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Abstract: This paper aims to provide a theoretical and experimental understanding of the importance
of novel 2D materials in solid-film lubrication, along with modulating strategies adopted so far
to improve their performance for spacecraft and industrial applications. The mechanisms and the
underlying physics of 2D materials are reviewed with experimental results. This paper covers some
of the widely investigated solid lubricants such as MoS2, graphene, and boron compounds, namely
h-BN and boric acid. Solid lubricants such as black phosphorus that have gained research prominence
are also discussed regarding their application as additives in polymeric materials. The effects of
process conditions, film deposition parameters, and dopants concentration on friction and wear
rate are discussed with a qualitative and quantitative emphasis that are supported with adequate
examples and application areas and summarized in the form of graphs and tables for easy readability.
The use of advanced manufacturing methods such as powder metallurgy and sintering to produce
solid lubricants of superior tribological performance and the subsequent economic gain from their
development as a substitute for liquid lubricant are also evaluated.

Keywords: 2D materials; tribology; thin films; solid lubricants

1. Introduction

Friction is a necessary evil. Friction between the ground and shoes enables walking;
however, the friction between the mechanical and electrical components decreases the
overall efficiency of their constituting systems [1–4]. Around 20% of the world energy
production is utilized toward overcoming friction [5]. The first documented study of
friction was conducted by Thermistius in 350 BC and demonstrated that the rolling friction
is less than the sliding friction due to the torque generated by frictional force that assists
against friction (µk < µs) [6]. The study of friction requires correlation between theoretical
concept, experimental, and numerical investigations, which remain unaddressed. The
term tribology was coined in 1960 to connect the three important interdisciplinary fields
of research, namely friction, lubrication, and wear. The economic impact of frictional
losses was the impetus for eventually connecting these different branches under a common
umbrella [7]. This is also critical in expanding the knowledge and filling in the gaps in
the literature. Most of the reported literature is experimental in nature, including shared
methodologies and original data that further provide novel insights on friction control, the
reduction of frictional losses, and a better understanding the mechanisms.

Liquid lubricants are widely used in most industrial applications such as in auto-
mobiles and manufacturing industries. Liquid lubricants consist of a base polymer with
additives added. The additives provide lubrication, whereas the polymer base provides
dispersion and stability to the additives. The additives are very sensitive to the working
conditions such as load, speed, and temperature; the viscosity and design of the lubricating
system is also important. A good lubricating system design should be able to provide
adequate pressure difference for the flow of liquids polymers to the required parts based
on viscosity. The narrow range of effective working spectrum and complexity of designing
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to provide pressure difference for lubricant flow makes it difficult for the use of liquid lubri-
cants in extreme working conditions where temperature of pressure varies substantially or
there is the presence of gases and radiations that can react with the lubricant, deteriorating
its lubricating property system [8,9].

The solid lubricants were primarily developed for applications where liquid lubricants
are inadequate such as in aircraft and space exploration, which is characterized by extreme
surrounding conditions in outer space, such as temperature variation during the day,
intensity of solar radiations, atmospheric pressure, and atmospheric gasses [10]. Under
these conditions, liquid lubricants are inadequate both from the standpoint of stable
additive and design constrains. However, very few solid lubricants are used in industrial
applications to reduce wear, such as coatings on rollers and balls of antifriction bearings and
engine piston assembly. Metal nanocomposite and diamond-like carbon (DLC) coatings
are mostly used for these applications.

Graphite is one of the earliest elements used as a solid lubricant or as an additive in
liquid lubricants, which further led to an investigation of materials with similar crystal
structure as graphite, now known as two-dimensional (2D) materials. These materials are
mostly used in solid lubricants and preferred over metals and alloys as they provide easy
sliding between the atomic layers and hence provide low friction. MoS2, h-BN, and boric
acid are some of the successful solid lubricants that fall into this category [11–13]. The
layered structure of 2D materials is responsible for the materials’ lubricating property in
which each layer of these materials is covalently bonded to each other layer through sp2 or
sp3 hybridization, resulting in stronger bonds. This strong interlayer bonding results in
2D materials that are stronger, stiffer, and harder [14,15]. Few 2D materials, such as WS2
graphene, possess very low friction coefficients but are susceptible to high wear [16]. In
contrast, transition metal oxides, h-BN, and nitrocarbons have superior wear-resistance but
a higher friction coefficient [17,18]. This contradictory behavior among the 2D materials
is due to the nature of intralayer bonding between each atomic layer. In case of the 2D
materials with a very low friction coefficient, the layers are attracted to each other by
weak Van der Waals forces, which provides easy sliding between the layers that reduce
the friction. On the other hand, 2D metal oxides usually have a hexagonal wurtzite or
tetragonal structure in which the interlayer atoms are bonded to each other by covalent
bonds, which cause high intralayer friction but reduce wear as it restricts cleavage between
layers. With an increase in intralayer bond strength, the coefficient of friction also increases,
but the wear on 2D materials decreases.

In this comprehensive review, carbon-based solid lubricants such as graphite, graphene,
transition metal di-sulfides, and di-selenides such as MoS2 and WSe2, boron-based com-
pounds -h-BN and boric acid, black phosphorous, and ceramic materials such as ZnO
are discussed and summarized in Figure 1 [19–21]. A schematic of the relative percent-
age of publications on these 2D materials is also shown in Figure 2. Among these 2D
materials, MoS2 and carbon-based compounds including graphite and graphene are the
most investigated materials. MoS2 is the most successful solid lubricant for aerospace
applications in dry conditions, whereas graphite and some other carbon-based lubricants
require a humid environment to provide good lubrication [22]. The discovery of graphene
and its desirable electronic and tribological properties have led to a detailed investigation
on nano- and micro-scale friction for its applications in MEMS/NEMS devices [23,24].
These investigations have provided a deeper insight into friction mechanisms and energy
dissipation on an atomic level.
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Figure 1. Schematic of different 2D materials covered in this review [19–21].

Figure 2. The pie chart shows the research conducted on different solid lubricants from 2000 to 2020;
source: Web of Science database, 2000 to 2020. Keywords used in the search: Title = (“solid lubricant”
OR “solid-lubricant composite” OR “self-lubricating solid lubricant” OR “polymer, ceramic, and
metal matrix composites” and “tribological properties” OR “friction” OR “wear” OR “antifriction”)
AND Topic = (“powder metallurgy” OR “compression molding” OR “sintering” OR “UV curing”).
The total number of publications analyzed equals 334.

