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Identification of an Immune Gene
Signature Based on Tumor
Microenvironment Characteristics in
Colon Adenocarcinoma

Ying Chen1,2 and Jia Zhao1,2

Abstract
Tumor microenvironment (TME) changes are related to the occurrence and development of colon adenocarcinoma (COAD).
This study aimed to analyze the characteristics of the immune microenvironment in CC, as well as the microenvironment’s
relationship with the clinical features of CC. Based on The Cancer Genome Atlas (TCGA) and GSE39582 cohorts, the scores
of 22 tumor infiltrating lymphocytes (TILs) were calculated using CIBERSORT. ConsensusClusterPlus was used for unsupervised
clustering. Three TME subtypes (TMEC1, TMEC2, and TME3) were identified based on TIL scores. TMEC2 was associated
with the worst prognosis. Random forest, k-means clustering, and principal component analysis were used to construct the
TME score risk signature. The median TME score was used to divide the samples into high- and low-risk groups.
The prognoses of the patients with high TME scores were worse than those of the patients with low TME scores. A high TME
score was an independent prognostic risk factor for patients with colon cancer. The Gene Set Enrichment Analysis (GSEA)
results showed that those with high TME scores were enriched in FOCAL_ADHESION, ECM_RECEPTOR_INTERACTION,
and PATHWAYS_IN_CANCER. Our findings will provide a new strategy for immunotherapy in patients with CC.
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Introduction

Colorectal cancer (CRC) is one of the most common malig-

nant tumors of the digestive system1,2. In 2015, CRC was the

fourth most common malignant tumor in women and the

fifth most common malignant tumor in men in China3.

Although significant progress has been made in early diag-

nosis, surgery, radiotherapy, and chemotherapy, the overall

survival rate of CRC can still be improved4. The high rates of

recurrence and metastasis are important reasons for the short

survival time and poor prognoses of patients with colon

cancer5,6.

In the past, people focused on the treatment of a tumor.

However, researchers have shown that the occurrence and

development of a tumor is a dynamic process with multiple

factors, multiple stages, and multiple links, it not only

involves the tumor cells, but the tumor microenvironment

(TME) is also closely related7,8. The TME is composed of

tumor cells and the matrix microenvironment, which

contains extracellular matrix and interstitial cells. Interstitial

cells include fibroblasts, vascular structure cells, and

immune cells9. Tumor cells, interstitial cells, and the extra-

cellular matrix interact to produce and release various

chemokines, cytokines, and other mediators. This forms an

inflammatory state in the tissue, forms an immunosuppres-

sive TME, assists tumor cells in escaping immune surveil-

lance, and eventually leads to tumor occurrence,

development, and metastasis10,11. Immunotherapy has shown

great anticancer activity in many cancers such as colon
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adenocarcinoma and melanoma, indicating the clinical thera-

peutic potential of targeting the immune microenvironment.

More and more studies have shown that changes in the

immune microenvironment are closely related to the

occurrence and development of CRC12. Clinical studies have

shown that long-term use of the anti-inflammatory drug

aspirin, which inhibits the inflammatory environment, can

reduce the risk of cancer in patients with familial colonic

polyps13. In recent years, it has been found that colorectal

microflora are closely related to inflammation and tumori-

genesis. Some intestinal microorganisms can induce intest-

inal immune cells to secrete interleukin (IL)-23, promoting

the occurrence and development of a tumor14. In addition,

the type, distribution location, degree of infiltration, and

cytokine components of the immune cells in the immune

microenvironment are closely related to the prognoses and

therapeutic effects in patients with tumors15. A variety of

cytokines in the microenvironment can promote the invasion

and metastasis of CRC16,17. Immune cells and cytokines in

the microenvironment are closely related to the occurrence,

development, metastasis, and therapeutic outcomes of CRC.

However, there has been no systematic analysis of the

characteristics of the immune microenvironment’s relation

with the clinical characteristics of colon adenocarcinoma.

In this study, TME molecular subtypes were identified

based on tumor infiltrating cell (TIL) scores obtained from

The Cancer Genome Atlas (TCGA) and Gene Expression

Omnibus (GEO). Two TME score risk signatures were

identified. TME score showed a significant correlation with

tumor, node, metastasis (TNM) stage and immune gene

expression. Finally, we identified a group of tumor mutant

genes related to TME score.

