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Glow discharge plasma 
stabilization of azo dye on PMMA 
polymer
Mohammad Reza Yari1,5*, Mohammad Sadegh Zakerhamidi2,3,4 & Hamid Ghomi1,5*

The effects of argon gas glow discharge plasma on the surface of DR1 dye-loaded PMMA polymer 
films are examined in this work. Plasma immobilizes the dye on the surface of polymer without using 
stabilizers. Argon plasma activates the surface through breaking some bonds and generation of radical 
sites. It affects the acrylate groups of PMMA leading to covalent bonds between dye and surface of 
polymer. In addition, plasma treatment and contact with ambient air may result in the creation of 
new polar components, such as carbonyl and carboxyl compounds and links that enhance the dye 
attachment to the polymer matrix. Besides, the dye adsorption on the polymer film is impacted by 
changes in surface topography. Furthermore, plasma modifies the dye conformation, which affects 
the adherence of the dye to the polymer surface through bringing the dye to the higher energy state. 
The chemical and topographical modification of dye-loaded PMMA films by plasma are investigated 
by spectroscopic and AFM methods. Furthermore, aging process was used to confirm dye retention 
on the polymer film after plasma modification as opposed to dye-loaded polymer film that was left 
untreated as a reference sample. Finally, investigated method suggests a novel and very affordable 
technique for fabrication of poly(MMA-co-DR1) copolymer in the form of a homogeneous surface 
layer.

Environmental stability, proper optical characteristics, low cost1, chemical inertness, high flexibility2, and 
mechanical strength superior to glass3 are all properties of poly methyl methacrylate (PMMA). PMMA is widely 
used in a variety of industries, such as biomedical devices4, sensors5, and optoelectronics6. This polymer is a 
low-density transparent and hydrophobic thermoplastic2. It also has a low surface free energy which results in 
poor adhesion7.

Surface characteristics are critical for a variety of polymer applications. Changing surface properties, such 
as adhesion8, printing, and biocompatibility9, which are defined in the surface of material, expands the range of 
applications of polymers. In general, polymers are modified to improve physical and chemical properties, for 
example, creating suitable superficial functional groups, change in polarity10, wettability, roughness11, enhance-
ment of surface free energy12, reflection variation6, surface etching, creating nanotextured surfaces13, and chang-
ing adhesion properties14. There are various techniques to modify the surface of polymer, such as chemical 
modification15, thermal treatment16, flame treatment17, ion beam treatment18, and radiation19. The use of different 
harmful chemicals, costly equipment, dangerous radiation, and high energy consumption are the difficulties of 
utilization of these methods.

Plasma surface modification of materials is a clean, efficient, rapid, homogeneous, and environmentally 
friendly process20. It works with a variety of materials, including metals21, composites22, and polymers23. This 
technique can change surface properties without affecting the favorable bulk properties of material24. Surface 
modification of polymers using non-thermal plasma leads to surface activation and produces new functional 
groups25. Plasma impresses the surface of polymers with thicknesses ranging from nanometers to micrometers8. 
Plasmas contain highly reactive, excited, and energetic particles, such as electrons, radicals, metastable species, 
and ultraviolet radiation, which interact with the surface of material26. Some patterns are formed on poly-
meric surfaces during plasma treatment, and energetic particles can influence some structural bonds of poly-
mers, resulting in phenomena such as cross-linking, degradation, recombination, etching, oxygenation, and 
depolymerization27,28. Also, the surface energy of the polymer can be increased by plasma29. Furthermore, surface 
charging of polymers is an unavoidable plasma effect30. As a result, plasma can change some surface properties of 
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polymers like wettability, biocompatibility, printability, roughness, and adhesion31,32. The properties of plasma-
treated polymer surfaces are influenced by a number of plasma parameters, including power density, treatment 
time, gas flow rate, pressure, gas type, reactor configuration, and sample location33,34, which change some vari-
ables, such as electron density, mean electron energy, and the number of radicals. The low surface energy and 
hydrophobic properties of PMMA polymer limit its applications and reduce surface adhesion35. These variables 
can be influenced simply by modification of a monomolecular layer36. Sputtering, ionization, excitation, breaking 
some bonds, and introduction of new species occur during plasma surface modification of PMMA, resulting in 
chemical and physical changes to the polymer’s surface37. Additionally, some polar functional groups and reactive 
species are generated on the surface, which improve adhesion, surface energy, and hydrophilicity38. Furthermore, 
the creation of a nano-pattern surface improves the surface adhesion of PMMA polymer39.

