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Introduction

The aim of this review is to create a framework of dif-
ferent interconnected pathways that constitute the com-
plex COVID-19 pathophysiological crossroads, as well 
as the interactions with common comorbidities (T2DM 
in particular).

First the SARS-CoV-2 virus and COVID-19 (including 
severe complications) will be introduced. Then, the 
COVID-19 relation with the RAAS will be reviewed, and 
a preliminary framework will be established. This frame-
work will subsequently be expanded with the CS and the 
KKS. The interactions between COVID-19, T2DM, and 
IL-6, will be reviewed in light of this framework. Finally, 
some potential targets for therapeutic intervention will be 
discussed.

Abbreviations are listed at the end.

COVID-19

SARS-CoV-2 is a SSRNA+, enveloped virus from the 
beta-coronavirus family, with a structural surface spike (S) 

glycoprotein that primarily binds to the N-terminal domain 
of ACE2, predominantly, but not exclusively, on type-II 
pneumocytes.1–3 SARS-CoV-2 decreases surface ACE2 
expression through directly binding to ACE2,4–6 followed 
by TMPRSS2-mediated proteolytic cleavage3,7,8 and sub-
sequent endocytosis.1,3,5 TMPRSS2 is essential for 
SARS-CoV-2 membrane fusion and subsequent cell-
entry,3,7,8 but other proteases (such as Furin) may facili-
tate SARS-CoV-2 cell-entry as well.2,5,9 Surface ACE2 is 
further reduced via shedding, caused by Ang-II-mediated 
upregulation of ADAM-175,6,10 and androgen-medi-
ated8,11 upregulation of TMPRSS2.3,7 Reduced ACE2 
expression may also be modulated epigenetically via  
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DNA-methylation processes,12,13 or via crosstalk with 
T2DM-induced hyperglycemia.14,15

The SARS-CoV-2-related disease is commonly referred 
to as COVID-19.1,7,16 Common COVID-19 symptoms are 
fever, dry cough, sore throat, dyspnea, headache, and myal-
gia.1,12,17 Some atypical symptoms are anosmia (loss of 
smell)18–20 and diarrhea (which may present earlier than 
respiratory conditions).1,5,17 Different sex and age groups 
have very biased severity and mortality of COVID-19, with 
male, old age, and comorbidity being the most affected.1,4,15 
T2DM, hypertension, and CVD are common COVID-19 
comorbidities (which are likely related to a dysregulated 
RAAS)5,6,21 and are associated with ARDS15,22,23 and high 
fatality.1,23,24 Currently, there is no approved and effective 
medication against COVID-19.16,22,25

The protective mechanism during the early stages of a 
(viral) infection predominantly occurs through the innate 
immune system.26–28 COVID-19 primarily suppresses the 
innate immune system, enabling the uncontrolled spread of the 
virus during the initial stages.27–29 This explains a mild (some-
times even asymptomatic) presentation early on.27,28,30 The 
high effectiveness of the innate immune system in children 
possibly explains why COVID-19 doesn’t seem to affect them 
as much (if at all).27,28,30 Differences in immunity27,28,31 and 
gene expression4,12,22 may contribute to COVID-19 severity. 
Severe COVID-19 complications are associated with exces-
sive and dysregulated host immune responses, which may con-
tribute to the development of lethal CRS and ARDS.32–34

Acute respiratory distress syndrome

ARDS, the most severe form of ALI,35–37 is a clinical syndrome 
of noncardiogenic pulmonary edema.38–40 ARDS is character-
ized by an excessive inflammatory response,41–43 damage to 
both alveolar epithelial38,40,41 and vascular endothelial39,44,45 
cells, the subsequent breakdown of the alveolar-capillary barrier 
integrity,38,42,46 impaired AFC,40,41,45 excessive interstitial and 
parenchymal neutrophil migration,38,43,45 and activation of alve-
olar macrophages, platelets, and pro-coagulant processes.42,47,48 
This may result in diffuse alveolar damage,42,49 pulmonary 
fibrosis,37,50 and impaired gas exchange,42,51 leading to (refrac-
tory) hypoxemia35,38,42 and possibly organ dysfunction.40,47,52