Materials and methods

Data Downloads and Processing

Clinical follow-up information was downloaded using the

TCGA Genomic Data Commons (GDC) application

performing interface (API), with 499 RNA sequencing

(RNA-Seq) samples. The microarray gene expression profile

of GSE39582, downloaded from the National Center for

Biotechnology Information (NCBI) in MINiML format, con-

tained 573 samples with clinical information. The following

steps were conducted in processing the 499 RNA-Seq read

count samples: (1) remove the samples with an overall sur-

vival (OS) <30 days; (2) remove normal tissue samples;

(3) convert read counts to transcripts per million (TPM) with

the annotation information of GENCODE v22 [in terms of

data distribution, the TPM was closer to the microarray than

fragments per kilobase million (FPKM)]; and (4) remove

half of the genes with a TPM of 0 in the samples.

The GSE39582 cohort was preprocessed in the following

manner: (1) remove normal tissue samples and samples

without clinical follow-up information; (2) remove samples

with an OS <30 days; and (3) map the microarray probe to

human gene SYMBOL using Bioconductor. Table 1 presents

the statistical information of the preprocessed cohorts.

Calculation of the Scores of the TME-TILs

The deconvolution algorithm CIBERSORT uses a set of

reference gene expression values that is considered a mini-

mal representation for each cell type. Based on those values,

the algorithm uses support vector regression to infer cell type

proportions in data from bulk tumor samples with mixed cell

types. CIBERSORT can be applied to distinguish 22 human

immune cells including B cells, T cells, natural killer (NK)

cells, macrophages, dendritic cells (DCs), and myeloid sub-

set cells based on the high specificity and sensitivity of gene

expression profiles. To quantify the proportion of immune

cells in the CC samples, we used the CIBERSORT algorithm

to calculate the 22 immune cell scores in the TCGA-COAD

(colon adenocarcinoma) and GSE39582 cohorts by compar-

ing them with the expression of the genes of the LM22 sig-

nature18. We uploaded the gene expression profile data to the

CIBERSORT website (http://cibersort.stanford.edu/) and set

up the expression of the LM22 signature genes with 1000

permutations to obtain the scores of the 22 immune cells.

Consensus Clustering to Obtain Molecular Subtypes
Associated with the TME-TILs

Consensus clustering was performed using the Concensu-

sClusterPlus package to determine CC subgroups based on

the TME-TILs19. We followed the methods of Zhang et al. to

determine the optimal number of clusters (with k ranging

Table 1. Clinical Information of the Two Cohorts.

Characteristic
TCGA datasets

(n ¼ 427)
GSE39582
(n ¼ 567)

Age (years) <¼60 133 160
>60 294 406

Survival Status Living 331 379
Dead 96 188

Gender female 197 254
male 230 313

pathologic_T T 1 10 12
T 2 73 47
T 3 293 367
T 4 50 117

pathologic_N N 0 248 304
N 1 103 131
N 2 76 100
N 3 0 6

pathologic_M M 0 315 486
M 1 60 59
M X 47 2

Tumor Stage Stage I 70 37
Stage II 162 263
Stage III 124 205
Stage IV 60 58
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from 2 to 10)20. The procedure was repeated 1000 times to

ensure the reproducibility of the results, which were visua-

lized using the heat map function in R.

Differentially Expressed Genes Associated with the
TME Phenotype

To identify genes associated with TME immune infiltrating

patterns, we used linear models to analyze the gene expres-

sion differences between phenotype-related TME subgroups.

More specifically, the limma package in R was applied to

determine the differentially expressed genes (DEGs) with a

false discovery rate (FDR) <0.0521.

Re-Clustering of Phenotype-Related DEGs in the TME

Nonnegative matrix factorization (NMF) is an unsupervised

clustering method that is widely used for determining tumor

molecular subtypes based on genomics22,23. To further delve

into the association between TME phenotypes and the

expression of phenotype-related differentials, we re-

clustered the samples using NMF to analyze the clinical

characteristics based on the expression profiles of the

phenotype-related DEGs. The standard “brunet” was

selected when using NMF to perform 50 iterations.

The number of clusters, k, was set between 2 and 10 using

the NMF package in R24. The average contour width of the

common member matrix was calculated, and the minimum

number of members in each subclass was set to 10.