Azobenzenes as molecular switching systems have two space conformations called trans (E) and cis (Z) iso-
mers, which trans state is converted to cis mode under the irradiation of ultraviolet rays40. Photoisomerization of 
azobenzene from trans to cis state changes the spatial shape of the azobenzene molecule by closing the aromatic 
rings together41. The cis isomer has a higher energy state than the trans isomer (about 50 kJ/mol), and the cis 
mode can be converted to the trans mode by losing energy and thermal relaxation42. Azobenzenes are used in 
various cases, such as sensors43, data storage44, nonlinear optics45, nano machines46, drug delivery47, holographic 
works48. Disperse Red 1 (DR1) dye, as one of the most well-known dyes of this group of the dyes, also has 
halochromic properties that can be used to determine PH changes when the color is changed49. As a result, it is 
critical to keep DR1 dye stable on the surface for various applications. Surface morphology, hydrophilicity, and 
surface chemistry, as well as charge and energy, all play a role in dye immobilization on the surface of polymer50. 
There are several methods for immobilizing dye on the surface such as adding a polymeric fixating agent, but 
none of them completely prevent dye fading51.

In this study, glow discharge plasma with argon gas was applied to treat pure and dye-loaded PMMA poly-
mer films to investigate the effects of plasma on the surface. In order to determine chemical and topographical 
changes of the surface of PMMA films induced by plasma, Fourier-transform infrared spectroscopy (FT-IR) and 
atomic force microscopy (AFM) were used. The durability of dye on the surface of polymer after plasma treatment 
was investigated using an accelerated aging process. UV–Vis spectroscopy was used to determine dye cis–trans 
isomer composition changes before and after plasma, as well as the results of the aging process. There has been 
an attempt to propose reliable mechanisms for the effects of plasma on dye-loaded polymers.

Results
Plasma effects on pure and DR1 doped PMMA polymer films.  The FT-IR spectra of both pure 
and DR1 dye-doped PMMA thin films were studied before and after the argon plasma treatment for 300 s. This 
optimized time interval of treatment of plasma with known characteristics in this work, was obtained by trial 
and error. FT-IR analysis revealed the chemical and structural changes caused by plasma treatment in both pure 
and dye-doped polymers. The FT-IR spectra of pristine and plasma-treated films are shown in Fig. 1. Also, Sup-
plementary Fig. S1 in the supplementary information presents more detailed peaks information of FT-IR spectra 
of Fig. 1a. And for a better comparison, Supplementary Fig. S2 in the supplementary information indicates the 
spectra of pure and DR1 dye-doped PMMA polymer before and after plasma treatment for 150 s.

The FT-IR spectra of the samples demonstrate the absorption bands in the region of 2920–3000 cm−1 attrib-
uted to C–H symmetric and asymmetric stretching vibrations. The peak at 2850 cm−1 is related to methoxy group 
OCH3 in the side group of PMMA backbone. The characteristic intense absorbing band appearing at 1732 cm−1 
is assigned to carbonyl group C=O stretching. On the other hand, the observed band at 1647 cm−1 corresponds 
to C=C bond stretching vibration. The dual peaks at 1485 and 1450 cm−1 are ascribed to the asymmetric bend-
ing modes of the –CH2 and –CH3 groups. Also, the peak at 1388 cm−1 is due to −CH3 bending vibration. The 

Figure 1.   FT-IR spectra of (a) pure PMMA polymer layer (b) DR1 dye-doped PMMA polymer layer and (blue 
lines) untreated samples (red lines) argon plasma-treated samples for 300 s modification.
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peaks located at 1271 and 1243 cm−1 are interpreted as C–C–O stretching vibration band. The typical absorption 
bands are observed at 1193 and 1149 cm−1 originate from C–O–C stretching vibration. The peaks in the range 
of 990–1090 cm−1 refer to stretching C–O bonds in PMMA structure.

