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Molecular chaperones often possess functional modules that
are specialized in assisting the formation of specific structural
elements, such as a disulfide bridges and peptidyl–prolyl bonds
in cis form, in the client protein. A ribosome-associated molec-
ular chaperone trigger factor (TF), which has a peptidyl–prolyl
cis/trans isomerase (PPIase) domain, acts as a highly efficient
catalyst in the folding process limited by peptidyl–prolyl
isomerization. Herein we report a study on the mechanism
through which TF recognizes the proline residue in the
unfolded client protein during the cis/trans isomerization
process. The solution structure of TF in complex with the
client protein showed that TF recognizes the proline-
aromatic motif located in the hydrophobic stretch of the
unfolded client protein through its conserved hydrophobic
cleft, which suggests that TF preferentially accelerates the
isomerization of the peptidyl–prolyl bond that is eventually
folded into the core of the protein in its native fold. Molecular
dynamics simulation revealed that TF exploits the backbone
amide group of Ile195 to form an intermolecular hydrogen
bond with the carbonyl oxygen of the amino acid residue pre-
ceding the proline residue at the transition state, which presum-
ably stabilizes the transition state and thus accelerates the
isomerization. The importance of such intermolecular hydro-
gen-bond formation during the catalysis was further corrobo-
rated by the activity assay and NMR relaxation analysis.

Newly synthesized proteins, nascent polypeptides emerge
out of the ribosome in an unstructured nonnative state and are
then folded into their innate three-dimensional structures to

fulfill their specific biological activities (1). Protein folding often
requires the assistance of molecular chaperones. The molecular
chaperones not only transiently protect the client proteins from
the nonspecific hydrophobic interactions with other proteins
(2, 3) but also assist in the formation of specific structural ele-
ments in the client proteins, such as disulfide bridges or
peptidyl–prolyl bonds in cis form that are often required in the
native fold. Because the formation of these specific structural
elements can be a rate-limiting step in the folding pathway,
several molecular chaperones possess specific functional mod-
ules that are specialized for the formation of such structural
elements (4 –7).

Trigger factor (TF),3 a bacterial chaperone that interacts with
nascent polypeptides immediately after their emergence from
the ribosome (8), has an FK506-binding protein (FKBP)-type
peptidyl–prolyl cis/trans isomerase (PPIase) domain (PPD),
along with the other two domains, i.e. the ribosome-binding
domain (RBD) and the substrate-binding domain (SBD) (9).
The transition between the cis and trans forms of peptidyl-
prolyl bond, in which the � dihedral angle is �0° or 180°,
respectively, occurs very slowly in the absence of PPIases
because of the high energy barrier imposed by the partial dou-
ble bond character of the peptide bond. Even though the trans
form is usually more populated than the cis form in the
unfolded proteins, the protein folding may require either of the
two forms to fit in the native fold. TF acts as a highly efficient
catalyst in the folding process limited by peptidyl–prolyl isomer-
ization (10, 11). Consequently, deletion of the TF gene results in
severe aggregation of many proteins including cytosolic and mem-
brane proteins as well as the cold-sensitive phenotype (12, 13).
Even Mycoplasma genitalium, which comprises a minimal set of
genes, has TF as a sole PPIase (14), highlighting the importance of
the PPIase activity of TF in protein biogenesis.

Despite its important roles in the cell, the mechanism
through which TFPPD catalyzes the peptidyl–prolyl cis/trans
isomerization, as well as the mechanism for the other members
of the FKBP-type PPIase family, still remains unclear. Although
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PPIases are thought to promote proline cis/trans isomerization
by stabilizing the high energy transition state, the mechanism of
this stabilization has not been clarified to date, even after sev-
eral important works including biochemical studies on TFPPD

(15, 16) and crystallographic studies on PvFKBP35 (17) and
SlyD (18, 19) in complex with proline-containing peptides. The
lack of a comprehensive structural study that can track the
entire cis/trans isomerization process has hindered the elucida-
tion of the mechanism. Further insight into the structure of the
PPIase in complex with the client protein both at the ground
state and at the transition state is required.

Herein we report an integrated study on TFPPD exploiting
solution NMR, molecular dynamics (MD) simulation, and
activity assay. The solution structure of TFPPD in complex with
a proline-containing fragment of maltose-binding protein
(MBP) has unveiled the mechanism by which the proline resi-
due is recognized by TFPPD, and MD simulation has shed light
on the complex at the transition state. Our results show that the
conserved hydrophobic cleft of TFPPD recognizes the trans
form of the proline-aromatic motif in the client protein and that
an intermolecular hydrogen bond between the backbone amide
group of Ile195 in TFPPD and the carbonyl oxygen of the amino
acid residue preceding the proline residue in MBP is formed at
the transition state. These results suggest that the hydrophobic
environment around the peptidyl–prolyl bond and the inter-
molecular hydrogen bond at the transition state play major
roles in the proline cis/trans isomerization.