Dimension Reduction and Generation of TME Gene
Signatures

To obtain robust TME gene signatures, we selected the DEGs

with prognostic value and further evaluated the importance of

these DEGs by applying the random forest algorithm. Specif-

ically, we used the coxph function in the Survival package to

conduct a univariate Cox analysis. The threshold was set at

0.05. The DEGs with prognostic value underwent random

forest feature selection using the random Forest function in

R. The mtry value for each segmentation was set from

between 1 and 165, and the ntree value was 500. The mtry

value with the lowest error rate was selected as the optimal

value of the random forest algorithm. Subsequently, in accor-

dance with the error rate of the random forest, ntree was reset

to 100. Finally, each DEG was sorted based on its importance.

The DEGs with a cumulative importance >95% were selected

as candidate feature genes using k-means25.

The risk coefficients of the signature scores of the

categories of genes in each sample were obtained through

multivariate regression. The TME score formula used for

each sample is as follows:

TMEScore ¼
X5

j¼1

Sj � bj

Here, j indicates the jth category, Sj indicates the signa-

ture score of the jth category of genes in the sample, and bj

indicates the risk regression coefficient of the signature score

of the jth category of genes.

Association Between TME Scores and Clinical Features

To observe the association between TME scores and clinical

phenotypes, the samples were divided into two groups based

on the median TME score.

The prognosis differences between the high- and low-

TME-score groups (high- and low-risk groups, respectively)

were compared. Their relationship with age and sex was also

analyzed.

Relationship Between TME Scores and Immune-
Related Gene Expression

To examine the relationship between TME scores and

immune-related gene expression, 3 immune-related gene

types were collected: (1) immune activation genes, including

CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG, TBX2, TNF,

and CD8A; (2) immune checkpoint genes, including

PDCD1, CTLA4, LAG3, PDCD1LG2, IDO1, CD274, and

HAVCR2; and (3) TGF/EMT pathway genes, including VIM,

ACTA2, COL4A1, TGFBR2, ZEB1, CLDN3, SMAD9, and

TWIST1. The expression profiles of these genes were

extracted to further analyze the aberrant expressions of the

three gene types in the high and low TME score groups.

Correlation Between TME Scores and Genomic
Mutations

To investigate the different genomic mutations in the high

and low TME score samples, single-nucleotide polymorph-

ism data were downloaded from TCGA. Intron and silent

mutations were removed. The Fisher’s exact test was used

to analyze the differences in the mutations between these

two samples. The significant difference threshold was set

to P < 0.05.

Statistical Analysis

The Shapiro-Wilk normality test was used to determine the

normality of the variables, unless otherwise stated26. For

comparison between the two groups, the statistical signifi-

cance of the normal distribution variables was estimated

using the nonpaired Student’s t test, and the non-normal

distribution variables were analyzed using the

Mann-Whitney U test. For comparisons between more than

two groups, the Kruskal-Wallis test and one-way analysis of

variance (ANOVA) were used as nonparametric and para-

metric methods, respectively27. The correlation coefficients

were calculated using the Spearman correlation analysis. A

two-sided Fisher’s exact test was used to analyze the con-

tingency table. The Benjamini-Hochberg method was used
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to convert the p-value to the FDR. The Kaplan-Meier

method was used to generate a survival curve for the

subgroups in each data set, and the log rank test was used

to determine the statistical significance at the level of P <

0.05. All analyses were performed using R 3.4.3 with the

default parameters, unless otherwise specified.

Results

Calculation of TME Scores

Among the 22 TIL scores, the Spearman method is used to

calculate the correlation coefficient between any two TILs,

and the hierarchical clustering is used for cluster analysis,

three clusters are obtained as shown in Fig. 1A, it can be seen

that the three clusters have positive correlation within the

class, and the correlation between classes is weak (Fig. 1A,

Supplemental Table S1). Univariate Cox regression was

used to analyze the relationship between the scores of the

22 TILs and prognosis. The scores of monocytes and naive T

cells/CD4 cells were highly correlated with an unfavorable

prognosis (log rank P < 0.05, hazard ratio [HR] >1).

The scores of follicular helper T cells were correlated with

a favorable prognosis (log rank P < 0.05, HR <1) (Fig. 1B,

Supplemental Table S2).

Identification of Molecular Subtypes Based on the
Scores of the TME-TILs

Based on the TME scores, ConsensusClusterPlus was used

for unsupervised clustering of the TCGA samples. First, the

scores of the three immune cells that were significantly cor-

related with prognosis were selected, and the optimal clus-

tering number between k ¼ 2 and k ¼ 10 was evaluated.