The DR1 dye-doped PMMA polymer film was exposed to plasma for various times to investigate other 
plasma-induced changes which is seen in Fig. 2. In this part of experiment, the effects of argon glow discharge 
plasma on the sample at different times were compared by UV–Vis spectra. Figure 2 shows the UV–Vis spectra 
of the sample before and after plasma treatment at various time intervals. Figure 3 shows the deconvoluted peaks 
of each spectrum of Fig. 2 that indicates the overlapped peaks related to cis and trans forms of the dye. Table 1 
presents the area under each fitted peak related to the population of cis and trans isomers of the dye.

Given the effects of plasma on the surface, using surface topographical images to examine the changes on 
the surface is a viable approach. The data produced from 3D topographical AFM images is quite useful in 
identifying material surface structure. AFM microscope was used to examine the surface topography of DR1 
dye-doped PMMA films. AFM images of pristine and 300 s argon plasma-treated samples are shown in Fig. 4. 
Also, Supplementary Fig. S3 in supplementary information shows surface roughness before and after plasma 
treatment for 150 s.

As demonstrated in Fig. 4, argon plasma treatment for 300 s significantly affected the surface topography 
and roughness of DR1 dye-doped PMMA. Table 2 shows some of the surface roughness parameters before and 
after argon plasma treatment.

Plasma effect on surface dyeing of DR1 dye‑doped PMMA.  The DR1 dye-doped PMMA polymer 
film was immersed in DR1 dye solution (in Ethanol solvent 2 × 10–3 M) to adsorb extra dye to its surface in this 
section of the experiment. Absorption spectra were taken from the sample before and after it was placed in an 
argon glow discharge plasma reactor for various time intervals. Figure 5 depicts the absorption spectra of the 
sample at various times of plasma treatment. Figure 6 demonstrates the deconvoluted peaks of each spectrum of 
Fig. 5 that shows the overlapped peaks related to cis and trans forms of the dye. Table 3 presents the area under 
each fitted peak related to the population of cis and trans isomers of the dye.

Plasma effect on aging of DR1 dye‑loaded PMMA polymer.  The accelerated aging process using 
intensified conditions measures resistance of substance to heat, UV irradiation, humidity, and other factors in 
order to obtain results faster than long-term natural aging. The aging effect is an important consideration when 
estimating dye immobilization on the surface of a material. UV–Vis spectrophotometry was used to investigate 
the effects of aging process and to estimate dye leaching from the surface of the polymer in this section. Follow-
ing the preparation of pure PMMA polymer films and their immersion in DR1 dye solution, the samples were 
placed in a dark environment at a temperature of 10 °C to prevent temporary effects, after they were exposed to 
argon glow discharge plasma for 300 s. The samples were washed in ethanol before aging process. The acceler-
ated aging process was used to test the degree of dye adhesion to the surface at various time intervals. Finally, 
UV–Vis spectrophotometry was used to assess dye durability on the polymer film, which was compared to the 
control sample. The UV–Vis spectra of the untreated and plasma-treated dye-loaded PMMA films (prepared by 
immersing pure PMMA film in dye solution) after various aging times are shown in Fig. 7 to provide a quan-
titative description of color fastness. The absorbance spectra of dye-loaded PMMA films examined by UV–Vis 
spectroscopy show that the dye-loaded PMMA layer treated with plasma has higher dye fastness than similar 
sample without plasma modification during the various times of aging discoloration process.

Figure 2.   UV–Vis spectra of pristine and argon plasma-treated DR1 dye-doped PMMA polymer film for 
various treatment times.
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Discussion
The analysis of FT-IR spectra of pristine and plasma-treated pure and dye-doped PMMA samples reveals that 
plasma has significant impact on some specific peaks. A considerable increase in the intensity of C=O peak at 
1732 cm−1 is observed that signifies the formation of carbonyl groups on the shallow layer near the surface. 
Besides, the C=O peak becomes broader due to introduction of some new carbonyl species. The comparative 
study of FT-IR measurement results indicates that the concentration of C–O bonds changes. Also, there is an 
obvious decrease in methoxy groups containing OCH3 bonds as illustrated in Fig. 1.