Results

TFPPD recognizes proline residue in the hydrophobic region

Interaction between TF (Fig. S1A) and an unfolded substrate
protein was first investigated by NMR. MBP was used as an
unfolded substrate protein. To ensure the solubility and stabil-
ity in the unfolded state, MBP was divided into short fragments
and six fragments of MBP (20) were prepared: MBP29 –99,
MBP97–164, MBP160 –201, MBP198 –265, MBP260 –336,
and MBP331–396. All of the MBP fragments exhibited narrow
chemical shift dispersion in the 1H-15N HSQC spectra, which is
characteristic to unfolded proteins (Fig. S1B). MBP consists of
396 amino acids and contains 21 proline residues. To identify
the interaction sites on the unfolded MBP, the tandem domain
TFPPD-SBD, which possesses all of the five substrate-binding
sites (21), was titrated into isotopically labeled MBP fragments,
and the perturbation of each resonance from the MBP frag-
ments was monitored (Fig. S1B). The addition of TFPPD-SBD

induced a significant reduction in the intensity of the reso-
nances because of the size of the protein and the binding kinet-
ics. Differential line broadening analysis showed that a total of
12 regions of MBP are recognized by TF (Fig. 1A and Fig. S2A).
The continuous stretch consisting of more than four amino
acid residues with significant intensity reduction upon the
addition of TFPPD-SBD was defined as a binding site. These TF-
recognition sites contain highly hydrophobic regions (Fig. 1A)
and are located on the core of MBP in its native fold (Fig. S2B).
The regions recognized by TF are enriched with hydrophobic
amino acids including aromatic residues, such as tryptophan
and phenylalanine, as well as bulky hydrophobic aliphatic

amino acids such as leucine and valine (Fig. S2, C and D). This
binding preference of TF toward hydrophobic and aromatic
amino acid residues is consistent with the results obtained in
the previous studies that used other unfolded protein sub-
strates (21, 22). The regions recognized by TF closely resemble
those recognized by SecB chaperone (20), which suggests that
the two chaperones share similar binding specificity. Thermo-
dynamics parameters of the interaction between TFPPD-SBD and
MBP198 –265 estimated by isothermal titration calorimetry
(ITC) experiment (Fig. S3), �G �5.8 � 0.1 kcal/mol, �H
�5.9 � 0.4 kcal/mol, and �T�S 0.1 � 0.5 kcal/mol, indicated
that the binding is enthalpy-driven. The same trend was also
seen for another bacterial chaperone SecB interacting with
unfolded MBP (20), implying the shared binding properties
between the two chaperones. The dissociation constant Kd was
calculated as 47 � 9 �M, indicating that the binding between TF
and MBP is relatively weak. Among the 21 proline residues in
the MBP sequence, four residues are located in the hydropho-
bic regions and are recognized by TF (Fig. S2, A and D). The
proline residues in the hydrophilic regions did not interact with
TF, which is in accord with the previous report showing that TF
has no specificity toward proline residue (22).

To further investigate the recognition of the proline-contain-
ing hydrophobic stretches of MBP by TF, the two fragments of
MBP containing proline residues in the hydrophobic stretches,
MBP160 –201 and MBP198 –265, were subjected to titration
experiments with isolated domains of TF, TFPPD and TFSBD.
Both domains were titrated into isotopically labeled MBP160 –
201 and MBP198 –265, and the interaction was monitored by
NMR (Fig. S4A). Several resonances on the 1H-15N HSQC spec-
tra were specifically affected by the addition of TFPPD or TFSBD.
A significant line broadening, with a consequent intensity
reduction, was observed by the addition of TFSBD, whereas
both line broadening and chemical shift perturbation were
observed upon the addition of TFPPD (Fig. S4A), reflecting the
difference between the domains with regard to binding kinetics
and molecular weight. For clarity, intensity changes were eval-
uated and compared in the analysis. As seen in the titration of
TFPPD-SBD, the addition of TFSBD and TFPPD induced a signifi-
cant intensity reduction for specific resonances of the
MBP160 –201 and MBP198 –265 (Fig. 1B and Fig. S4A). These
resonances are from the following MBP regions: Phe175–Ile187,
Tyr193–Tyr197, Leu218–Asn227, Ala239–Lys245, and Thr251–
Ser259. All of these five binding sites are affected by the addi-
tion of isolated domains of TFPPD and TFSBD. However, the
extent of peak intensity change varies among the binding sites:
in the titration experiments for isotopically labeled MBP198 –
265, the most significant peak intensity reductions were
observed for the resonances attributed to the MBP stretch
Thr251–Ser259 upon the addition of TFPPD, whereas the addi-
tion of TFSBD caused the most significant effects on the reso-
nances from the MBP stretch Leu218–Asn227 (Fig. 1B). Given
the relatively weak affinity between the MBP fragment and TF
as expected from ITC data (Fig. S3) and the fact that the peak
intensity change was monitored by the addition of substoichio-
metric amount of TF proteins, more significant intensity reduc-
tion, thus more significant line broadening, is attributed to
slower binding kinetics, which tends to occur in stronger inter-
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action (23) and/or higher population of the bound form. In
either case, the extent of the peak broadening can be inter-
preted as an indication of the binding preference. Thus the data
suggest that the MBP stretches Leu218–Asn227 and Thr251–
Ser259 are preferred by TFSBD and TFPPD, respectively. Note
that the plots of chemical shift change by the addition of TFPPD

showed the same trend (Fig. S4B), further supporting the pref-
erence of TFPPD. Interestingly, the hydrophobic stretch of
Thr251–Ser259 contains two tryptophan residues and one pro-
line residue, whereas the other two stretches in MBP198 –265
are devoid of the pair of tryptophan and proline residues. This
result suggests that TFPPD possesses a preference toward aro-
matic and proline residues located in the hydrophobic regions.
Although the previous biochemical study found no sequence
specificity of TF toward proline residues (22), the effectiveness
of the NMR technique in the analysis of weak interactions
enabled us to discover the weak preference.