With 1000 repetitions of the above procedures, k ¼ 3 was

selected as the optimal clustering number according to the

cumulative distribution function (CDF) value and delta area

(Supplemental S1_FigureA-F). We defined TMEC1 to

TMEC3 based on the three TME score clusters. According

to the clustering results, immune cells like T cells. CD4

memory resting and activated NK cells achieved significant

high scores in TMEC1. Immune cells such as M0 macro-

phages, NK cells resting were highly scored in TMEC2.

Memory T cells/activated CD4, T cells CD8 scored highly

in TMEC3 (Fig. 1C). We further analyzed the distribution

differences of the scores of the 22 TILs in the three sample

types; 13 (59.09%) had significant differences (Fig. 1D).

The TME-TILs may be closely related to the occurrence

and development of COAD. Survival analysis showed a

significant difference between the TMECs in terms of pro-

gression free survival (PFS) (log rank P ¼ 0.0014), as

shown in Fig. 1E, with TMEC2 having the worst prognosis,

TMEC3 having the best prognosis, and TMEC1 being in

the middle.

We compared the pathway enrichment differences

between the TME clusters (FDR < 0.1). There were no

significant pathways between TMEC1 and TMEC2, and

there were 28 significant pathways between TMEC3 and

TMEC1, for example, NOD_LIKE_RECEPTOR_SIGNAL-

ING_PATHWAY, T_CELL_RECEPTOR_SIGNALING_

PATHWAY, TOLL_LIKE_RECEPTOR_SIGNALING_

PATHWAY, APOPTOSIS, and JAK_STAT_SIGNALING_

PATHWAY (Supplemental S2_Figure A).

Two distinct pathways were found between TMEC3

and TMEC2: KEGG_PROTEASOME and KEGG_DNA_

REPLICATION (Supplemental S2_Figure B).

Identification of DEGs Among the TME Clusters

To study the differences in the gene expression patterns of

each tumor microenvironment cluster (TMEC), DESeq2 was

used to analyze the DEGs of the TMEC1, TMEC2, TMEC3,

and normal samples. An FDR <0.05 and |Log2FC| >2 were

selected. We selected 1300 DEGs that intersected the

3 groups for subsequent analysis (Fig. 2A, B). The DEGs

are shown in Supplemental Table S3.

Clustering DEGs to Construct Gene Clusters in COAD

Based on the 1300 common DEGs, we first filtered 50% of

the genes in the samples whose expression value was <1.

We then conducted a univariate Cox analysis on the filtered

586 genes. We found 105 genes that were highly associated

with prognosis (P < 0.05). We then used the 105 genes to

conduct unsupervised clustering through NMF. The optimal

clustering number was decided according to the cophenetic,

dispersion, and silhouette indicators. We chose 4 as the opti-

mal number (Fig. 2C) and defined them from GeneC1 to

GeneC4. Survival analysis of the 4 gene clusters showed a

significant difference in PFS (Fig. 2D). In comparing the

scores of the 22 TILs in the GeneC groups, we found that

GeneC1, which had the best prognosis, had significantly

higher TIL scores for plasma cells and memory T cells/rest-

ing CD4 cells than the other GeneC groups (Fig. 2E).

Prognostic Risk Model Based on TME Scores

To further study the 105 DEGs with significant prognostic

ability, we used randomForest in R to evaluate their impor-

tance. We selected ntree ¼ 100 according to the random

Forest plot (Supplemental S3_FigureA), and we identified

69 candidate genes (Supplemental S3_FigureB, S3_FigureC)

by choosing DEGs whose accumulative importance was

>95%. These genes were mainly enriched in the Gene Ontol-

ogy (GO) terms relating to negative regulation of digestive

system processes, as well as some Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways (Fig. 3A, B). There

were four clusters after the k-means algorithm was used.

They were defined as signature G1, signature G2, signature

G3, and signature G4, which included 20, 10, 17, and 22

genes, respectively (Fig. 3C). G3 and G4 belonged to the

low-expression group, G1 belonged to the high-expression
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group, and G2 was in middle (Fig. 3D). Principal component

analysis was performed on G1, G2, and G3 using the psych R

package. For each cluster, 100 iterations were performed to

obtain the optimal number of principal components (PCs).