Plasma can create an adequate amount of free radicals or radical sites on the polymer surface through pro-
cesses such as hydrogen abstraction and homolytic cleavage, resulting in surface activation and the initiation 
of new reactions52. According to the observed results, the following mechanisms are proposed as the effects of 
plasma on the surface of studied samples:

Figure 3.   Double peaks fitted for the UV–Vis normalized absorption spectra of DR1 dye-doped PMMA 
polymer film before and after plasma modification for different treatment times: (a) before plasma treatment (b) 
300 s (c) 420 s (d) 720 s (e) 1020 s (f) 1320 s (g) 1620 s plasma treatment.
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Some radical structures may form by absorbing ultraviolet radiation in plasma environment and undergo 
reactions such as hydrogen abstraction and Norrish reactions53. In plasma, high-energy particles, in addition to 
ultraviolet radiation, can greatly enhance the amount of created radicals. Figure 8 shows how pendant groups of 
the PMMA polymer are cleaved in the place of the C–O bond at the link junction of the methoxy group in the 
side group of the polymer main chain, resulting in the introduction of acyl radical structures connected to the 
polymer backbone on the surface of polymer. Breakdown of methoxy group in PMMA structure as a result of 
C–O bond breakage in the side group of the polymer leads to the formation of formaldehyde and certain radical 
sites in the polymer structure, which may undergo further reactions. This assertion is consistent with findings 
from FT-IR spectra, which shows that methoxy groups are reduced and carbonyl groups are generated on the 
surface. The hydroxyl group in DR1 dye is able to separate from the dye under certain conditions54. Through the 
introduction of certain radicals and composition by plasma, the covalent bond is the fundamental reason for dye 
immobilization on the polymer film51. The dye can form a covalent link with the polymer through produced acyl 
radicals on the surface of polymer. As a result of the plasma treatment, a layer of poly[(methyl methacrylate)-
co-(Disperse Red 1 methacrylate)] (poly(MMA-co-DR1) copolymer forms on the surface of the DR1 dye-doped 
PMMA polymer. This copolymer is a type of DR1 azo dye copolymer that is created in the form of a surface layer 

Table 1.   The amounts of DR1 dye isomeric species and their ratios calculated from fitted double peaks before 
and after plasma treatment at different time intervals for dye-doped PMMA. Strans area under the fitted peak 1, 
Scis area under the right fitted peak 2, Stotal area under the cumulative fit peak.

Samples Strans Scis Scis/Strans Scis/Stotal(%)

Before plasma treatment 118.44 7.37 0.06 7.69

300 s plasma treatment 92.06 21.18 0.23 18.70

420 s plasma treatment 91.83 21.61 0.23 19.04

720 s plasma treatment 89.80 23.85 0.25 20.98

1020 s plasma treatment 87.57 24.52 0.28 21.87

1320 s plasma treatment 80.18 24.12 0.30 23.12

1620 s plasma treatment 79.57 25.20 0.31 24.05

Figure 4.   AFM images of (a) untreated (b) argon plasma-treated DR1 dye-doped PMMA surface for 300 s 
modification.

Table 2.   Comparative presentation of roughness parameters (Ra, Rq, and Rz) of dye-doped PMMA polymer 
surfaces before and after argon glow discharge plasma treatment for 300 s. The roughness parameters include 
the arithmetic averages of the assessed values (Ra), the root mean square average of height deviations from the 
mean line (Rq), and the maximum peak to valley height (Rz).

Samples

Roughness parameters

Ra (nm) Rq (nm) Rz (nm)

Untreated DR1 dye doped PMMA 0.838 1.023 5.107

plasma-treated DR1 dye doped PMMA 9.205 11.306 51.455
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by plasma treatment and is particularly useful in optical researches. This process is a novel and cost-effective 
method to synthesize this copolymer on the surface homogeneously.