To identify the interaction site on TFPPD, we further investi-
gated the interaction by NMR titration experiments observing
the resonances from TFPPD. MBP160 –201 or MBP198 –265
was titrated into isotopically labeled TFPPD (Fig. 2A). The addi-
tion of the MBP fragment induced significant chemical shift
perturbations for the resonances of TFPPD (Fig. 2, B and C). The
chemical shift perturbation mapping shows that the majority of
the perturbed resonances are from the conserved hydrophobic
surface of TFPPD (Fig. 2, B–E). These chemical shift changes are
in the fast exchange regime (Fig. 2A and Fig. S5), which indicates a
highly dynamic binding mode between TFPPD and unfolded MBP,
as was previously reported for unfolded PhoA (21). Relatively small
chemical shift perturbations indicate the moderate affinity
between the isolated TFPPD and MBP. The data indicate that the
interaction with the substrate protein becomes weaker in the
absence of TFSBD baring four substrate-binding sites, as also
shown in the previous report (21).
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Figure 1. Recognition of unfolded MBP by TF. A, plot of the hydrophobicity score (Roseman algorithm, window � 9) of MBP as a function of its primary sequence.
A hydrophobicity score higher than 0 denotes increased hydrophobicity. The regions recognized by TF as identified by NMR titration experiments are highlighted in
yellow. The signal sequence is highlighted in blue. The MBP segments depicted in the B are indicated as a gray bar. B, plots of peak intensity change of MBP160–201 (left
panels) and MBP198–265 (right panels) by the addition of TFPPD-SBD at a ratio of MBP:TFPPD-SBD 1:0.1 (top panels), TFSBD at a ratio of MBP:TFSBD 1:0.2 (middle panels), and
TFPPD at a ratio of MBP:TFPPD 1:0.5 (bottom panels), as a function of the primary sequences of the MBP peptides. The regions recognized by TF are highlighted in yellow
and labeled with the primary sequences. The proline residue and unassigned residue are indicated by gray bar.
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Structural basis for the recognition of proline residue in the
substrate protein

To gain a better insight into the recognition of the MBP
stretch containing proline and aromatic residues by TFPPD, we
conducted a structural analysis of TFPPD in complex with
unfolded MBP, focusing on the MBP stretch Thr251–Ser259 that
contains both proline and aromatic residues. Because the rela-
tively low affinity between TFPPD and MBP results in a low
population of the complex when the two proteins are mixed in
solution, a fusion protein was designed to increase the popula-
tion of the bound state, which would increase the number of
intermolecular NOEs for high-resolution structure determina-
tion. To this aim, the peptide containing the binding site
(MBP238 –266) was fused to the N terminus of TFPPD with a
linker consisting of five repeat units of Gly-Ser. The directions
of the chemical shift perturbations caused by the fusion of the
MBP peptide coincided with those resulting from the addition
of the isolated MBP fragment (Fig. S5), indicating that the inter-
action between TFPPD and MBP238 –266 is preserved in the
fusion protein. Moreover, much more significant chemical shift
perturbations were observed for the fusion protein, which indi-
cates that a much higher population of the MBP peptide is
bound to TFPPD in the fusion. The solution structure of MBP–
TFPPD complex was determined on the basis of 1205 NOE-

derived interproton distance restraints, 128 dihedral angle
restraints, and 20 hydrogen-bond restraints (Table S1). A total
of 100 structures were calculated, among which the 20 lowest
energy structures were selected (Fig. 3A).

The structure showed that TFPPD recognizes the hydropho-
bic stretch of MBP, Pro255–Trp258, using the broad hydropho-
bic surface (Fig. 3B) that is also used for the recognition of the
other unfolded substrate proteins including PhoA and OmpA
(21). The indole ring of MBP Trp256 inserts into the hydropho-
bic pocket of TFPPD formed by Phe168, Phe177, Ile195, Phe198,
Phe217, Tyr221, and Phe233 (Fig. 3C and Fig. S6A). MBP Pro255,
which is located next to the tryptophan residue, is captured by
the hydrophobic cleft formed by Ile195, Pro196, Phe217, Pro218,
Tyr221, and His222. The amino acid residues of TFPPD that are
involved in the recognition of the sequence MBP Pro255–Trp256

are highly conserved (Fig. 3D). Interestingly the proline-aro-
matic amino acid sequence is also found in the other peptide
sequence recognized by TFPPD. For example, MBP Pro180,
which is located next to tyrosine residue (Tyr181), was found to
be recognized by TFPPD from NMR titration experiments (Fig.
1B and Fig. S6B), and RNase T1 Pro39 and Pro55, whose cis/
trans isomerization is known to be catalyzed by TFPPD (15), are
located next to tyrosine or histidine residues (Fig. S6B). Taking
these observations into consideration, we propose the proline-
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aromatic motif as the target for the recognition and cis/trans
isomerization by TFPPD. In addition to MBP Pro255–Trp256,
another tryptophan residue in the hydrophobic stretch, Trp258,
is recognized by TFPPD through the interaction with the hydro-
phobic cleft formed by Phe177, Tyr221, Ala223, and Leu226 (Fig.
3C). In addition to the hydrophobic interactions, a hydrogen
bond between TFPPD His222 N�2 and the backbone carbonyl
oxygen of MBP Pro255 is found in the complex. All these inter-
actions contribute to holding tightly the MBP stretch Pro255–
Trp258. On the other hand, MBP Gly254, which is located at the
N terminus of Pro255, is positioned at the edge of TFPPD, and no
significant contact with TFPPD was observed. It is worth noting
that in the structure of the MBP–TFPPD complex, in which
Pro255 is in the trans form, the backbone carbonyl oxygen of
MBP Gly254 is located nearby the backbone amide proton of
TFPPD Ile195, but not close enough to form a hydrogen bond
(Fig. 3C).