Uncontrolled inflammation leads to excessive and pro-
longed activation of neutrophils,38,43,45 which are immune 
cells that play an important role in the regulation of IL-6 
signaling53–55 in the pathology of pulmonary inflammatory 
disorders.38,43,56 Neutrophil-mediated ROS production (via 
NADPH oxidase),57,58 plays an essential part in the immune 
response against pathogens via NET formation and direct 
cellular damage.59–61 Excessive neutrophil recruitment 
therefore contributes significantly to the severity of inflam-
matory pneumonia.56,60,62

In AFC, alveolar fluid is cleared via an ENaC-mediated 
osmotic gradient.40,41,63 Disruption of ENaCs can lead to 
impaired AFC.42,62,64

The ECM is important for the epithelial and endothe-
lial barrier function, since it regulates intercellular inter-
actions and controls the migration of fluid and molecules 
in the interstitial space.42,65 Changes in ECM composi-
tion affect the mechanical properties of tight-junctions 
in alveolar epithelial and vascular endothelial cells, 
modulating the alveolar-capillary barrier function.42,66 
Excess deposition of ECM proteins can lead to pulmo-
nary fibrosis,37,42,50 which may lead to chronic impair-
ment of pulmonary function in ARDS survivors.50 The 
amount of alveolar epithelial damage and impaired AFC 
capability are associated with impaired gas exchange 
and higher mortality.41,42,62 Injury of the alveolar epithe-
lium (not the vascular endothelium) determines the pro-
gression to pulmonary fibrosis.42,67,68 Currently there is 
no specific treatment for post-ARDS pulmonary fibrosis 
other than supportive therapy.50,69

ARDS is one of the leading causes of death in ICU 
patients.38,40,41 Current ARDS therapy mainly constitutes 
supportive treatments, such as mechanical ventila-
tion.51,70,71 This is predominantly effective in less severe 
cases, and may have serious side-effects.38,70,71 High tidal 
volume mechanical ventilation upregulates ACE expres-
sion and Ang-II activity,71 activates JNK and ERK1/2,

72 and 
increases pulmonary parenchymal IL-6 levels via exces-
sive alveolar distention.70 Mechanical ventilation may pro-
mote ventilator-induced ALI, which is characterized by 
inflammation, increased vascular permeability, interstitial 
pulmonary edema, parenchymal infiltration, fibrosis, and 
thrombosis.42,48,71

The COVID-19-related ARDS may present atypically, 
in the sense that there is relatively well-preserved pulmo-
nary compliance (despite the severity of hypoxemia), and 
systemic features of a hypercoagulable state.73–75 To under-
stand how and why, a trinity of interconnected systems 
will be discussed, starting with the RAAS.

Renin angiotensin aldosterone system

To explain why changes in ACE2 and Ang-II levels are 
important in COVID-19, we need to discuss their interac-
tions with other relevant systems, as well as their relation 
to comorbidities and complications.

If we exclusively focus on the RAAS, it is best described 
as a regulatory system with two axes that control vasocon-
striction and vasodilation,3,76,77 which play an essential 
role in maintaining hemodynamic homeostasis.64,78,79 The 
classical ACE/Ang-II/AT1R axis promotes vasoconstric-
tion.37,80,81 Renin increases Ang-I, which is subsequently 
converted to Ang-II by ACE,35,77,82 after which Ang-II 
exerts its cellular effects (predominantly via the 
AT1R).58,79,83 The counterregulatory ACE2/Ang-(1-7)/
MasR axis promotes vasodilation.3,76,77 ACE2 converts 
Ang-II to Ang-(1-7), which exerts its cellular effects pre-
dominantly via the MasR.64,79,80



Hoevenaar et al.	 3

In a perfectly balanced RAAS, neither ACE nor ACE2 
should be considered good or bad, as they are both required 
to maintain healthy homeostasis. Since ACE is required 
for either axis, Ang-II and ACE2 should be considered to 
be the main effectors of the RAAS. This balance can go 
either way, meaning low ACE2/high Ang-II or high ACE2/
low Ang-II. Since only low ACE2/high Ang-II is relevant 
regarding COVID-19, the focus will be on that type of 
RAAS imbalance in particular.