Plasma has the ability to affect substances containing acrylate or methacrylate moieties. This finding is consist-
ent with the literature, which claims that dyes with acrylate or methacrylate functional groups can be immobilized 
well on polymer surfaces because plasma breaks C–O bonds of acrylate moieties in the special dye structure 
mentioned in the literature and forms new covalent bonds with the substrate material51,55. As a by-product, 
formaldehyde with the chemical formula of CH2O has a polar functional group of C=O. Due to plasma treat-
ment, Van der Waals attractive interactions between this dipolar molecule and the plasma-treated surface of the 
polymer allow formaldehyde molecules to be adsorbed into the surface. The formed formaldehyde on the PMMA 
surface can last for a long period. Persistence of some formaldehyde molecules on some specific surfaces is in 
agreement with the literatures56,57. It can act as a self-cleaning surface because of its disinfectant qualities. Also, 
formaldehyde is a possible intermediary that aids dye adhesion to the polymer surface.

The active surface of plasma-treated sample, which is exposed to air after plasma treatment, may react with 
the oxygen of ambient air and form oxygen containing species, and some components like low molecular weight 
oxidized material (LMWOM) are generated on the surface7,58. Enhancement of species including oxygen on the 
surface of polymer such as C=O and C–O bonds plays a crucial role in increasing the concentration of polar 
functionalities on the surface. Then plasma treatment of PMMA surface can be a satisfactory way to improve 
surface polarity. Furthermore, the peaks related to C=O bonds connected to carboxyl functional groups are 
slightly thicker and expand a little towards the area of C–H stretching bonds in FT-IR spectra. The comparison 
of the FT-IR spectra of the samples before and after plasma treatment reveals that a carboxylic function is created 
on the surface of the films as a result of subsequent reactions. It is consistent with the findings of Bagiatis et al.7. 
As a result, formic acid is one of the probable species to form on the surface. Because some of the formaldehyde 
molecules created on the surface by plasma can be oxidized by atmospheric oxygen after contact of the treated 
samples with ambient air, resulting in the formation of formic acid. The generated carbonyl and carboxyl groups 
on the surface of the polymer lead to dye immobilization. Because of the substitutions, the carboxylic groups may 
adhere the dye to the polymer surface, which is consistent with some literatures59–61. Plasma can also produce 
other acyl groups by reacting with the formed formaldehyde, which is highly reactive and can help the dye attach 
to the polymer through subsequent reactions, and it is in agreement with the literatures62–64.

There is a significant decline in the amount of C=C bonds. FT-IR spectra in Fig. 1 show that certain C–H 
bonds are broken as a result of plasma treatment, as seen by the change in spectra. Plasma treatment of polymer 
results in substantial dehydrogenation and deprotonation reactions65. Another impact by noble gas plasma may 
be the formation of carbon–carbon bonds as a result of hydrogen desorption8. At the surface of polymers, argon 
gas plasma can cause a reaction known as "CASING" (Cross-linking by Activated Species in INert Gases)51. 
Separation of hydrogen atoms by Ar ions can result in the formation of reactive structures on the surface of the 
polymer for subsequent processes like cross-linking and polymer branching. Cross-linking processes may occur 
in the result of etching and sputtering of the structures with C=C bonds on the surface leading to reduction of 
the concentration of C=C bonds and dehydrogenation of the polymeric surface, and introduce additional C–C 
bonds, resulting in longer polymer chains.

The changes of UV–Vis spectra of Fig. 2 are justified for two reasons: one is due to dye conformation modi-
fication, and the other is due to etching and sputtering of surface components by heavy and energetic particles 
in plasma. These two alternatives will be addressed in the following.