The respective PC scores were then calculated. Multivariate

Cox analysis was used to establish the prognostic risk

Figure 1. Identification of molecular subtypes based on the scores of the TME-TILs. (A) Correlations of the 22 TILs in the TME. The size and
color of the dots represent correlation. Blue represents negative correlation, red represents positive correlation, and the blank area
represents no significant correlation. The color bar represent represents the change trend of correlation, the redder the color, the stronger
the positive correlation, the bluer the color, the stronger the negative correlation. (B) Forest map of the scores of the 22 immune cells in the
TME. (C) Heat map of the scores of the 22 immune cells in the TME. Higher redness reflects higher scores, and lower blueness reflects lower
scores. (D) Boxplot of the scores of the 22 immune cells in the three types of TMEC, with red * indicating significant differences. (E) PFS
prognostic KM curve of the 3 TMEC types. The abscissa represents the survival time (days), and the ordinate represents the survival
probability. TIL, tumor infiltrating lymphocytes; TMD, Tumor microenvironment; PFS, progression free survival.
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models of G1, G2, and G3, and the TME score of each

sample was calculated.

We found that GeneC2 and GeneC4 had worse prognoses

and much higher TME scores than GeneC1 and GeneC3, which

had the best prognoses (Supplemental S4_FigureA, B). The

median TME score (risk score,�0.057) was used to divide the

samples into a high TME score (High Risk group) and low

TME score group (Low Risk group). We found that the prog-

nosis of the two groups were obviously different in terms of

PFS (log rank P < 0.001, HR ¼ 4.06) (Fig. 3E).

GSEA was used to identify the functional enrichment

pathways of the high- and low-TME-score groups according

to an FDR < 0.1 (Fig. 3F). All eight pathways were activated

in the high-TME-score group, including BASAL_CELL_

CARCINOMA, FOCAL_ADHESION, ECM_RECEPTOR_

INTERACTION, PATHWAYS_IN_CANCER, and other

PATHWAYS associated with tumor proliferation and

metastasis.

Relationship Between TME Scores and Clinical
Features

There were significant differences in TME scores in terms of

TNM and American Joint Committee on Cancer (AJCC)

stages but not in terms of sex or age (Fig. 4A–F).

Univariate and Multivariate Analyses Based on the
TME Scores and Clinical Features

Further analysis of the TME scores and clinical features by

univariate and multivariate Cox analysis showed that N1,

Figure 2. Identification of DEGs among the TME clusters. (A) Venn diagram of the up-regulated DEGs of TMEC1, TMEC2, and TMEC3. (B)
Venn diagram of down-regulated DEGs of TMEC1, TMEC2, and TMEC3. (C) Heat map of the consistency matrix of the NMF algorithm. The
color bar represent represents the change trend of correlation, the redder the color, the stronger the positive correlation, the bluer the
color, the stronger the negative correlation. (D) KM curve of GeneC1, GeneC2, GeneC3, and GeneC4 in the PFS analysis, the abscissa
represents the survival time (days), and the ordinate represents the survival probability. (E) Boxplot of the scores of the 22 immune cells in
the GeneC1, GeneC2, GeneC3, and GeneC4 samples. The abscissa represents immune cells, and the ordinate represents immune score.*
means P-value < 0.05. TME: Tumor microenvironment; PFS: progression free survival.
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Figure 3. Construction of Prognostic risk model based on TME scores. (A) GO terms in the functional analysis of 69 genes. The abscissa
represents the percentage of the number of genes in the functional term, the ordinate represents the enriched functional or pathway term,
and the size of the circle represents the number of genes. The color bar represents P-value, and the redder the color, the more prominent it
is. (B) KEGG pathway analysis of 69 genes. The abscissa represents the percentage of the number of genes in the functional term, the
ordinate represents the enriched functional or pathway term, and the size of the circle represents the number of genes. The color bar
represents P-value, and the redder the color, the more prominent it is. (C, D) Gene expression profiles of 69 genes in the different clusters.
(E) KM curve of the Risk-H and Risk-L groups in the PFS analysis. The abscissa represents the survival time (days), and the ordinate
represents the survival probability. (F) Differences in enrichment of KEGG pathway between high and low TMEscore groups. KEGG: Kyoto
Encyclopedia of Genes and Genomes.
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M1, Stage III, age, and high TME scores were independent

risk factors for colon cancer prognosis (Table 2).