2. Mechanisms of Frictional Energy Dissipation on an Atomic Scale

Friction at the macroscale is quantified in terms of coefficient of friction and the wear
rate. For efficient control of frictional losses, it is important to understand the underlying
atomistic mechanisms of frictional losses. Friction results from heat generated due to
various physical, mechanical, and chemical interactions occurring at the interface of the
sliding surfaces [25–27]. However, the complexity of the interactions and the unavailability
of a single theoretical model make it impossible to quantify the relative contributions made
by each of these interactions. In this section, various known mechanisms underlying heat
generation at atomic scale due to sliding are examined to provide a theoretical insight on
friction as summarized schematically in Figure 3.
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Figure 3. Different microscale mechanisms of frictional energy dissipation: (a) Wear mechanism;
(b) Molecular deformation; (c) Thermal Effect; (d) Bonding; and (e) Environmental effect [28].

(a) Wear
At macroscale, wear is caused by plastic deformation and fracture of the solid-film

materials, which leads to physical damage. Wear makes the surface rougher and further
leads to an increase in friction. For solid-film lubrication, it is desirable to have the film
undergo ductile deformation rather than brittle fracture. Ductile materials undergo plastic
deformation by the movement of dislocations, and it can be controlled by tailoring of
grain size and grain orientation. On the other hand, brittle fracture is promoted by crack
initiation, and propagation that will lead to a higher wear rate after the onset of the wear
phenomenon. The wear debris formed also assists in additional wear especially in the case
of brittle films [29–31].

Figure 4. The worn surface morphology of ZrO2-toughened Al2O3 particles reinforced high-
chromium cast iron (HCCI) matrix composite at different loads: (a) 300 N-low magnification;
(b) 300 N-high magnification; (c) 900 N-low magnification; and (d) 300 N-high magnification [32].
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Figure 4 shows some of the wear mechanisms found on the worn surface of ZrO2-
toughened Al2O3 particles reinforced high-chromium cast iron (HCCI) matrix composite
with different forms of wear phenomenon pointed.

(b) Molecular deformation
When molecules at the interfaces of the sliding surfaces encounter each other, adhesion

of surface atoms of the thin film with the tip of the counter body takes place. 2D materials
are known for their low stiffness in the transverse direction [33]. They can easily deform
or delaminate depending on the tip-layer adhesion strength. This lateral deformation
of 2D layers due to adhesion is known as atomic corrugation. Atomic corrugation leads
to molecular deformation and heat generation [34]. Figures 5 and 6 show the molecular
dynamics simulation result between friction force Ff and contact force Fc for suspended
graphene and isotropic graphite at nanoscale contact. Simulations were done at different
contact tip diameters for Vander Waals adhesion contact/retract and full-range force
sweep conditions (experiments), respectively. The analytical values for these simulations
are shown as an insert in Figure 5a,b. Figures 5b and 6b show the Ff vs. Fc relation
when tip-sample interfacial Vander Waals forces are increased four times. When the
interfacial interaction energy was increased, the magnitude of negative contact load also
increased substantially. Negative contact load signifies adhesion between the interfacial
atoms due to molecular deformation. Energy is required to break this contact interaction,
which is released as frictional heat. The presence of dislocations and inclusion can also
increase the corrugation energy as energy is lost as heat to overcome or move these defects.
Higher the number of dislocation motion, the higher the heat generated due to molecular
deformation [35].

Figure 5. Atomistic simulation result of frictional force( Ff ) versus contact force (Fc) for suspended graphene interlayer
adhesion: (a) tip sample empirical interlayer adhesion, and (b) when tip sample interaction Vander Waal’s force increased
by 4 times that of (a). Inserts show analytical estimates of Ff verses Fc different spherical tip diameters. (Here, susp indicates
suspended graphene whereas 3-D indicates isotropic graphite [34].
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Figure 6. Atomistic simulation result of frictional force versus full range sweep of contact force for suspended graphene
interlayer adhesion: (a) for empirical interlayer adhesion at a constant Van der Waal’s force and (b) for empirical interlayer
adhesion when Van der Waal’s forces are increased by 4 times that of (a). (Here, susp. indicates suspended graphene
whereas 3-D indicates isotropic graphite [34].

(c) Thermal effect
At a certain temperature, molecules and atoms gain enough energy to move around

and across the interface. The rate of these motions can either increase or decrease depending
on the surrounding temperature or heat generated due to frictional interaction. The rate
of these fluctuation also depends on the interaction potential between the atoms and
molecules. When the interaction potential is high, the overall effect of thermal activation on
heat generation decreases [36]. In this case, more heat is required to produce these effects.
This is attributed to the thermally actuated hooping mechanism of atoms, which ease
sliding. The thermal effect of heat generation depends on the sliding velocity and lateral
frequency of the sliding interface [37,38]. Figure 7 shows the variation of potential energy
with interatomic distance. The higher the depth of the potential well, the more energy
is required to overcome the interaction potential, and hence, thermal effect on friction
becomes less. In addition, with an increase in depth of the potential well, the melting point
of the material increases.

Figure 7. Typical potential energy curve showing the shape of the well with increase in melting
point [39].
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(d) Bonding
One of the most important issues associated with an increase in friction is related to

chemical interactions at the asperity contacts. Bonding can occur between the rubbing
surfaces or in the presence of environmental reactants. The formation and breakage of
these bonds during the relative motion between rubbing surfaces leads to an increase or
decrease in friction based on the nature of the bonding energy [40,41].

The wearing process mostly involves breaking of metallic bonds with high bond dis-
sociation energy and thus produces heat since these reactions are exothermic. In addition,
surface oxidation and corrosion as a result of environmental reactants are also exothermic
and lead to heat generation. The higher the bond dissociation energy, the higher the heat
generated. Figure 8 shows the energy difference between the reactants and products for
endothermic and exothermic reaction. For exothermic reaction, the energy of the products
is less than that of reactants.

Figure 8. Schematic showing the energy interaction during endothermic and exothermic reactions:
(a) Endothermic reaction- energy of products is higher than energy of reactants and (b) Exothermic
reaction- energy of products is less than energy of reactants [42].

The change in their energy is released into the atmosphere as heat. The binding energy
of different types of atomic bonds is shown in Table 1. The higher the binding energy, the
more heat is released during bond breakage.

Table 1. Binding energy and melting temperature of different bond types [39].