Although MBP Pro255 in the unbound MBP198 –265 is in
slow exchange between trans and cis forms as represented by
the two sets of the NMR signals (Fig. S6C), MBP Pro255 in com-
plex with TFPPD was found to adopt the trans form, as can be
deduced from the single set of the resonances whose chemical
shifts are in the range expected for trans form (24) (Fig. S6D).
This observation was consistent with the results of the titration
experiments in which the resonances from MBP were moni-
tored (Fig. S6E). When TFPPD was titrated into isotopically
labeled MBP160 –201 or MBP198 –265, the resonances corre-
sponding to the trans form showed more significant peak inten-

sity reduction (Fig. S6E, lower panels), implying stronger inter-
action between TFPPD and the trans form of the substrate
protein. On the other hand, this trend was not observed upon
the addition of TFSBD (Fig. S6E, upper panels). These results
indicate the binding preference of TFPPD toward proline resi-
due in the trans form.

An intermolecular hydrogen bond is formed at the transition
state in the cis/trans isomerization

To investigate the recognition of the substrate protein by
TFPPD during the cis/trans transition, we performed MD sim-
ulation, using the lowest-energy structure of the MBP–TFPPD

complex determined by NMR as a starting point. Because pro-
line cis/trans isomerization is slow compared with the times-
cale of MD simulation, a constrained MD simulation was per-
formed in which a rotational angle constraint for the � angle
between MBP Gly254 and Pro255 was added and the � angle was
rotated from the initial angle (� � �174°, trans) to the angle
corresponding to cis form (� � 0°) with clockwise or counter-
clockwise direction, as seen from the N-terminal to the C-ter-
minal direction along the C–N bond, at a rate of 0.2° per 2 ps
(Fig. 4A). The simulation identified that the distance between
the HN atom of TFPPD Ile195 and the carbonyl oxygen of MBP
Gly254 (HN–O distance) decreased as the � angle rotates in
clockwise direction. At �0.8 ns, the � angle reached approxi-
mately to �90° (syn state), and the distance became within the
range of the formation of a strong hydrogen bond (� 2.5 Å) (Fig.
4B). For example, at 0.200 ns of the clockwise rotation, where
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the � angle was �160° (trans state), the HN–O distance was 4.3
Å, and the angle between the N and HN atoms of TFPPD Ile195

and the carbonyl oxygen of MBP Gly254 (N–HN–O angle) was
134° (Fig. 4C). Thus no formation of the intermolecular hydro-
gen bond between TFPPD Ile195 and MBP Gly254 was detected at
the trans state. On the other hand, at 0.794 ns of the clockwise
rotation, where the � angle was �97° (syn state), the HN–O
distance was 2.1 Å, and the N–HN–O angle was 152° (Fig. 4D).
Both the HN–O distance and the N–HN–O angle at the syn
state are in the range expected for a strong hydrogen-bond for-
mation (25). It is worth mentioning that the rotation of the
peptide bond in the other direction resulted in no shortening of
the HN–O distance (Fig. 4B) and thereby no formation of the
intermolecular hydrogen bond.

The simulation also indicated that the intermolecular hydro-
gen bond formed at the syn state tethers MBP Pro255 to the
hydrophobic cleft of TFPPD, and consequently, MBP Pro255 and
the peptide bond between MBP Gly254 and Pro255 are closely
packed in the hydrophobic cleft (Fig. 4D). When the � angle
rotated beyond the syn state, the backbone carbonyl oxygen
atom of MBP Gly254 moves away from the backbone amide
group of TFPPD Ile195, resulting in the deformation of the inter-
molecular hydrogen bond and the subsequent release of the
close hydrophobic packing between the peptidyl–prolyl bond
and TFPPD (Fig. 4B). As expected from the structure of TFPPD in
complex with MBP (Fig. 3C), the C-terminal segment of the
MBP (Pro255–Trp258) was tightly held by TFPPD during the �
angle rotation, and consequently the N-terminal segment pre-
ceding MBP Pro255 rotates in concurrence with the rotation of
the � angle. As seen in Fig. 4 (C and D), the position and orien-

tation of MBP Gly254 against TFPPD change as the � angle
rotates.

The intermolecular hydrogen bond through TFPPD Ile195 at the
transition state is critical for the PPIase activity

The role of the intermolecular hydrogen bond between the
HN atom of TFPPD Ile195 and the carbonyl oxygen of MBP
Gly254 in the cis/trans isomerization was evaluated by the activ-
ity assays performed using TF mutants, for which mutations of
I195P, R193P, and M194P were designed. TF I195P is devoid of
the HN atom at the position of 195, and R193P and M194P were
designed to perturb the position of the HN atom of TFPPD Ile195

as a result of the restricted backbone dihedral angle of the pro-
line residue. To monitor the PPIase activity of the TF mutants,
we performed an RNase T1 refolding assay (15), in which the
refolding of the reduced and carboxymethylated RNase T1
(RCM-RNase T1) was monitored by the increase of the intrinsic
tryptophan fluorescence intensity (Fig. 5A). Refolding of RCM-
RNase T1 is limited by the slow trans-to-cis isomerization of
peptidyl–prolyl bonds at Pro39 and Pro55 (15). Although the
refolding of RCM-RNase T1 in the absence of TF was slow, it
was significantly accelerated by the addition of TF (Fig. 5A).
However, no enhancement of the refolding was observed in the
presence of TF�PPD, which confirmed that the PPIase activity
dominates the foldase activity of TF in the refolding of RCM-
RNase T1. The mutants TFI195P, TFM194P, and TFR193P exhib-
ited significantly reduced activity (Fig. 5A). The foldase activity
of TF in the refolding of RCM-RNase T1 was more significantly
affected when the proline substitution was closer to TF Ile195.
On the other hand, the mutations of M194A or I195L induced
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smaller effect in the refolding of RCM-RNase T1 (Fig. S7A),
supporting the idea that the backbone HN atom of TFPPD Ile195

plays an important role in the cis/trans isomerization. A muta-
tion introduced at His222, which forms a hydrogen bond with
backbone carbonyl oxygen of MBP Pro255, moderately reduced
the refolding rate of RCM-RNase T1 (Fig. S7A), which suggests
that the hydrogen bond mediated by His222 is also important in
holding the substrate.