Immune Gene Expression Patterns of the TMEs

We analyzed the expression of the TGF/EMT pathway genes

(VIM, ACTA2, COL4A1, TGFBR2, ZEB1, CLDN3,

SMAD9, and TWIST1) in the TMEC, GeneC, and high- and

low-risk groups (Fig. 4G). The relationships between the

expression of the immune checkpoint genes (PDCD1,

CTLA4, LAG3, PDCD1LG2, IDO1, CD274, and HAVCR2)

and the TMEC, GeneC, and high- and low-risk groups were

analyzed (Fig. 4H). The expression of the immune activation

genes (CXCL10, CXCL9, GZMA, GZMB, PRF1, IFNG,

TBX2, TNF, and CD8A) in the TMEC, GeneC, and high-

and low-risk groups was analyzed (Fig. 4I).

Relationships Between the TME Scores and Immune
Cells

We calculated the correlations between the TME scores and

22 immune cells (Table 3), and we observed that TME

Figure 4. Relationship between TME scores and clinical features Relations between (A) gender and TME score; (B) age and TME score; (C)
AJCC stage and TME score; (D) M stage and TME score; (E) N stage and TME score; and (F) T stage and TME score. The abscissa represents
clinical variables, and the ordinate represents TMEscore. (G) Heat map of TGF pathway gene expression. (H) Heat map of immune
checkpoint gene expression. (I) Heat map of immune activation gene expression. The color bar represent represents the change trend
of correlation, the redder the color, the stronger the positive correlation.
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scores were significantly correlated with naı̈ve B cells, rest-

ing memory CD4þ T cells, and M0 macrophages.

Relationship Between TME Scores and Tumor Genome
Mutations

Using the TME scores to divide patients into high-risk

(Risk-H) and low-risk (Risk-L) groups, we compared the

relationships between TME scores and genome mutations

and screened out a group of important TME score-related

genes. We used the Fisher’s exact test to compare the genes

with significant differences in mutation frequency between

the Risk-H and Risk-L groups (intron and silent mutations

were removed), and we obtained a total of 53 genes with a P-

value < 0.01 (Fig. 5, Supplemental Table S4). The results

showed that the mutation frequency of FAT3 in the Risk-H

group was less than in the Risk-L group, which may indicate

an important correlation between this gene and the TME.

TME Clusters and TME Scores Validated with
the External Cohort

We downloaded the GSE39582 data set as a verification

cohort. Using the same method, we divided the GSE39582

data set into three subgroups: TMEC1, TMEC2, and

TMEC3. Comparing the characteristics of these three

Table 2. Univariate Analysis and Multivariate Analysis Based on the TME Score and Clinical Features.

Tag

Univariate cox analysis Multivariate cox analysis

P-value HR Low 95% CI High 95% CI P-value HR Low 95% CI High 95% CI

T2/T1 0.788434 0.740422 0.082446 6.64951 0.085299 0.065833 0.002969 1.459724
T3/T1 0.360699 2.512314 0.348494 18.11141 0.118638 0.08934 0.004301 1.855684
T4/T1 0.042337 8.024114 1.074698 59.91117 0.308283 0.204286 0.009623 4.336691
N1/N0 0.016565 1.873784 1.121118 3.131757 0.009559 0.245076 0.084607 0.709894
N2/N0 2.47E-10 4.529375 2.837032 7.231233 0.14687 0.467768 0.167579 1.305696
M1/M0 9.47E-12 4.904907 3.104477 7.749487 0.002335 163.7793 6.144636 4365.376
Stage II/ I 0.083332 2.881514 0.869774 9.546303 0.106173 13.42297 0.574952 313.3757
Stage III/ I 0.005062 5.455357 1.665799 17.86585 0.009409 77.0099 2.901863 2043.696
Stage IV/I 6.63E-06 15.28265 4.666812 50.04687 NA NA NA NA
Age 0.200744 1.352589 0.851595 2.14832 0.001154 2.594517 1.460013 4.610589
Gender 0.41197 1.18459 0.790348 1.775487 0.370362 0.811356 0.513535 1.281897
TME Score 2.98E-06 2.718282 1.786924 4.135071 0.00036 2.013549 1.370871 2.957523

Table 3. Correlation Between TMEscore and Immune Cells.