Ang-II will be considered first, after which ACE2 will 
be discussed.

Angiotensin-II

Ang-II is considered to be the major player in the ACE/
Ang-II/AT1R axis.41,83,84 A dysregulated RAAS (and asso-
ciated elevated Ang-II levels) has many detrimental 
effects. Ang-II upregulates Aldosterone production and 
promotes hypertension,83–85 CVD,78,79,82 and fibrosis.71,80,86 
Furthermore, elevated Ang-II levels increase PKC-
mediated87–89 ROS production via NADPH oxidase86,90,91 
and ΔΨM depolarization (through PKC-mediated modula-
tion of KATP channels).58,91,92 Ang-II-mediated ROS pro-
duction stimulates ERK1/2,

58,88,93 JNK,91,94,95 and 
p38-MAPK,83,90,96 subsequently initiating crosstalk with 
NF-κB64,71,89 (Figure 1).

ERK1/2, JNK and p38-MAPK are members of the 
MAPK family, and are preferentially activated by inflam-
mation and environmental stresses (JNK and p38-MAPK 
in particular).97–99 MAPK signaling plays a crucial role in 
regulating cell apoptosis, inflammatory responses, and 
cell-cell junction formation.14,72,96 NF-κB is a transcription 
factor family that plays an important immunoregulatory 
role,44,100,101 and modulates the production of inflamma-
tory cytokines44,86,89 and NADPH oxidase subunits.102–104

Ang-II-induced ROS production effectively induces 
insulin resistance,79,86,94 and exacerbates T2DM.64,86,89 
Insulin resistance impairs the PI3K/Akt/eNOS path-
way,94,105,106 subsequently reducing glucose uptake and 
NO production.86,88,89 Insulin signaling, and the role of 
Ang-II in insulin resistance, will be further discussed in 
the T2DM section. To understand the importance of Ang-
II-mediated reduction of NO bioavailability in COVID-19, 
we will first consider the vascular endothelium.

Vascular permeability

The inner surface of the vascular tree is lined with a con-
tinuous monolayer of endothelial cells (joined together by 
tight-junctions), forming a protective selective permeabil-
ity barrier between the circulating blood and the extravas-
cular tissue.39,107,108 The endothelium is a metabolically 
active homeostatic organ, regulating the tone, structure 
and permeability of the vascular system in response to dif-
ferent stimuli (e.g. shear stress, ACh, and insulin).46,78,104 

Limited vascular permeability is a function of a balanced 
endothelial phenotype, which constitutes smooth muscle 
relaxation, as well as low platelet activation and low fibrin 
formation.78,109,110 Endothelial dysfunction disrupts this 
balance and predisposes the vascular wall to inflammation, 
platelet activation, dysregulated coagulation, thrombosis, 
and increased vascular permeability.39,48,111

Both the disruption of endothelial tight-junctions39,72,108 
and impaired NO bioavailability104,109,112 are two important 
causes of endothelial dysfunction and increased vascular 
permeability. ROS-mediated MAPK signaling is responsi-
ble for disruption of endothelial tight-junctions.39,72,108 
Impaired NO bioavailability occurs via eNOS uncou-
pling,104,109,113 reduced eNOS activity,74,112,114 or ROS-
scavenging.55,104,115 Prolonged and excessive vascular 
permeability can result in tissue damage, organ dysfunc-
tion, or even death.116,117

Impaired NO bioavailability plays a role in thrombosis, 
due to the hampering effect of NO on ROS-mediated 
upregulation of platelet activation, suggesting that either 
decreased NO bioavailability or increased ROS production 
is able to induce thrombosis.114,118 Endothelial dysfunction 
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Figure 1.  ROS- and IL-6-mediated MAPK signaling and their 
effects regarding severe COVID-19 complications, for example, 
ARDS and thrombosis.
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initiates the coagulation pathway by activating platelets 
and pro-coagulant cascades, while reducing anti-coagulant 
components and fibrinolysis.42,114 This results in pulmo-
nary capillary microthrombi and fibrin deposition in 
parenchymal and interstitial compartments,42 which is 
characterized by observed high D-dimer and von 
Willebrand Factor in some COVID-19 patients.21,119,120