Bonding Type Substance Binding Energy
(Kcal/mol)

Melting
Temperature (◦C)

Ionic
NaCl 153 801
MgO 239 1000

Si 108 1410

Covalent
C 170 >3550

Hg 16 −39
Al 77 660

Metallic
Fe 97 1538
W 203 3410

Van der Waals
Ar 1.8 −189
Cl2 7.4 −101

(e)Environment
Solid-film lubrication is highly dependent on the environment. The chemical and

physical interactions between the film and the surrounding environment greatly affect the
tribological performance [43–45]. Table 2 shows the effect of some environmental factors
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such as humidity and temperature on the lubricating properties of some of the widely used
solid lubricants.

Table 2. Effect of environmental factors on the lubricating properties of some known solid lubricants.

Humidity

• MoS2 and diamond like carbon (DLC) friction increases with humidity
• Graphene, h-BN, and ultra-nanocrystalline diamond (UNCD) friction decrease with humidity due to

saturation of dangling bonds [22]
• In dry condition (0% relative humidity, RH) hydrogenated DLC shows super lubricity (COF < 0.01) due

to shear-induced structural changes [46]

Nitrogen
• h-BN loses lubricating property
• hydrogenated DLC show super lubricity with trace water content (120 ppm) [47]

Oxygen
• h-BN loses lubricating property due to oxidation
• MoS2 is also susceptible to atomic oxygen and decreases the lubricating effect

Hydrogen
• Improves the tribological performance of amorphous nonhydrogenated DLC by hydrogen termination
• For hydrogenated DLC, the presence of small amount of water (120 ppm) increases friction [48]

Temperature
• For MoS2 COF decreases with the increase in temperature due to desorption of water up to 300 ◦C. At

400 ◦C, oxidation of MoS2 causes deterioration of tribological properties
• WS2 and WSe2 can resist oxidation up to 700 ◦C

Vacuum
• h-BN loses lubricating property
• DLC and diamond shows high friction due to desorption of hydrogen [49]
• water desorption deteriorates the lubricating property of graphite and graphene

3. Graphite and Graphene

Graphite is known for its lubricating property from ancient times based on its out-
standing qualities as solid lubricant in humid environment. This is due to the weakening
of the interlayer Van der Waals forces or the dangling bonds because of the saturation
by H+ and OH- ions from humidity [50–52]. Therefore, the graphite has been used as an
additive in various solid lubricants to improve their tribological performance in a humid
environment [53]. Presently most investigation involving graphite as a solid-lubricant
focus on improving the wear and friction of different grades of steels for various industrial
applications [54–56].

Since the discovery of graphene, its electronic properties have gained a lot of attention,
and it has been deemed as a promising material that can revolutionize the electronic in-
dustry, prompting a substantial number of investigations on understanding its behavior at
nano-, micro-, meso-, and macro-scales [57]. Consequently, the electronic, mechanical, and
tribological properties of graphene are more established theoretically and experimentally
than other novel 2D materials. The tribological behavior of different 2D materials is also
affected by their structure, reactivity of different functional groups, chemical affinity to
environmental species, and thickness of deposited layers [58–60]. Extensive studies on
atomistic and molecular scale friction, the effect of external factors, and the influence of
addition of atoms or molecules on the electronic and tribological properties of graphene
are crucial to an in-depth and systematic understanding of the physics of macroscopic
friction [61–63]. These studies indicate a clear difference in frictional behavior at macroscale
compared with microscale and atomic level. Understanding these microscopic tribological
effects is important to achieve super lubricity for practical application over wide ranges of
atmospheric and mechanical conditions [64,65].

Investigations on interlayer and intralayer sliding friction are important for under-
standing the modes of heat generation, dissipation, and their control to achieve super
lubricity at macroscale [66,67]. Experimental studies conducted by Kamiya et al. [68] and
Dienwiebel et al. [69] on the interlayer sliding of graphene/graphite concluded that the
nanoscale friction is highly anisotropic and dependent on the relative angle (rotation angle)
of sliding layers as shown in Figure 9. At 0◦ and 60◦ angles of rotation, the nanoscale
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friction and interaction energy indicated by negative sign convention signifying attraction
are higher than other angles, and the sliding occurring at these angles is termed as com-
mensurate sliding. If the relative sliding angle is not equal to the commensurate stage, the
frictional force is reduced considerably; this phenomenon is known as incommensurate
sliding. This incommensurate sliding of graphene and its associated high flexibility in
the out-of-plane direction even with thermal excitation [70] has been exploited to achieve
macroscopic super lubricity with graphene-coated nanospheres to promote hetero struc-
tural interface sliding as shown in Figure 10a.

Figure 9. (a) Schematic of commensurate and incommensurate sliding of one graphene layer over another [71]; (b) variation
of nanoscale friction with respect to the change in relative angle of rotation [69]; and (c) interaction energy as a function of
rotation angle. Negative interaction energy signifies attractive forces and increase in friction increases [71].
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Figure 10. Incommensurate heterostructure interface sliding of multilayer graphene-coated mi-
crosphere (GMS) on graphene substrate using tipless mode of atomic force microscope (AFM)
(a) isometric view and (b) schematic of atomic force microscopy of GMS sliding on graphene layers
(After [72]).

The friction on heterostructure interfaces was studied by sliding multilayer graphene-
coated microsphere (GMS) on different 2D materials using an atomic force microscope
(AFM) by Liu et al. [72]. They reported formation of a multiasperity contact with sub-
strates by coated microsphere, resulting in incommensurate interfaces and suggests that
superlubric sliding can be achieved for heterostructure multiasperity interfaces. Berman
et al. [73] reported to achieve macroscopic super lubricity between graphene and diamond-
like carbon due to the formation of nanorolls by a spontaneous wrapping of low stiffness
graphene layers during sliding. This produced an incommensurate multiasperity sliding
(Figure 10), which was super lubric with a friction coefficient of ~0.004.

Sliding friction on the surface of the graphene is highly dependent on the thickness
or the number of atomic layers. With an increase in the number of layers, the friction
force decreases and is independent of normal force, sliding velocity, and the tip material.
Lee et al. [74] studied the effect of number of graphene layers on friction force using mica
substrate, which is highly adhesive to graphene. They reported absence of thickness-
dependent frictional effect and attributed it to the decrease in friction with increased
graphene layers to the low stiffness of the graphene layers. When graphene interacts
with AFM tip in contact mode, graphene adheres to the tip, thus producing a puckering
effect and wrinkling, which further increases the friction. The high adhesiveness of the
substrate material inhibits the formation of wrinkles, and friction becomes independent of
the number of layers, which was later confirmed by various research works that reportedly
used atomically thin films subjected to different atmospheric conditions [75–77].