High sequence conservation of Ile195 and His222 in the TF
family also supports the importance of the two amino acid res-
idues for PPIase activity (Fig. S8A). The comparison of the
structures of TFPPD and FKBP12 revealed that TF Ile195 and
His222 are also structurally conserved in FKBP, which suggests a
shared isomerization mechanism between these two proteins
(Fig. S8B).

Note that all of the TF mutants were expressed and purified
in a soluble form. Furthermore, 1H-15N HSQC spectra of
TFPPD-SBD, M194P and TFPPD-SBD, I195P clearly showed that the
native fold of TFPPD-SBD is preserved even after the introduc-
tion of these mutations (Fig. S9, A and B). The NMR spectra of
15N TFPPD-SBD, I195P in the presence of MBP 198 –265 indicated
that the same binding site on TFPPD is used for the recognition
of MBP, which supports the preservation of the interaction
between TFPPD and MBP in the TFI195P mutant (Fig. S9C). Thus
TFI195P binds to the substrate protein but is inactive in the cis/
trans isomerization because of the lack of the ability to form the
intermolecular hydrogen bond at the transition state.

The effect of the mutation of I195P was also evaluated by
NMR relaxation experiments. We performed 15N relaxation
dispersion experiments (26, 27) on the fusion proteins:
MBP238–266-(GS)5-TFPPD and MBP238–266-(GS)5-TFPPD, I195P

(Fig. 5B). The backbone amide resonance from MBP Gly254

exhibited significant dispersion curve with an exchange rate
constant, kex, of 740 s�1 at 35 °C (Fig. 5B, left panel), whereas
the chemical exchange was disappeared by the introduction of
the I195P mutation to TFPPD (Fig. 5B, right panel). Although a
limited number of the resonances were eligible for reliable
relaxation dispersion analysis, because of the local process of
the peptidyl–prolyl isomerization, as well as the resonance
overlap especially for those from MBP peptide, the same trend
was seen for a few other resonances around the active site (Fig.
S7B). Combined with the fact that the MBP Gly254 bound to
TFPPD indicated only a single set of the resonances whose
chemical shifts are in the range expected for trans form (Fig.
S6D), the data indicate that the relaxation dispersion curve seen
from the resonance of MBP Gly254 reflects the exchange
between trans and cis forms of MBP Pro255 as major and minor
states, respectively. Note that the exchange for binding and
release of MBP is expected to be much faster, given the fact that
the binding and release of unfolded PhoA gives rise to kex of
�1300 s�1 at 22 °C (21). The exchange rate indicates that the
cis/trans isomerization of MBP Pro255 on TFPPD is quite fast
compared with the uncatalyzed isomerization (�0.01 s�1 at
35 °C) (28). Suppression of the chemical exchange by the intro-
duction of the I195P mutation further corroborates the idea
that Ile195 HN is a catalytic center for the peptidyl–prolyl cis/
trans isomerization by TFPPD.

Discussion

The structure corroborated by NMR relaxation analysis,
molecular dynamics simulation, and mutational studies led us
to propose a mechanistic model of proline cis/trans isomeriza-
tion by TF as follows (Fig. 6). As seen in the structure of TFPPD

in complex with the unfolded MBP, TFPPD recognizes the pro-
line-aromatic motif located in the hydrophobic stretch of the
substrate protein (Fig. 1 and Fig. S6B). TFPPD captures the pro-
line-containing peptide in trans conformation, using its con-
served hydrophobic cleft as decollated by TF His222 forming a
hydrogen bond with the backbone carbonyl oxygen of the pro-
line residue in the substrate protein (Fig. 3 and Fig. S6, A and D).
Consequently, the proline residue and the C-terminal stretch of
the substrate protein are tightly held on TFPPD, whereas the
residue preceding the proline residue has no significant contact
with TFPPD (Fig. 3C). However, the MD simulation has revealed
that as the peptidyl–prolyl bond rotates, the backbone carbonyl
oxygen atom of the amino acid residue preceding the proline
residue in the substrate protein moves toward the TF Ile195