Tag R P-value

B cells naive 0.199217973890225 0.000709875609957349
B cells memory 0.0348579878987621 1
Plasma cells �0.111811114292333 0.354214610059808
T cells CD8 0.0942277711192144 0.775282449719287
T cells CD4 naive 0.0309884863300497 1
T cells CD4 memory resting 0.228067146791613 4.21996417212415e-05
T cells CD4 memory activated 0.143578280975776 0.0559182638855866
T cells follicular helper 0.0394924450297709 1
T cells regulatory (Tregs) 0.10499467562999 0.481023337835375
T cells gamma delta �0.138423244849318 0.0748726574775479
NK cells resting 0.00221747458689814 1
NK cells activated �0.0602205025871069 1
Monocytes 0.00129294704540079 1
Macrophages M0 0.159121437982563 0.0193721789134318
Macrophages M1 0.00163972460534322 1
Macrophages M2 �0.0532367111085018 1
Dendritic cells resting �0.0710878531228252 1
Dendritic cells activated �0.0914225309831241 0.827171858978039
Mast cells resting �0.0068291170712964 1
Mast cells activated 0.00694292534679881 1
Eosinophils �0.0735116628567726 1
Neutrophils �0.0238206340464072 1
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groups, we observed that resting memory CD4þ T cells had

significantly higher scores in TMEC1, resting NK cells and

activated mast cells had higher scores in TMEC2, and

activated memory CD4þ T cells had higher scores in

TMEC3 (Fig. 6A). The results of recurrence-free survival

analysis among the TMEC groups showed that there were

significant differences between the TMECs (Fig. 6B, log

rank P ¼ 0.031). TMEC2 had the worst prognosis, TMEC3

had the best prognosis, and TMEC1 was in the middle. These

results are consistent with those of the TCGA cohort.

Furthermore, we calculated the TME scores of the

patients in the validation set, and we used the same method

to group the patients. The prognoses of the patients in the

high-risk group were significantly worse than those of

the patients in the low-risk group (Fig. 6C). These results

are consistent with those of the TCGA cohort. The above

results demonstrate the robustness of our model.

Analysis Flowchart

Protocol was designed to analyze the immune gene signature

based on tumor microenvironment characteristics in colon

cancer (Fig. 7).

Discussion

At present, the treatment mode of CC is comprehensive

treatment based on surgery and chemotherapy1. Due to a

lack of characteristic precursor symptoms of CC, most

patients do not have the opportunity of surgical treatment

by the time they are diagnosed. Chemotherapy drugs for

patients with CC include oxaliplatin, fluorouracil, and other

cytotoxic drugs. Although patients with CC in the early stage

have a good response rate to chemotherapy, the application

of chemotherapy is limited because of drug resistance28.

Immunotherapy has become an important option for cancer

treatment. Studies have shown that combined immunother-

apy can improve the prognoses of patients. Immunotherapy

is effective in patients with microsatellite unstable CC29.

However, the incidence of microsatellite instability is only

15%–20% of all CRC30. Therefore, to fully realize the poten-

tial of cancer immunotherapy, a clear understanding of the

characteristics of the immune microenvironment in tumors is

essential to achieve the sustained clinical success of

immunotherapy.

The TME is very complicated. In addition to tumor cells,

there are fibroblasts, endothelial cells, and immune cells31.

Figure 5. Relationship between TME scores and tumor genome mutations relationships between the TME and the mutation characteristics
of the genomes. The horizontal axis reflects the samples, and the vertical axis reflects the genes. The black rectangle indicates mutations, and
gray indicates 0 mutations. TME: Tumor microenvironment.
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Immune cell infiltration is a common feature of most solid

tumors. Immune tumor cell infiltration in tumors is associ-

ated with good prognosis32. In recent years, many studies

have focused on the different immune cells in the immune

microenvironment of CC, such as T cells, B cells, macro-

phages33–35. At present, there is a lack of overall and global

analyses of the immune microenvironment of CC.

The TILs in the TME are complex and diverse, and their

functions and effects on the prognoses of patients are differ-

ent. Even the same type of immune cell can act counter-

intuitively in terms of the effect on prognosis36. For

example, B lymphocyte infiltration in the TME is associated

with a higher survival rate and lower recurrence rate in ovar-

ian cancer, cervical cancer, and non-small cell lung can-

cer37–39. Paradoxically, B lymphocytes also have a role in

promoting tumor progression. Some patients with advanced

CRC lose B lymphocytes after treatment with rituximab,

while the tumor load of patients decreases40. Therefore,

exploring the effect of immune cells in the immune micro-

environment on the prognoses of patients may require an

overall analysis.

In our research, three TME subtypes (TMEC1, TMEC2,

and TMEC3) were identified based on tumor infiltrating

lymphocyte (TIL) values calculated by CIBERSORT. Some

immune cells, such as M0 macrophages, were highly scored

in TMEC2. Resting dendritic cells scored low in TMEC2.