Significant research has been conducted on the effect of topology defects [78–81]
and the presence of functionalization groups [82,83] on heat generated due to friction.
Atomic steps and step edges results in high friction and heat dissipation due to Schwoebel–
Ehrlich barrier [84,85]. Local out-of-plane deformation of the graphene layers increases
the number of step edges and lead to additional heat generation [86,87]. The presence of
functionalization groups such as hydrogen, fluorine, and oxygen is known to increase the
frictional heat, which is assumed to be arisen from the atomic roughening of graphene due
to its sp3-bonding and increase in atomic corrugation [88] and an increase in out-of-plane
stiffness. Ko et al., further showed that hydrogenated, fluorinated, and oxidized graphene
exhibited two, six, and seven times increase in friction compared with pristine graphene,
respectively [58].
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4. Transition Metal Sulfides and Di-Selenides

Transition metal sulfides and selenides such as MoS2, WS2, MoSe2, and WSe2 are an
important class of 2D lubricating materials, especially in space exploration design [89].
These materials are known for their very low friction coefficient in dry and vacuum
conditions over a wide temperature range in addition to their stability in radiative envi-
ronments [90–92]. Among these materials, MoS2 is extensively investigated and used for
astronomical applications. The tribological performance of other transition metal disul-
fides and di-selenides is comparable to that of MoS2 due to their similarity in structure
and are also used as a solid-film lubricant [93]. Tungsten-based disulfide and di-selenide
are used for high-temperature applications due to their thermal stability and oxidation
resistance [94,95]. MoS2 is reported to lose its lubricating property around 300 ◦C due
to oxidation, whereas tungsten compounds can maintain lubricity up to 600 ◦C [96,97].
The lubricious property of these solid films is highly dependent on the microstructure
and dopant concentration. The microstructure and their adhesiveness to the substrate
are also dependent on the deposition method and deposition parameters such as coating
power, time, and the temperature. High-quality films of transition metal disulfides and
di-selenides with improved tribological performance produced by using sputter deposition
method have also been extensively reported [98]. Various sputtering processes such as
co-deposition, multiplayer, and multiphase deposition are used frequently to produce
high-quality transition metal lubricious films that can withstand high loads and possess
higher wear resistance [99–101].

The solid-lubricating properties of these transition materials are known to deteriorate
due to the adsorption of atmospheric humidity, the presence of oxygen, and at higher tem-
peratures [43,102,103]. Studies have reported an increase in friction at room temperature
due to adsorption of water, which notably does not promote oxidation of MoS2. This in-
crease in friction as a result of adsorbed water also restricts the growth of surface tribo-films
on the counter surface at room temperature [104]. Curry et al., conducted experiments on
highly oriented N2-sprayed MoS2 and sputtered amorphous MoS2 films [105]. The per-
formance of these highly oriented crystal with the basal plane perpendicular to the c-axis
showed enhanced performance under humidity and at high temperatures in the absence of
molecular oxygen. An increase in temperature and in the presence of oxygen, the surface
oxidation of MoS2 films leads to an increase in friction coefficient. These oxide films are
usually a few nanometers thick and wear off easily, and therefore, exposing the underlying
unoxidized MoS2 films improves overall tribological performance with time. Thus, it was
concluded that adsorption of water molecules reduces the tribological performance of
MoS2 films compared with the oxidation of a solid film [106,107]. Prasad et al., investigated
the quality of the WS2 transfer film and noted a deterioration of friction coefficient in the
presence 50–60% relative humidity in the air, a trend like that of MoS2 [108].

Another characteristic feature of MoS2 coatings is the establishment of low friction
during the running-in which is enhanced by high loads and can be supported by friction-
induced surface crystallization [109]. The formation of a basal-oriented transfer film on the
counter-body sliding against a randomly oriented MoS2 film has also been reported [110].
Although the reorientation process results in a lower and a stable coefficient of friction, it is
shown to significantly decrease the wear resistance of the coating under higher humidity.
Tungsten disulfides and selenide show higher thermal stability compared with its molyb-
denum counterparts. Hence, tungsten-based compounds are known for its lubricating
properties at a higher temperature.

Many investigations have been conducted to improve the tribological performance of
these films under humidity and for high-temperature applications. Films grown parallel
to the substrate (001) are preferred for solid lubrication because their edge sites (step
edges), which are more reactive to oxidation and corrosion are masked from the surface.
The quality of the synthesized films is also dependent on deposition parameters such
as pressure, temperature, and the substrate among other factors. It has been found that
sub-stoichiometric films with sulfur and selenide deficiency decreases the probability of
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re-sputtering, thereby improving the tribological performance [111,112]. An augmented
metallic interface between the film and the substrate improves the adhesive property of
the film [113,114]. The addition of different materials was also shown to alter the grain
structure, orientation, and the performance of the solid film [115]. Doping or co-deposition
and using layered films generated through multilayer deposition of various materials
are frequently used to improve the resistance of the films under varying humidity and
temperature conditions [116].

Titanium is a widely used co-dopant in MoS2-sputtered films [117]. Rigato et al. [118]
reported that the doping of Ti within the layered structure of MoS2 increases the distance
between MoS2 layers and reduces the interlayer friction. Renevier et al. [119] reported
that MoS (Ti) produced by close-field unbalanced magnetron sputtering was found to be
harder by factors of 1000–2000 than hardness of MoS2 (~400 HV) and were much more
wear-resistant by a factor of ~100. They were also identified to be lesser sensitive than
the atmospheric water vapor, showing an improvement by a factor of 2800 compared
with MoS2. Quin et al. [120] examined hybrid high-power impulse magnetron sputtered
(HIPIMS) MoS (Ti) films and demonstrated that the crystallization degree of the MoS2 (Ti)
composite coatings decreases with an increase in Ti dopant concentration. This is due to
the reactivity of Ti with O that results in the formation of titanium oxides on the surface,
inhibiting the oxidation of MoS2 and achievement of the lowest coefficient of friction
(COF) at 0.04 and at the wear rate of 10 −7 mm3 N−1 m−1 at the optimum Ti content of
13.5% (Figure 11).

Figure 11. (a) Sliding friction curve and (b) mean coefficient of friction as a function of Ti content for sputter-deposited
Ti/MoS2 films [120].