The conformational changes of the dye doped in the polymer film by plasma treatment may be assessed 
by UV–Vis spectroscopy. There are two appearing peaks for each conformation in the UV–Vis spectra of DR1 
dye assigned to π → π* and n → π* transitions. In the trans isomers, the intensity of absorption band of π → π* 

Figure 5.   UV–Vis spectra of pristine and DR1 dye-doped PMMA polymer film with extra adsorbed surface dye 
through immersing in DR1 dye solution treated with argon plasma at various treatment times.
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transition is higher than the cis species42. It is necessary to mention, in DR1 dye as a pseudo-stilbene type dyes, 
the two peaks for each conformation in the UV–Vis absorption spectrum are overlapped66. The UV–Vis absorp-
tion spectra were fitted by two Gaussian bands using the Origin 2018 software to produce fitted peaks of cis and 
trans isomers and the area under the deconvoluted curves to understand the amount of changes in the population 
of cis and trans isomers. The area under the deconvoluted curves from the UV–Vis absorption spectra of the 
samples was used to calculate the cis to trans isomers ratio. Figure 3 indicates the cumulative and deconvoluted 
curves obtained from the absorption spectra of the dye-doped polymer film before and after plasma treatment 
in various times.

As seen in Table 1, plasma increases the population of cis forms by transferring energy to trans species. 
Plasma induces reorientation of the polymeric components on the surface around the dye molecules, and makes 
it harder for the dye to return from the cis to the trans form and stabilizes the dye in the cis state. Substitutions 

Figure 6.   Double peaks fitted for the UV–Vis normalized absorption spectra of DR1 dye-doped PMMA 
polymer films with extra surface dye before and after plasma modification for different treatment times: (a) 
before plasma treatment (b) 300 s (c) 420 s (d) 720 s (e) 1020 s (f) 1320 s (g) 1620 s plasma treatment.
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and changes in the structure of the surface components and the presence of different products created on the 
surface by plasma are the other factors affecting the stabilization of the dye in the cis mode and resulting in 
changes in absorption wavelength of both peaks of conformational species.

Table 1 summarizes the calculated areas under the fitted curves, which illustrates the changes in the popula-
tion of cis and trans isomers before and after plasma treatment at various time intervals. After a month, there 
was no change in the transfer of the cis states to the trans forms of the dye in the samples.

According to Table 2 information, the Ra value increased significantly after plasma treatment. Also, AFM 
results show enhancement of Rz and Rq roughness parameters. In a plasma environment with DC bias, irradiation 
of heavy and energetic Ar ions generate scratches on the surface of the sample, and plasma builds nanostruc-
tures on the surface by using processes like etching and sputtering. During plasma treatment, certain grooves 
and porosities are formed on the surface of the polymer, with groove thicknesses ranging from 400 to 600 nm. 
Furthermore, the freshly created radicals and active surface of PMMA can react with other dangling chemicals, 
causing certain molecules to cling to the polymer and form bumps. As can be seen in Fig. 4, argon plasma can 
induce worm-like chain structure network on the surface of polymer that increases the surface roughness. The 
surface topography of the material and the size of the contact surface have an impact on adhesion. Increased 
surface roughness enhances the contact surface of dye molecules with the polymer macromolecules, which 
strengthens dye adherence on the surface.

Figure 6 shows the fitted and cumulative lines of the spectra of the DR1 dye-doped PMMA polymer film 
with extra surface dye before and after various times of plasma treatment. Table 3 summarizes the information 
obtained from fitting diagrams. The concentration of dye molecules on the surface is higher in this section than 
the previous one. When the results of this section in Table 3, are compared to the results of the similar tests 
for dye-doped polymer film without additional surficial dye in Table 1, it can be concluded that plasma has a 
greater effects on the surface of the polymer and conformation changes of dye molecules present on the surface 
than dye molecules in the bulk of sample. Because in a plasma environment, photons and energetic particles 
can collide with the surface and have a greater impact on the dye molecules on the surface of polymer. On the 
other hand, the dye molecules on the surface of the polymer have more freedom for conformational changes. 
Plasma creates special physical and chemical structures and particular substituents on the surface that allow the 
cis form of dye to maintain its stability.

Chemical changes, oxidation, eliminating weak connections, and reorientation all contribute to the aging 
process of dye-loaded surface of polymeric material67,68. In addition, photodegradation caused by UV radiation 
in the presence of heat and humidity contributes significantly to the accelerated aging of the sample. The results 

Table 3.   The amounts of DR1 dye isomeric species and their ratios calculated from fitted double peaks before 
and after plasma treatment at different time intervals for dye-doped PMMA with extra surface dye. Strans area 
under the fitted peak 1, Scis area under the right fitted peak 2, Stotal area under the cumulative fit peak.

