3D dental
models (see Table 3) including model with normal tooth
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(a) (b) (c) (d) (e) (f)

(g)

(h)

Figure 16: Single-tooth modeling results of 3D dental model with normal tooth arrangement. (a) The initial 3D dental model. (b) Minimum
curvature color map. (c) Separation results shown as a whole corresponding to the initial 3D dental model. (d) After the fusion regions being
deleted. (e) After single-tooth shape being restored. (f) Separation results corresponding to the 3D dental model after shape restoration. (g)
The separated tooth in (c) displayed, respectively. (h) The separated tooth in (f) displayed, respectively.

(a) (b) (c) (d) (e) (f)

(g)

(h)

Figure 17: Single-tooth Modeling results of 3D dental model with severe malocclusion. (a)The initial 3D dental model. (b) Minimum
curvature color map. (c) Separation results shown as a whole corresponding to the initial 3D dental model. (d) After the fusion regions being
deleted. (e) After single-tooth shape being restored. (f) Separation results corresponding to the 3D dental model after shape restoration. (g)
The separated tooth in (c) displayed, respectively. (h) The separated tooth in (f) displayed, respectively.
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(a) (b) (c) (d)

Figure 18: Triangulation mechanism. (a) Initial hole. (b) Eliminating saw tooth and smooth the boundary. (c) Closing the hole in the
zipping way. (d) The triangulation results.

Table 3: Models corresponding to different boundaries in Table 2 before and after shape restoration.

Number of boundary vertices 241 437 587 1769

Original hole model  

Restoration with C1 continuity 

arrangement and model with severe malocclusion. Table 1
shows the detailed information of the 3D dental models
including bounding box size, vertex/triangle numbers before
and after shape modeling.

As can be seen from Figure 2, the minimum curvature
calculation method proposed in this paper can detect the
fusion regions effectively. After the 3D dental model has
been analyzed quantitatively based on the minimum cur-
vature, and processed further by applying the morphology
operation, we can extract the target regions according to the
corresponding regional characteristics (see Figure 7(b)).

Figure 6 shows that the spatial “line” solved by the direc-
tion tracing method proposed is an approximate geodesic
curve, which has a linear time complexity of O(n), where n is
the vertex number of the “line”. The polygon selection is real-
time, and the time consumed can be omitted. So, the target
regions can be selected fast and intuitively (see Figure 7).

When we use the weight rule proposed in this paper to
triangulate the hole boundary, at the initial stage, because
the number of the neighboring triangles is small, the
boundary is triangulated primarily based on the adjacent
angles and the perimeter of the candidate triangle. As shown
in Figure 18(b), the initial stage is also a process used to
eliminate the saw tooth and smooth the boundary. As the
boundary is triangulated continuously, the weight rule will
select a vertex at the corner with the highest choice priority
as the forwarding location. The two vertices of the new
added edge usually have much higher choice priority than
the rest of the boundary, which will drive the triangulation
forward until a curtain like surface patch is covering at the
boundary (see Figures 18(c) and 18(d)). The weight rule
divides the triangulation process into boundary smoothing

and boundary zipping approximately, by which a uniform
and natural triangulation surface patch can be obtained.The
time complexity of the proposed method is O(N logN) (N is
the number of the boundary vertices).

As can be seen from Figures 10 and 11, the refinement
surface patch can achieve a similar mesh density with the
original model, which can avoid the situation of irregular
triangles to appear when the surface patch is applied by
the reshaping adjustment operation. During the reshaping
adjustment stage, in order to control the deformation degree,
the parameter λ was introduced in (18) to ensure the
restored surface patch satisfies both the continuality and
noninterference conditions. We apply the method proposed
by Park [31] to detect the self-intersection. The parameter
value of λ is limited to the range from 0.8 to 1.0 based on
a great deal of experimental analysis, and the adjustment
step τ should not be bigger than 0.01. Then, the deformation
degree can be adjusted from λ = 1 to λ = 1 − k∗τ
automatically until there is no intersection existing. We
apply the incremental least squares method [32] to solve the
reshaping matrix, which can reach the rate of 50000 vertices
per seconds on the personal computer with P4, 2.4 GHz
processor.

We compared the triangulation quality (see Figure 15)
and efficiency (see Table 2) with the method proposed by
Barequet and Sharir [18]. As can be seen from Figure 15,
the method proposed in this paper can deal with complex
holes with much more uniform triangulation result than
that of Barequet and Sharir [18]. The triangulation efficiency
of [18] is measured in minutes, and it takes no less than
half an hour to deal with the 13–15 holes of the 3D dental
model (without single-tooth missing), which cannot meet
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the actual efficiency needs. Statistical results of Table 2 show
that the average triangulation and restoration efficiency can
reach 20000 V/s and 4000 V/s, respectively by using the
method proposed in this paper. The vertex number of the
restoration surface patch is usually 1/30∼1/40 of the original
3D dental model. So, the whole shape modeling procedure of
the 3D dental model can be complete in 2∼3 minutes.

Figure 14 shows that the blending regions between the
teeth and the soft tissues can be extracted completely.
Because the skeleton of the nontarget regions such as areas
including alveolar bone ridges is open branches, which can
be removed automatically in the pruning stage, the nontarget
regions donot need to be removed interactively. The regions
can be used to the extract segmentation boundary directly.

The separated teeth in Figures 16 and 17 show that the
modeling techniques proposed in this paper can restore the
shape of the single-tooth and segment the teeth correctly.

In order to test the accuracy, we have done lots of
experiments on comparing the restored tooth with its
corresponding plaster single-tooth. Statistical results show
that the radial deviation between this two models is usually
ranging from 0 to 50 um, which can meet the clinical
requirements.

7. Conclusion

In this paper, we proposed an integrated single-tooth mod-
eling scheme, which is mainly composed of fusion regions
extraction, single-tooth shape restoration and separation. As
can be seen from the above examples, the modeling results
can satisfy the biocharacteristics of the real tooth. Unlike the
method based on plan-view range image of teeth, we directly
compute bioinformation needed on the 3D dental model.
We have demonstrated that the modeling scheme can achieve
satisfying modeling results with high degree approximation
of the original tooth and meet the requirements of clinical
oral medicine.
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