CD8þ T cells scored high in TMEC3. The survival analysis

results showed significant differences between the TMECs,

with TMEC2 having the worst prognosis and TMEC3 having

the best prognosis.

Many studies have shown that a variety of T lymphocytes,

such as CD8þ T lymphocytes, macrophages, and dendritic

cells, play an important role in colorectal cancer prognosis.

The immune environment surrounding the tumor is associ-

ated with prognosis. Previous research has shown that higher

levels of CD8þ T cells are usually associated with better

Figure 6. TME clusters and TME scores validated with the external cohort. (A) Distribution of the immune cells in the different TME
clusters in the validation cohort. The horizontal coordinates represent the different immune cells, and the vertical coordinates represent the
different TME cluster immune scores. (B) Prognostic differences between the TME clusters in the validation set. The abscissa represents
the survival time (days), and the ordinate represents the survival probability. (C) Differences in the outcomes between the TME scores, the
abscissa represents the survival time (days), and the ordinate represents the survival probability. TME: Tumor microenvironment.
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prognoses41. In addition, higher levels of macrophages usu-

ally mean worse prognoses42, and lower levels of dendritic

cells also mean worse prognoses43. Many factors affect clin-

ical phenotypes, and immune cell infiltration is one of these

indispensable aspects.

Further, we calculated the TME scores using a variety of

algorithms, such as random forest, K-means clustering, and

principal component analysis. The median TME score was

used to divide the samples into a high-TME-score group

(high-risk group) and low-TME-score group (low-risk

group). The prognoses of the patients with high TME scores

were worse than those of the patients with low TME scores.

TME score had a significant correlation with TNM stage and

immune gene expression, and a high TME score was an

independent prognostic factor for patients with colon cancer.

This indicates the potential guiding significance of clinical

immunotherapy for patients with colon cancer.

We calculated the correlations between the TME scores

and 22 immune cells. The results showed that TME scores

were positively correlated with resting memory CD4þ T

cells and M0 macrophages. Previous research has shown that

higher CD4þ T cell and M0 macrophage infiltration levels

are usually associated with worse prognoses44,45. This is

consistent with the findings of our study, which showed that

the patients with high TME scores had poor prognoses.

We identified the high/low TME score functional enrich-

ment pathways using GSEA. These pathways were all

activated in the high-TME-score group, including BASAL_

CELL_CARCINOMA, FOCAL_ADHESION, ECM_

RECEPTOR_INTERACTION, and PATHWAYS_IN_

CANCER associated with tumor proliferation and

metastasis.

Solid tumors are composed of interacting cancer cells and

tumor microenvironments (TMEs), including the extracellu-

lar matrix, mesenchymal stem cells, endothelial cells, and

immune cells, activating the ECM_RECEPTOR_INTER-

ACTION pathway can cause changes in the composition

of the TME and also affect tumor growth, migration, differ-

entiation, and prognosis46,47. Immunotherapy has led to a

change in the treatment of many advanced malignant tumors.

A key factor affecting the efficacy of immunotherapy is

the TME, which contains a heterogeneous composition of

immunosuppressive cells. Focal adhesion kinase (FAK), as a

component of the FOCAL_ADHESION pathway, reduces

the penetration of bone marrow-derived suppressor cells,

tumor-associated macrophages, and regulatory T cells. In

addition, FAK inhibitors have been implicated as modulators

of matrix density and cancer stem cells, leading to a TME

that is more conducive to anti-tumor immune responses48.

Cancer is a genetic disease caused by mutations in the

cellular genome. There is a close relationship between

genome mutations and the tumor immune microenviron-

ment49. We identified a group of tumor mutation genes

related to the occurrence and development of the TME in

CC, which indicates that there is a relatively important asso-

ciation between gene mutations and the TME.

Although this study analyzed the TME characteristics of

CC in large cohorts, it still has some limitations. First, the

population ethnicities in the TCGA database are mainly con-

fined to White and Black people, and the extrapolation of the

findings to other ethnic groups needs to be substantiated.

Second, the conclusion of our research was based on a bioin-

formatics analysis, and it needs further validation through

clinical specimens and prospective studies.

Figure 7. Analysis flowchart.
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In this study, we identified the scores of 22 TILs based on

TME subtypes, and a TME risk score signature was con-

structed and validated. TME score had a significant correla-

tion with TNM stage, immune gene expression, and genomic

mutations. A comprehensive landscape analysis of TME

characteristics will provide a new strategy for immunother-

apy in patients with CC.
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