Samples Strans Scis Scis/Strans Scis/Stotal (%)

Before plasma treatment 141.93 11.73 0.08 7.63

300 s plasma treatment 96.14 28.83 0.29 23.06

420 s plasma treatment 95.34 29.15 0.30 23.41

720 s plasma treatment 90.37 32.40 0.35 26.39

1020 s plasma treatment 83.72 32.97 0.39 28.25

1320 s plasma treatment 80.87 34.96 0.43 30.18

1620 s plasma treatment 76.98 35.32 0.45 31.45

Figure 7.   UV–Vis spectra of DR1 dye-loaded PMMA polymer films after different times of aging process: (a) 
untreated dye-loaded film (b) plasma modified dye-loaded film for treatment time of 300 s.
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show that plasma modification causes less surface discoloration during the aging process due to the creation 
of strong dye connections to the polymer surface, and the covalent bonds produced by the plasma treatment, 
play an important role in dye immobilization as the strongest links. Of course, the other induced phenomena, 
such as surface pores and changes of conformation of dye molecules aid dye adhesion to the polymer surface.

Conclusions
The effects of argon DC glow discharge plasma were investigated on the pure and DR1 dye-loaded PMMA films. 
During plasma treatment, charged and energetic particles penetrates the surface of the sample and affect some 
bonds due to an electrical potential gradient. Furthermore, energetic particles and photons in the plasma envi-
ronment attack the dye-loaded PMMA surface, altering some of its properties. Plasma treatment improves dye 
immobilization on the surface of polymer through activation of the surface by producing radicals and covalent 
bonds between the dye and the polymer. This technique is a cost-effective method for coloring the material due 
to the disusing of dye in the bulk of polymer leading to low consumption of dye. Plasma can cause phenomena 
like dipole–dipole interactions and hydrogen bonding on the surface of polymers because of formation of polar 
terminal groups, such as carbonyl and carboxyl. The oxygen-containing groups can adsorb dye molecules with 
hydrogen atoms and are considered donors in hydrogen bonding enhancing the adhesion of the dye to the surface 
of the polymer. A layer of (poly(MMA-co-DR1)) copolymer can be synthesized homogeneously on the surface 
using this method, which involves plasma treatment of DR1 dye-loaded PMMA polymer. The surface roughness 
has significant effect on increasing the dye fastness on the surface by enhancement of the contact surface area for 
dye molecules. The population of cis isomers of the dye grows under the exposure of plasma at a proper rate. By 
increasing the amount of cis isomers of dye on the surface of polymer, covalent bonding is more likely because 
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of the higher energy state of cis species, and plasma helps the dye adhere better to the surface. DC plasma forms 
new structures on the surface and reoriente some of the components of the surface in the direction of the field. 
In addition to this factor, the stability of the cis form is affected by increasing the surface pores and producing 
new structures and substituents. All of these features increase the functional capacity of such materials, and allow 
them to be used in optical applications and data storage. Plasma treatment provides longer dye retention on the 
surface of polymer for use in holographic and halochromic applications. Also, the increased stable cis species of 
the dye on the surface of polymer reduces polymer degradation due to more radiation absorption in UV range.

Materials and methods
Materials.  PMMA polymer powder with an average molecular weight of 120,000 and a density of 1.88 g/ml 
at 25 °C was purchased from Sigma-Aldrich for use in this work. Merck provided DR1 dye, dichloromethane, 
and ethanol as solvents, while the water used in this experiment was distilled water.