backbone amide group, which eventually results in the forma-
tion of the intermolecular hydrogen bond at the syn state with
an � angle of approximately �90° (Fig. 4D). Thus the energy
barrier of cis/trans isomerization (�20 kcal/mol) is expected to
be partially compensated by the formation of the intermolecu-
lar hydrogen bond with a bond energy of �5 kcal/mol (29).
Note that the N-terminal stretch of the substrate protein
rotates during the isomerization, whereas the proline residue
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Figure 5. PPIase activity of TF and TF mutants. A, evaluation of PPIase
activity of TF and TF variants by refolding assay of RCM-RNase T1. Refolding of
RCM-RNase T1 in the absence and presence of TF or TF mutants was moni-
tored by increase of intrinsic tryptophan fluorescence at 320 nm after excita-
tion at 268 nm. The experiments were performed at 15 °C. Because of the
complex process of the refolding of RCM-RNase T1 (37), refolding rates were
not extracted. B, evaluation of PPIase activity of TF and TF variants by NMR
relaxation dispersion experiments. The chemical exchange in MBP Gly254 cou-
pled with cis/trans isomerization of peptidyl–prolyl bond between MBP
Gly254 and Pro255 in complex with TFPPD (left panel) or TFPPD, I195P (right panel)
was monitored.
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and the C-terminal stretch stay on TFPPD (Fig. 4). The impor-
tant role of the intermolecular hydrogen bond was further sup-
ported by NMR relaxation studies and activity assays in which
the perturbations to the backbone amide group of TF Ile195 by
mutagenesis significantly reduced the PPIase activity of TF (Fig.
5 and Fig. S7B). Furthermore, our structural study has also
revealed the hydrophobic environment around the peptidyl–
prolyl bond. The proline residue in the substrate protein is
lodged in the hydrophobic cleft of TFPPD at the ground state

(Fig. 3, B and C), and the formation of the intermolecular
hydrogen bond at the transition state tethers the peptidyl–
prolyl bond even closer to the hydrophobic surface of the cleft
(Fig. 4D). Given the fact that the hydrophobic environment
promotes cis/trans isomerization as shown by previous muta-
tional studies (30, 31), our observation suggests that the hydro-
phobic environment around the peptidyl–prolyl bond at the
syn state contributes to the isomerase activity of TFPPD. Thus
we conclude here that the combination of the intermolecular
hydrogen bond mediated by TFPPD Ile195 HN and the hydro-
phobic environment around the peptidyl–prolyl bond during
the transition is important for eliminating the energy barrier,
thereby accelerating the cis/trans isomerization.

In line with our model, formation of an intermolecular
hydrogen bond at the transition state has been reported for
cyclophilin A (32). The rotation of the N-terminal segment was
also reported for cis/trans isomerization by cyclophilin A (33,
34). On the other hand, a crystallographic study performed on
SlyD suggested that the cis/trans isomerization is achieved by
rotation of the C-terminal segment, i.e. the proline residue
rotates against the N-terminal segment of the peptidyl–prolyl
bond (19). This model was established mainly on the basis of the
comparison between the structure of SlyD in complex with the
substrate peptides and the immunosuppressant FK506. FK506
contains a pipecolinyl ring that is believed to mimic the proline
residue in the twisted transition state (19, 35, 36). Although both
TF and SlyD are classified into the FKBP-type PPIase family, SlyD
may have a distinct mechanism because of its unique domain
architecture consisting of an insert-in-flap chaperone domain.

Our NMR study has also unveiled that the proline residue of
MBP in complex with TFPPD is in the trans form as a major state
(Fig. 3C and Fig. S6D) and in exchange with cis form as a minor
state (Fig. 5B and Fig. S7B). The cis/trans exchange of the
peptidyl–prolyl bond on TFPPD occurs at a rate of 740 s�1 at
35 °C (Fig. 5B and Fig. S7B), which is much faster than the
uncatalyzed cis/trans isomerization of the peptidyl–prolyl
bond (�0.01 s�1 at 35 °C) (28, 37). The highly efficient cis/trans
isomerization activity of TFPPD is thereby demonstrated.
Although the affinity between isolated TFPPD and the substrate
protein is relatively weak, the other two domains of TF, TFRBD

and TFSBD, may compensate this low affinity. TFSBD contains
four of the five substrate-binding sites and binds to the multiple
hydrophobic stretches in the substrate protein (21), thereby
tethering the substrate protein to TFPPD. The previous study
indeed has shown that SBD is required for efficient RNase T1
refolding (38). TFRBD binds to the ribosome (39) and conse-
quently tethers TFPPD to the substrate protein emerging out of
the ribosome. These features enable TF to exert its activity for
broad range of the substrate proteins. Although TF exhibits
promiscuous interaction with the unfolded proteins (21, 22)
and indeed interacts with most of the newly synthesized pro-
teins emerging out of the ribosome (40), our study has identi-
fied that TFPPD possesses the moderate specificity toward the
proline-aromatic motif in the hydrophobic stretches of the sub-
strate protein (Fig. 1 and Fig. S6B). This moderate specificity of
TFPPD suggests that TFPPD preferentially accelerates the pro-
line cis/trans isomerization of the peptidyl–prolyl bond in the
hydrophobic stretch of the substrate protein that is eventually
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folded into the core of the protein in its native fold. Collectively,
the moderate sequence specificity toward proline-aromatic
motif in the hydrophobic stretch, as well as the relatively weak
affinity to the substrate protein compensated by the other two
domains of TF, can be important properties of PPIase embed-
ded in a general chaperone as a functional module.