Ding et al., showed that an increase in Cr doping on MoS2 led to a substantial decrease
in the wear rate and friction with humidity up to 9.6 at% of Cr as indicated in Figure 12.
Also, addition of metals such as Au [121], Cr [122], Ni [123,124], Cu [125,126], Zr [127],
and metal compounds such as Sb2O3, WSe2 have improved the performance under humid
air and vacuum compared with sputter-deposited pure MoS2. Doping of WSe2 in MoS2
films leads to the substitution of sulfur atoms by selenide, which creates a curvature in
the linear MoS2 structure by increasing the interlayer spacing, as shown schematically in
Figure 13 [128]. Few metal dopants facilitate the parallel orientation of basal plane with the
substrate in the sliding direction, protect the edge sites from oxidation and further reacts
with oxygen to form lubricious metal oxides that improve their performance in humid
atmospheric conditions [119,129,130]. The interstitial and substitutional defects increase
the interlayer spacing and aids in easy cleavage, thereby reducing interlayer friction.
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Figure 12. Friction coefficient and wear rate on sputter deposited MoS2/Cr composite film as a function of Cr content at
different humidity levels: (a) variation friction coefficient with relative humidity and (b) variation of wear rate with relative
humidity [122].
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creases interlayer distance and reduces friction. 

Figure 13. (a) MoS2 layer and (b) substitution of the sulfur atom by selenide leads to a curved structure (after [128]).
This increases interlayer distance and reduces friction.

Doped amorphous carbon and DLC (diamond-like carbon) have also been investigated
for improvement in the tribological performance of transition metal dichalcogenides under
humid conditions. Notably, the addition of smaller amounts of MoS2 in carbon-based
compounds facilitate the formation of graphite-like structure [131]. MoS2/carbon-doped
composite has been highly investigated to improve the strength, wear resistance, and
tribological performance of transition metal dichalcogenides in humid environments [131].
Studies have shown that the addition of graphite, r-graphene oxide, DNC, and amorphous
carbon to transition metal dichalcogenides improves the tribological performance in humid
environments [132].

Multilayer films deposited by sputtering are proven to have superior lubricating
properties than the pure solid-film lubricants. The improved performance of these films
is due to their increased hardness arising from their distinct superlattice structure of the
resultant multilayer films [133]. Mikhailov et al. [134] investigated the performance of multi-
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films of MoS2 using Au, Ni, Pb, or PbO films as the ancillary layer that exhibited higher
performance at 50% RH, and it was hypothesized that the improved performance is because
the addition of the elements helps in the basal orientation of MoS2 and hence improves
the performance. In another study conducted by Li et al. [135] involving Pb-Ti/MoS2
nanoscale multilayer films produced by sputtering, it was found that the films advanced
from a multilayer structure to a composite structure as the bilayer period decreased from
25 to 6 nm due to diffusion of atoms within the bilayer. Hence, there should be a minimum
bilayer period thickness to make sure the films formed are multilayer and not composite
coating. The nanoscale multilayer film with a bilayer period of 20 nm exhibited superior
mechanical and tribological properties than pure MoS2, implying that a certain minimum
critical bilayer thickness is crucial to produce multilayer films.

In multilayer deposition, a metallic layer of metals such as Cr and Ti is deposited as
the first layer to improve the adhesion of multilayer solid films on to substrate [136]. Hilton
et al., formed sputtered Ni–MoS2 and Au–(20%) Pd–MoS2 multilayer films with appropriate
layer spacing and thickness to induce excellent endurance under dry nitrogen and air
environments [129]. The thickness of the interlayer distance determines the hardness,
microstructure, and superlayer structure, which affects the tribological performance. Many
studies report using multilayer and multiphase deposition techniques to find optimum
interlayer spacing and composition to identify the best lubricious solid film to address the
current needs [99,137–139]. Figure 14 summarizes research works conducted on MoS2 and
WS2 co-deposited and multilayer films. The range of friction coefficient and wear rate for
carbon-based films and sputter-deposited transition metal sulfides and di-selenides films
are shown in Figure 15.

Figure 14. Some publications on co-deposited and multilayer MoS2 and WS2 films. [115,119,120,122–124,126,134,135].
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Figure 15. The range of friction coefficient and wear rate for carbon-based films and sputter-deposited transition metal
sulfides and di-selenides films: (a) Friction coefficient range for carbon-based films; (b) Wear rate range for carbon-based
film; (c) Friction coefficient range for sputter-deposited transition metal sulfides and di-selenides films; and (d) Wear rate
range for sputter-deposited transition metal sulfides and di-selenides films [102,140–144].

Boron compounds are used extensively in a wide range of tribological applications
as an environment-friendly friction modifier and antiwear additive. Both organic and
inorganic boron compounds are used as a solid, liquid lubricant [145–147] and as a lu-
bricant additive in organic and inorganic compounds [12,148,149]. Boron-based lubri-
cants are mostly explored for industrial application as a solid or ionic liquid lubricant.
Among all boron compounds, hexagonal boron nitride and boric acid are investigated as a
solid lubricant.

Hexagonal boron nitrides (h-BN) also known as white graphite have been shown
to have inferior lubricating abilities compared with graphite and MoS2 because of the
existence of stronger interlayer Van der Waals forces that restrict the cleavage [150–152].
The h-BN has higher temperature stability compared with other solid lubricants and
functions well in a humid environment. In contrast to other solid lubricants, h-BN can
withstand higher sintering temperature during the powder metallurgical manufacturing
processes by virtue of their higher phase-transformation temperature [152,153]. Presently
most industrial applications of h-BN focus on improving the tribological performance of
different grades of steel for industrial applications [152,154].

Mahathanabodee et al. [152] studied hexagonal boron nitride (h-BN)-embedded 316 L
stainless steel (SS316L/h-BN) composites prepared via high-temperature powder metal-
lurgy process and established that increasing h-BN content in the composition leads to a
decrease in the hardness, which can be improved by increasing the sintering temperature
during the manufacturing process. The best tribological results were obtained for 20vol%
of h-BN at a sintering temperature of 1200 ◦C, which is slightly higher than its melting
point of 1250 ◦C. Avril et al. [155] examined α-Fe (Cr)-h-BN and α-Fe (Cr)-Fe2B-FeB films
generated on X30Cr13 stainless steel by a laser-melting process that showed an improve-
ment in the tribological properties with the addition of h-BN [156,157]. Miyake et al. [158]
investigated the effects of multilayers (C/BN) n films with thickness in nanometric range
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that were produced by RF sputtering and found the layer thickness of 4 nm showed the
lowest friction coefficient of 0.1 at 25 ◦C.