Characterization instruments.  Vertex 70 scan spectrophotometer was used to obtain absorbance FT-IR 
spectra in the wavenumber range of 400–4000 cm−1. The fully digital FT-IR spectrophotometer features tech-
nology based on parallel running dual-channel delta sigma with 24-bit dynamic range. The accuracy of this 
spectrophotometric tool is 3 cm−1. A double beam Shimadzu UV-2450 scan UV–Visible spectrophotometer was 
used to measure UV–Vis spectra in the wavelength range of 200–900 nm with medium scanning speed. This 
spectroscopic instrument were combined with a cell temperature controller with an accuracy of ± 0.1 °C. The 
surface topographical modification was seen using an atomic force microscope (AFM) of the Nanosurf Mobile-
S type with 2 controller and Si3N4 needle. The surface morphology of the samples was determined by dynamic 
force operating mode with vibrational frequency of 170 kHz.

Aging test.  To identify and compare the degree of dye attachment to the surface of polymer films, an accel-
erated aging procedure was chosen. The dye-loaded PMMA films, both untreated and plasma-treated, were 
exposed to ultraviolet radiation in a damp and warm atmosphere. The samples were kept in a chamber with 
quartz walls positioned at identical distances and angles from a 500 W mercury-vapor UV source under ambi-
ent air pressure at 55 °C and 87% humidity. Distilled water was used to maintain the humidity of the chamber. 
Variation in the spectra obtained by UV–Vis spectrophotometer was used to estimate the color changes caused 
by the aging process of the PMMA films.

Sample preparation.  The polymer solution was made by dissolving PMMA powder in dichloromethane 
solvent at a concentration of 0.6 W/W% at room temperature. The PMMA films were casted by spin-coating 
method from the solution on quartz slides. Three batches of polymer films were made: the first batch consisted of 
pure polymer films that were used to determine the chemical changes caused by plasma and study dye stabiliza-
tion by plasma on the surface of pure film after dipping in dye solution and plasma through aging process. The 
second batch of polymer films was made from a PMMA polymer solution that had been doped with DR1 dye 
at a concentration of 2 W/W%. The third category included pure and DR1 dye-doped PMMA films that were 
immersed in a DR1 dye solution in ethanol solvent at a concentration of 15 mg/ml for 120 s to adsorb extra dye 
homogeneously on the surface of polymer, which were approximate optimized dye concentrations and dipping 
times for high dye loading on the surface obtained by trial and error. The samples were dried in an oven at 35 °C. 
The samples were then placed in a plasma environment. In several circumstances, the effects of plasma on the 
samples were compared to the untreated control samples. All of the tests were carried out twice.

Plasma instrument.  A Pyrex cylindrical tube with a gap length of 500  mm was used as the DC glow 
discharge plasma device chamber in this study. The Pyrex glass chamber was connected and sealed by two 
aluminum parallel electrodes at the ends. The samples were placed in the positive column zone of plasma. The 
plasma chamber was filled with pure argon gas (with a purity of 99.99%). Before turning on the discharge, the 
chamber was connected to an Alcatel rotary vacuum pump to be evacuated of air molecules and purged with 
the target gas. Then, at a work pressure of argon gas at 2 × 10–1 Torr, Plasma was created at the distance between 
two electrodes after the electrodes were connected to a power supply. To accelerate charged particles inside the 
plasma reactor, the applied DC voltage between two electrodes was kept at 1.2 kV with a discharge current of 
0.15 A. The plasma had a power density of 720 mW/cm3. After plasma treatment, ambient air was introduced 
into the chamber, bringing the pressure to atmospheric levels. The samples were left unused in a dark place for 
up to 16 h after plasma treatment to reduce some temporary and weak effects.

Statistical analysis.  The UV–Vis absorption spectra were fitted by two Gaussian bands using the Origin 
software (OriginPro 2018 (64-bit) SR1; b9.5.1.195), (http://​www.​Origi​nLab.​com) to produce fitted peaks of cis 
and trans isomers and the area under the deconvoluted curves. The area under each fitted peak expresses scale 
amount of the population of isomers species. The area under the deconvoluted curves from the UV–Vis absorp-
tion spectra of the samples was used to calculate the cis to trans isomers ratio. Also, smoothing of raw data was 
accomplished by this software using the Savitzky-Golay method with 32 points of window, and with polynomial 
order 2.

Data availability
The datasets obtained during the current study are available from the corresponding author on reasonable 
request.

http://www.OriginLab.com
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