Experimental procedures

Expression and purification of protein samples

TF from Escherichia coli was cloned into the pCold vector
(Takara Bio). The following TF expression constructs were pre-
pared: TFSBD (residues 113– 432�150 –246) was cloned into
pET16b vector (Novagen) and fused to His6-MBP and a tobacco
etch virus (TEV) protease cleavage site at the N terminus.
TFPPD (residues 148 –249) and TFPPD-SBD (residues 113–246)
were cloned into pCold vector (Takara Bio) and fused to His6
tag. TF mutants were constructed by site-directed mutagenesis
using a PrimeSTAR mutagenesis basal kit (Takara Bio). The
constructs of TFPPD, TFPPD-SBD, and TF having mutations of
R193P, M194P, M194A, I195P, I195L, or H222A were pre-
pared. A fusion protein MBP238 –266-(GS)5-TFPPD was cloned
into pET-16b vector containing a His6-MBP and a TEV prote-
ase cleavage site at the N terminus. The length of the GS linker
was designed from the following consideration. The crystal
structure of TF (PDB code 1W26) shows that the N terminus of
TFPPD is located �25 Å away from the substrate-binding site.
More specifically, the distance between C� atoms of Q148 (N
terminus of TFPPD) and Ile195, which is located at the center of
the expected binding site, is 26 Å. Given the fact that the length
of the fully extended 10-amino acid polypeptide chain is esti-
mated as 35 Å, the five repeats of Gly-Ser should provide suffi-
cient length to preserve the interaction between the two iso-
lated proteins.

All of the expression constructs were transformed into
BL21(DE3) cells. The following MBP fragments were prepared
in this study: MBP29 –99, MBP97–164, MBP160 –201,
MBP198 –265, MBP260 –336, and MBP331–396. The MBP
fragments were cloned into the pET-16b vector containing a
His6-MBP and a TEV protease cleavage site at the N terminus.
For the unlabeled samples, the cells were grown in Luria–
Bertani medium at 37 °C in the presence of ampicillin (100 �g
ml�1). Protein expression was induced by the addition of 0.2–
0.5 mM isopropyl-�-D-1-thiogalactopyranoside at A600 of �0.6,
followed by 12–16 h of incubation at 18 °C. The cells were har-
vested at A600 of �2.0 and resuspended in lysis buffer contain-
ing 50 mM Tris-HCl (pH 8.0), 500 mM NaCl. Isotopically labeled
samples for NMR studies were prepared by growing the cells in
minimal (M9) medium. The cells were harvested at A600 of
�1.0. U-13C,15N-labeled samples were prepared by supple-
menting the medium with 15NH4Cl (1 g liter�1) and 13C6-glu-
cose (2 g liter�1). The cells were disrupted by sonicator and
centrifuged at 18,000 rpm for 45 min. Proteins were purified
using nickel-Sepharose 6 Fast Flow resin (GE Healthcare), fol-
lowed by tag removal by TEV protease at 4 °C (incubation for 16 h)
and gel filtration using Superdex 75 16/60 (GE Healthcare). Pro-
tein concentration was determined spectrophotometrically at 280
nm using the corresponding extinction coefficient.

NMR spectroscopy

NMR samples are prepared in 20 mM potassium phosphate
buffer (pH 7.0), 100 mM KCl, 4 mM �-mercaptoethanol, 0.5 mM

EDTA, 0.05% NaN3, and 7% D2O. The protein concentration
was 0.1– 0.8 mM. NMR experiments were performed on Agilent
UNITY Inova 800 and 600 MHz NMR spectrometers, as well as
Bruker Avance III 800 and 600 MHz NMR spectrometers. The
experiments were performed at 10 °C for isolated MBP frag-
ments and at 22 °C for the other samples. The spectra were
processed using the NMRPipe program (41), and data analysis
was performed with Olivia (https://github.com/yokochi47/
Olivia).4 The chemical shift changes of the amide moiety were
normalized according to the following equation.

�� � �����1H		2 	 ����15N	/5	2 (Eq. 1)

Structure determination

To increase the population of the bound state and thus to
obtain sufficient number of intermolecular NOEs for high res-
olution structure determination, a fusion protein (42) in which
the peptide containing the binding site (MBP238 –266) was
fused to the N terminus of TFPPD with a linker consisting of 5
repeat units of Gly-Ser was constructed and used in the NOE
observation. Two- and three-dimensional NMR experiments
were carried out using Agilent UNITY Inova 800 and 600 MHz
NMR spectrometers for the NMR sample containing 1.0 mM
13C/15N-labeled MBP238 –266-(GS)5-TFPPD in 20 mM potas-
sium phosphate buffer (pH 7.0), 100 mM KCl, 4 mM �-mercap-
toethanol, 0.5 mM EDTA, 0.05% NaN3, and 7% D2O. The 1H,
13C, and 15N resonance assignments were carried out using the
following set of the spectra measured at 22 °C; 1H-15N HSQC,
1H-13C HSQC, HNCO, HNCA, HN(CO)CA, HNCACB,
CBCA(CO)NH, HN(CA)HA, HBHA(CO)NH, CCH-TOCSY,
HC(C)H-TOCSY, HBCBCGCDHD, and HBCBCGCDCEHE.
The 1H, 13C, and 15N chemical shifts were referred to DSS (4,4-
dimethyl-4-silapentane-1-sulfonic acid) according to the Inter-
national Union of Pure and Applied Chemistry recommenda-
tion. Interproton distance restraints for structural calculations
were obtained from 13C-edited NOESY–HSQC and 15N-edited
NOESY–HSQC spectra with a 100-ms mixing time at 22 °C.

The structure was calculated using the CYANA software
package (43), on the basis of the interproton distance restraints
from the NOESY spectra. The NOE restraints were further cor-
roborated by the dihedral angle restraints from the TALOS

program (44) and hydrogen-bond restraints for the regions
forming secondary structures. 100 structures were calculated
individually using 10,000 steps of simulated annealing, and a final
ensemble of 20 structures was selected based on CYANA target
function values. The 20 lowest-energy structures resulted from
CYANA calculation were refined by restrained molecular dynam-
ics in explicit water with CNS (45). The atomic coordinates and
structural restraints of MBP238–266-(GS)5-TFPPD have been
deposited in the Protein Data Bank (PDB code 5ZR0).