Zishan et al. [159] explored the temperature stability of SiC and (SiC/h-BN) composite
coatings prepared by the pack cementation process on carbon/carbon (C/C) substrate.
Their findings supported the addition of h-BN that resulted in stabilization of the friction
coefficient of SiC coating at room temperature. At 600 ◦C, the tribological behaviors of
both the coatings showed a higher friction coefficient of 0.75; however, at 800 ◦C, the SiC
coating underwent severe wear and SiC/h-BN composite coating exhibited a lower friction
coefficient and wear rate compared with SiC coating. Tyagi et al. [160] also reported a
lower friction coefficient for a sintered coating containing h-BN compared with the base
matrix and an improvement in lubricating effects at high loads and speeds [161].

Boric acid has also been explored as potential solid-lubricating borate due to its
graphene like structure as shown in Figure 16. Unlike other solid lubricants, boric acid
dehydrates at 170 ◦C forming oxides that lack the lubricating property. In addition, during
sliding at high contact pressure, boric acid solid films can be forced out of the sliding
contact area and need to be replenished continuously [162,163]. Due to these issues, boric
acid is mostly used in multifunctional systems consisting of solid and ionic liquid lubricants
that allows for continuous replenishment of solid-lubricant boric acid crystals [123,164].

Figure 16. Structure of h-BN and boric acid: (a) hexagonal boron nitride and (b) boric acid [165].

5. Phosphorus with Layered Structures (Black Phosphorous)

Black phosphorous (BP) is the most thermodynamically stable and nontoxic of all
the amorphous forms of phosphorous at room temperature [166]. In recent years, it
has gained prominence as a lubricant additive in polymer composites especially with
polytetrafluoroethylene (PTFE) as the composite matrix [167]. The addition of BP facilitates
the formation of a tribo-film consisting of phosphorus oxide and phosphoric acid over the
time that leads to a decrease in friction coefficient and wear as the rubbing progresses [168].

Lv et al. [169] conducted tribological investigations on polyether ether ketone (PEEK)/
PTFE and carbon fiber (CF)/PTFE composites with 5% BP nanosheets. The results indi-
cate a dramatic decrease in the coefficient of friction (COFs) and wear rate of both the
PEEK/PTFE and CF/PTFE composites in the presence of BP nanosheets. A minimum COF
of 0.04 has been reported for both composites with the inclusion of BP. The wear rate of the
PTFE/PEEK composite has been observed to decrease with an increase in PEEK concentra-
tion, while the wear increased with increasing CF content in CF/PTFE composites. Peng
et al. [170] recognized enhanced tribological performance for 0.5 wt.% BP/PTFE compared
with 0.5 wt.% BMG (ball-milled graphite)/PTFE. Table 3 enlists the thermal stability and
temperature range of the applications of some solid lubricants.
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Table 3. Thermal stability and temperature range of application of some solid lubricants’ [165,168,171].

Material Temperature
Range (◦C)

Temperature of Thermal
Stability (◦C) Friction Coefficient

MoS2 −184–400 350 0.05–0.25
WS2 −184–454 425 0.05–0.25

Graphite −184–650 500 0.1–0.3
h-BN

Boric Acid
Black Phosphorous

−184–538
20–80

700
170

0.1–0.2
0.05–0.07
0.2–0.33

6. Ceramics in Tribology Research

Ceramic materials with tetragonal and wurtzite structures have been used recently
as a solid lubricant for high-temperature applications. Unlike traditional solid lubricants
with 2D structure, these materials have stronger intralayer and interlayer covalent bonds.
The intralayer covalent bonds is responsible for the brittleness and hardness of the ceram-
ics, and as a result of their brittle nature, the lubricating property of ceramic materials is
known to depend heavily on their microstructure under varying temperatures [172–175].
In the case of ceramic materials, the wear and failure happen due to crack initiation and
propagation. Karch et al. [176] successfully demonstrated the achievement of ductile
fracture of TiO2 ceramics at low temperature for TiO2 ceramic by controlling the stoichiom-
etry, grain size, and crystal orientation both experimentally and analytically. With the
advancement in thin-film coating technologies that offer precise control of these deposition
process parameters, ceramics can emerge an alternative for high-temperature and corrosive
environmental applications.

It has also been shown that the sub-stoichiometric oxide coatings with oxygen vacan-
cies can lead to the development of new crystallographic shear systems due to diffusion
creep; consequently, the shear strength and friction coefficient can be controlled by con-
trolling the stoichiometry [177]. The grain size of the oxide films further aids in reducing
friction. For instance, the reduced friction of the nanocrystalline ZnO films is attributed
to their sub-micrometer-scale spherical nature that enables a shift in their contact config-
uration from sliding to rolling. However, these sub-micrometer-sized films possess poor
antiwear properties due to their low hardness, which can be improved by inclusion of
other elements in films such as nitrogen and carbon. These particles have been shown to
squeeze into the grooves on the rubbing surfaces to reduce wear. Nitrogen in particular
has been extensively used for reducing the grain size of ZnO. For most oxides, epitaxial
growth along the (0001) plane generates the lowest friction coefficient as it has the lowest
energy of all the possible crystallographic orientations, which is also known to reduce
friction [178,179]. The addition of noble metals such as silver and gold also causes these
metals to precipitate along the grain boundary thus strengthening the grain boundaries.
This reduces diffusion and dislocation along the grain boundary, improves the hardness,
and reduces friction [180,181].

7. Metals, Ceramic, and Polymer-Based Matrix Composites

Recently, there has been a significant number of investigations using new and ad-
vanced manufacturing methods such as powder metallurgy and 3D printing, centered on
understanding and improving the tribological performance of solid lubricants. Improving
the wear life of solid lubricants has been one of the key challenges in the field of tribology
for their reliable industrial and engineering applications. These advanced manufacturing
processes help in controlling the microstructure and lubricant concentration with greater
precision. Another recent trend in solid-lubrication research is the focus on the manufac-
turing and characterization of composites comprising of solid lubricants to reduce friction
that has been dispersed in a hard matrix to lengthen the wear life [137].

As discussed previously, metal, ceramic, and polymer matrix composites are widely
explored as solid lubricants. Currently adopted matrix materials typically consist of met-
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als such as copper [182], steel, and aluminum [183]; ceramics like aluminum oxide and
silicon carbide, and polymers including PTFE, polyamides [184,185]. Solid lubricants
such as MoS2, carbon black, graphite in addition to nanometric scale carbon fibers, tita-
nium, and many more have been investigated with varying composition and a variety of
manufacturing parameters, namely sintering temperature and powder size to determine
solid-lubricant films with advanced tribological properties and reliability for industrial
applications [21,169,186]. Figure 17 correlated the film coverage and friction coefficient as
a function of solid-lubricant content for MoS2 films. A substantial number of publications
has reported a variety of combination of different solid lubricants and their matrices to
generate the best possible solid-lubricant films. Table 4 summarizes some pioneering work
that used matrix composites for solid lubrication in the past two decades.

Figure 17. Relationship between film coverage and friction coefficient as a function of solid-lubricant
content for MoS2 films [21].

Lightweight components are the biggest needs of automobile and aircraft industries
that remain a challenge to this date. Aluminum and titanium have been explored as
an alternative to heavy-duty steel to produce machine parts [187,188]. Reinforcement
of metals and alloys along with solid lubricants, hard ceramic particles, and fibers have
been an area of interest in the development of MMC with precise balances of mechanical,
physical and tribological characteristics [189,190]. Metal matrix composites reinforced with
carbon, polymer, or ceramic fibers with varying compositions of solid-lubricant content
have been investigated extensively for spacecraft applications [21]. MoS2, as the most
successful solid lubricant in space applications, has gained a lot of eminence in the field of
solid-lubrication research. Additionally, some investigations reported the use of Ni, WC,
c-BN, and graphite solid-lubrication coatings on softer materials such as aluminum alloys
to increase the surface hardness [190–192]. By contrast, the focus of automobile industries
has primarily been on mixed lubrication, which is the combination of solid and liquid
lubricants to address their tribological focused challenges.

A considerable amount of work has been conducted on copper, iron, nickel, and alu-
minum metal matrix composites with MoS2 as the primary lubricating material [193].
The high thermal and electrical conductivity of copper has led to its applications in
electrical contacts, bearings, slide blocks, bushes, and other friction materials. Copper
is known to be reactive toward MoS2 that results in the formation of Cu- Mo mixed
sulfides that deteriorate the strength and tribological properties [194]. Addition of al-
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loying elements in Cu to form brass and bronze helps in overcoming the reactivity of
MoS2 with Cu [195–197]. Iron and steel have been dominating the manufacturing and
automobile industries since the industrial revolution (~1800 AD), particularly steels due to
their high resistance against corrosion, fatigue, and wear. The reliability and availability
of different grades of steel powders [198,199] have led to advancement of sintered steels
that are further alloyed with elements and ceramics to control the chemical composition
and the processing parameters, to achieve iron-based MMC with enhanced compressibility,
machinability, hardness, strength, and toughness [200,201]. Nickel is used in matrix for
high-temperature applications such as turbine engines, radiator systems, and nuclear reac-
tors [202,203]. The use of solid lubricants for high-temperature applications is challenging,
and therefore, MMC containing Ni matrix comprising of two or more solid lubricants
such as graphite, Ti3SiC2 WS2, and PbO [204,205] is used for lubrication at a wide range
of temperature applications [206]. In recent times, aluminum and titanium have gained
attention as a potential solid-lubricating matrix due to their light weight and specific
strength [207,208]. Some investigations have reported the use of a silver matrix for the
lubrication of electrical contacts [209,210].

Ceramic materials are known for their high-temperature stability and chemical in-
ertness. Solid-lubricant powders possessing high thermal stability such as BaF2, CaF2,
SrSO4, and CaSiO3 are mixed with ceramic powders such as ZrO2, Y2O3, Al2O3, and TiC,
and sintered at high temperature and pressure to produce lubricious ceramic
composites [211–213]. Ouyanga et al., found that unlubricated ZrO2 (Y2O3)–Al2O3 has
a friction coefficient of 1.15 and a wear rate in the order of 10−4 mm3 N−1 m−1 at
800 ◦C [211]. The addition of SrSO4 reduces the brittleness of the ceramic matrix and
facilitates plastic deformation. It is also reported that the effective spreading of lubricating
material over the ceramic matrix is responsible for reducing the friction and wear over a
wide range of temperatures. The size of the ceramic powder and sintering temperatures
also affects the tribological performance [211,214,215].

Solid lubrication using polymeric materials such as polyamides, PMMA (Polymethyl
methacrylate), and PTFE (Polytetrafluoroethylene) have also been used as a lubricating
matrix in automobile body parts. The manufacturing feasibility arising with the addition of
nanofibers enhances strength, and the presence of solid lubricants reduces friction, which
has further prompt investigations on the applications polymer matrix composites [216].
The discovery of polymer nanocomposites and graphene has led to an interest in devel-
oping polymer/graphene nanocomposites with superior mechanical, thermal, gas barrier,
electrical, and tribological properties [217,218]. A significant number of reports are centered
on various polymer nanocomposites and the impact of fiber reinforcement and lubricant
that influences on the tribological performance [219–223].
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Table 4. Some publications on using matrix composites for solid lubrication from 2000 to 2020.

Publication Matrix Lubricant Parameters Important Findings

Chen et al., 2008 [150] Copper

• Graphite from 10 wt.% to
0 wt.%

• h-BN from 0 wt.% to 10
wt.%

• Block-on-ring wear tester
• Counter surface: AISI52100

bearing steel

• The lubrication effects of graphite are superior to those
of h-BN.

• Added graphite with low contents of h-BN can
stabilize friction and wear properties

• COF increased from 0.35 to 0.55 with an increase in
load from 50 to 125 N

Tang et al., 2011 [224] Copper NbSe2 nanofiber
• Ball-on-disk, 50–70% RH
• Counter surface: 440-C

stainless steel

• 15 wt.% NbSe2 nanofibers showed a very low
coefficient of friction of 0.1487

Zhang et al., 2019 [225] Copper Ni/NbSe2
• Ball-on-disk
• Counter surface: GCr15

• 15 wt.% Ni/NbSe2 showed the lowest friction coefficient
(0.16) and wear rate (4.1 × 10 −5 mm3 N−1 m−1)

Sundararajan et al.
2016 [226]

Cu-X SiC wt.% (X = 0,
5, 10, and 15 wt.%) Gr at 5 and 10 wt.% • Pin-on-disc • 10 wt.% gr and 15 wt.% SiC best result

Prabhu et al., 2015 [227] Cu-20 vol.% silica
10 vol.% of MoS2

or graphite
or h-BN

• Disc-on-pad dynamometer, 70% RH
• Counter surface: gray cast iron disc

• MoS2 is the most effective lubricant with COF =
0.18−0.3 for sliding speed for 3–9 m/s followed by,
graphite, and h-BN

Zhen et al.
2017 [228] Nickel

Ag = 12.5 wt.%
Baf2/CaF2 = 5 wt.%,

Graphite = 0, 0.5, 1, 2 wt.%

• Ball-on-disk, RT to 800 ◦C
• Counter surface: Si3N4 ceramic ball

• 0.5 wt.% graphite exhibited the lowest COF at different
testing temperatures except at 800 ◦C.