4 Please note that the JBC is not responsible for the long-term archiving and
maintenance of this site or any other third party hosted site.
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15N relaxation dispersion experiment

An 15N-Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence
(46) was used to examine the chemical exchange derived from
cis/trans isomerization of Pro255 in MBP238 –266-(GS)5-TFPPD

or MBP238 –266-(GS)5-TFPPD, I195P. Two-dimensional data
sets were acquired as 240 � 2048 complex points in the t1 � t2
time-domain dimensions with a constant relaxation delay of 50
ms. The experiments were performed on Bruker Avance III 800
MHz NMR spectrometers at 35 °C. The exchange rate constant
for the two conformers, kex, was extracted using NESSY (47)
with the Meiboom equation (48) as below, which was applied
to the fast exchange processes between the two states,

R2
eff � R2

0 	



kex
�1 �

4vCPMG

kex
tanh � kex

4vCPMG
�� (Eq. 2)


 � pa � pb � ��2 (Eq. 3)

where R2
eff is the effective transverse relaxation rate, R2

0 is the
effective transverse relaxation rate at infinite 
CPMG, pa and pb
are the populations of the two state models (pa 
 pb � 1), kex is
the chemical/conformational exchange (kex � ka-b 
 kb-a) con-
stant, and �� is the chemical shift difference between states.
With this equation, only R2

0, kex, and � can be extracted,
because pa, pb, and �� cannot be uniquely determined. Note
that the fast exchange regime was judged on the basis of the
comparison between the expected �� and the observed kex. For
example, the 1H-15N HSQC spectrum for 15N MBP 198 –265
shows the two sets of the resonance for Gly254, corresponding
to the trans and cis conformations of Pro255 (Fig. S6C). The 15N
chemical shift difference between the two resonances, �0.8
ppm and thus �61 Hz on 800 MHz NMR instrument, which
corresponds to �� in the relaxation dispersion experiment, is
much smaller than the kex value (740 s�1).

Molecular dynamics simulations

The molecular simulations were carried out using the
AMBER14 molecular dynamics package and the ff14SB force
field parameters (49). The initial structure for the simulations
was prepared from the lowest-energy structure of MBP238 –
266-(GS)5-TFPPD determined by NMR. The simulation systems
were solvated in a cubic periodic box with TIP3P water mole-
cules. The systems were subjected to 5,000 steps of energy
minimization and were equilibrated for 3 ns in an isothermal–
isovolumetric (NVT) condition with the solute atoms con-
strained with the force constant of 1 kcal/mol Å�2. Several ini-
tial structures were obtained during the constrained MD runs.
After the equilibration, the production simulations with
constrained were carried out in an isothermal–isobarometric
(NPT) condition at 1 atm and 300 K. Simulations were per-
formed using a 2-fs time step, periodic boundary conditions,
particle mesh Ewald electrostatics, and constraints of hydro-
gen-containing bonds using the SHAKE algorithm (50). The
position restraints with the force constants of 50 kcal/mol rad2

was applied to the dihedral angle varying the center of the angle
every 0.2° from initial angle (�174°) to 0° with clockwise and
counterclockwise, respectively. For each position, the simula-
tions were carried out for 2 ps, resulting in 1.74- and 1.86-

ns trajectories for clockwise and counterclockwise rotations,
respectively. Although the peptidyl–prolyl cis/trans isomeriza-
tion is a slow process that occurs in millisecond timescale, this
slow process is due to the low probability of the transition, and
a single transition only takes a few nanoseconds (32), which
corresponds to the trajectories in this simulation.

ITC experiment

Calorimetric titrations were carried out on an iTC200 micro-
calorimeter (GE Healthcare) at 22 °C. All protein samples were
purified in ITC buffer containing 20 mM potassium phosphate
buffer (pH 7.0), 100 mM KCl, and 0.05% NaN3 by gel filtration. The
200-�l sample cell was filled with 350 �M MBP198–265, and
the 40-�l injection syringe was filled with 3.5 mM solution of
TFPPD-SBD. The titrations were carried out with a preliminary
0.2-�l injection, followed by nine injections of 4.2 �l each with
time intervals of 5 min. The solution was stirred at 1000 rpm. Data
for the preliminary injection, which are affected by diffusion of the
solution from and into the injection syringe during the initial
equilibration period, were discarded. Binding isotherms were gen-
erated by plotting heats of reaction normalized by the modes of
injectant versus the ratio of total injectant to total protein per injec-
tion. The data were fitted with Origin 7.0 (OriginLab Corporation).

RNase T1 refolding assay

RNase T1 from Aspergillus oryzae (Sigma; R-1003) was dena-
tured, reduced, and carboxymethylated using DTT as the reduc-
ing agent according to the previous report (51). Refolding of
reduced and carboxymethylated RNase T1 (RCM-RNase T1) in
0.1 M Tris-HCl (pH 8.0), 0.4 M NaCl was initiated by 4-fold rapid
dilution into the buffer containing 0.1 M Tris-HCl (pH 8.0), 2.0 M

NaCl. The final concentration of RCM-RNase T1 was 1 �M. The
refolding process of RCM-RNase T1 in the absence and presence
of TF or its variants at the concentration of 0.2 �M was monitored
by an increase in tryptophan fluorescence intensity. Fluorescence
intensity was measured using a spectrofluorometer (FP-8500;
JASCO Corporation). The excitation and emission wavelengths
were set at 268 nm (bandwidth 5 nm) and 320 nm (bandwidth 10
nm), respectively. All measurements were performed at 15 °C.
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