• The composite with 2.0 wt.% graphite showed the
lowest at 800 ◦C

Zhao et al.
2019 [229] Nickel h-BN=1.25 wt.%

nano-Carbon = 5 wt.%

• Experiments conducted from
25 ◦C–500 ◦C

• The encapsulation of h-BN with nano-Cu increased the
h-BN content in the coating

• COF reduced from 0.48 to 0.35 from 25 ◦C to 500 ◦C

Chen et al.
2018 [230] Ni Cr 80–20 wt.% MoS2

Graphite

• Pin-on-disk
• Counter surface: steel disk

(Cr12MoV)

• 10% MoS2 + Ni + Cr (80–20 wt.%) showed best result
with COF=0.02



Materials 2021, 14, 1630 21 of 30

Table 4. Cont.

Publication Matrix Lubricant Parameters Important Findings

Huang et al., 2017 [231]
WC-Ni-Cr88 wt.% WC,

11 wt.% Ni and
1 wt.% Cr

WS2= 5 wt.%
• Ball-on-disk
• Counter surfaces: WC-Ni balls

• Composite sintered at 950 ◦C under 250 MPa showed
best COF = 0.13

Kulka et al.
2019 [232] Ni CaF2 20% • Pin-on-disc Counter surface:

• Inconel 625-alloy
• COF =0.75 to 0.45 from room to 600 ◦C

Gupta et al., 2019 [233] Fe-0.3C-2Ni based
composites WS2 (3, 5, 7 and 9 wt.%)

• The composite with the highest amount of WS2 (9
wt.%) showed the lowest coefficient of friction (0.47)

Zalaznik et al., 2016
[234] PEEK micro and nano MoS2, WS2

• Pin-on-disc
• Counter surface: stainless steel pin

(100Cr6).

• Friction reduced from 0.6 to 0.4 with the addition of
micro and nano MoS2, WS2

Cura et al., 2013 [235] Al2O3 – 15 wt.% ZrO2
(AZ)

3 wt.% of CaF2, BaF2, MoS2,
WS2, h-BN, or graphite

• Scratch testing at 27N

• AZ COF=0.068
• CaF2 COF=0.043
• BaF2 COF=0.082
• MoS2 COF=0.086
• WS2 COF=0.093
• h-BN COF=0.086
• Graphite COF=0.121

Ali et al.
2019 [236] M50 steel

TiO2 10 wt.%
TiO2/G powder (10 wt.%

TiO2+5 wt.% G)

• Pin-on-disk
• Counter surfaces: Si3N4 balls

• The tribological performance of TiO2/G was the best
• It decreased from 0.43 to 0.2 from 25–450 ◦C
• Pure M50 had a COF of 0.8

Tao et al.
2001 [237] Tin-bronze Graphite, MoS2 or PTFE

• Contact pressure = 5 MPa
• Sliding velocity = 0.16 m/s
• Testing time = 8 h

• PTFE 20 wt.% and graphite 40 wt.%. showed the best
result with COF=0.13

• Wear rate also reduced by three orders of magnitude
for the above sample

Mushtaq et al. 2018
[238]

Fe–Cu 5 wt.%–
Sn3 wt.% MoS2 (0-3 wt.%) • Ball-on-disc

• Counter surface EN-8 steel
• Increasing MoS2 content from 0 to 3 wt.% the

coefficient of friction decreased from 0.85 to 0.25.
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8. Conclusions

The importance and current research on solid-film lubrication have been extensively
reviewed to provide a holistic understanding of its importance, advantages, and limitations
regarding its application in the industry. The effect of various alloying elements, manu-
facturing processes, and associated process parameters on the tribological performance of
solid lubricants, such as carbon-based and molybdenum-based compounds, is discussed
from both a theoretical and experimental investigation standpoint. Molybdenum-based
compounds are used extensively in astronomical and aeronautical applications; however,
the lubricating property of MoS2 is susceptible to atmospheric humidity. On the contrary,
carbon-based solid lubricants are known for their advanced tribological performance un-
der humid conditions due to the weakening of interlayer Van der Waals bonds due to
saturation of H+ and OH− ions from water, which facilitates their interlayer cleavage. A
comprehensive review on 2D materials like h-BN, boric acid, and black phosphorous is also
covered from an application perspective due to their recent prominence in the literature.
Based on the high thermal stability of h-BN, it is deemed the preferred primary lubricant to
produce lubricious matrix composites at higher sintering temperatures. Boric acid requires
replenishment at intervals, and therefore, used multifunctional solid and ionic liquid lu-
bricants involved in the dispersion of boric acid in liquid lubricants. Black phosphorous
is used in lubricious polymeric matrix composites for bearing cages, gears, and cams in
the automobile industry. The exploitation of powder metallurgy and sintering methods to
produce ceramic and metal matrix composites for high-temperature, corrosion-resistant,
and high-wear applications is also discussed. Notable case studies on sputter-deposited
and sintered solid-lubricant composites, with reported values of coefficient of friction
and environmental conditions, are summarized in tables and graphs for easy readability
and understanding.

Solid lubricants possess different desirable properties in comparison with liquids. The
higher working range and lubricating properties for extreme conditions are the biggest
advantages in commercial applications. However, the lower wear life and difficulty in
recoating are the biggest challenges for being considered as a replacement of liquid lubri-
cants. Some solid lubricants such as diamond-like carbon coatings are used along with
liquid lubricants to provide better lubricant performance. The present market for solid
lubricants is still on extreme condition lubrication, but solid-lubricant nanocomposite
coatings have gained some momentum in high-performance industrial applications, such
as in mining and wind turbines. Solid-lubricant coatings can be used for many applications
when liquid lubricants alone cannot provide the required lubrication need. The increased
demand for green or environment-friendly energy systems such as electric engines and
wind energy harvesters will lead to the increased use of solid lubricants, as some additives
in oil lubricants are known to be environmentally hazardous.
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