During an inflammatory state, endothelial cells release 
von Willebrand Factor,110,120 which represents an impor-
tant thrombotic risk factor.48,121 Von Willebrand Factor is a 
large adhesive glycoprotein, synthesized by endothelial 
cells,46,110,120 and is critical for platelet adhesion and aggre-
gation.48,121 ABO blood group genes affect von Willebrand 
Factor expression, as well as their susceptibility to proteo-
lytic degradation via ADAMTS13.122 This is a possible 
explanation why ABO blood group type may be differen-
tially related to COVID-19 severity.122

Ang-II-mediated ROS production58,90,91 and decreased 
NO bioavailability79,94,123 promote vascular permeabil-
ity41,81,83 and thrombosis6,80,82 (Figure 1). Ang-II-mediated 
disruption of ENaCs impairs AFC,41,64,124 exacerbating 
pulmonary edema.40,62,63 These are essential components 
of ARDS,41,42,62 which is a severe COVID-19 complica-
tion.25,76,125 Ang-II is significantly elevated in COVID-19 
patients and is highly associated with viral load and lung 
injury.21,76,125

Angiotensin-converting enzyme 2

The ACE2/Ang-(1-7)/MasR axis can mitigate Ang-II-
mediated negative effects.77,79,81

ACE2 is a homologue of ACE,78,82,84 and a key compo-
nent of the RAAS.77,81,126 ACE2 is a two-part type-I trans-
membrane protein, consisting of a glycosylated 
extracellular N-terminal domain (containing the SARS-
CoV-2-binding carboxypeptidase site), and an intracellular 
C-terminal cytoplasmic tail.3,127,128 The extracellular cata-
lytic domain of ACE2 can be cleaved and released by 
ADAM-175,6,76 or TMPRSS2.2,3,8 ACE2 is widely 
expressed in the heart, kidneys, lungs, CNS, and intes-
tines,80,82,84 and is present in type-II pneumocytes and 
endothelial cells.6,71,129 ACE2 is predominantly membrane-
bound, although it does exist, with a short half-life,52,130 in 
soluble form.3,6,127

Increased ACE2 expression, upregulating the ACE2/
Ang-(1-7)/MasR axis, has multiple beneficial effects, for 
example, mitigation of hypertension,80,84,131 CVD,77,82,129 
insulin resistance,79,132,133 and T2DM.5,25,134 ACE2 also 
increases NO bioavailability,79,80,135 subsequently mitigat-
ing endothelial dysfunction,76,82,133 vascular permeabil-
ity43,64,76 and thrombosis.6,76,136 Furthermore, via decreased 
MAPK signaling,44,71,137 ACE2 reduces inflammation,3,43,71 
ROS production,78,138,139 and neutrophil accumula-
tion.56,76,95 In this manner, ACE2 protects against pulmo-
nary edema,35,75,76 fibrosis,64,71,77 and ARDS.38,43,81

Low ACE2 expression has been associated with 
hypertension, CVD, T2DM, inflammation, and ARDS,4–6 
which happen to be risk factors for (severe) COVID-19 
complications.1,15,23 Since ACE2 is the SARS-CoV-2 
cell-entry point,2,3,6 there has been speculation that ele-
vated ACE2 expression may increase susceptibility for 
SARS-CoV-2 infection.140–142 ACE2 expression is higher 
in females than in males,4,134 and declines with age5,141 
(in men more so than in women).6,143 This can be 
explained by the upregulation of ACE2 expression by 
Estrogen,4,131 and the X-chromosomal location of the 
ACE2 gene3,129,144 (which is regulated epigenetically via 
DNA methylation).12,13 DNA methylation is associated 
with biological age,12,145,146 which suggests that biologi-
cal age may be a more accurate risk factor for severe 
COVID-19 complications compared to chronological 
age.13,147 This pattern of ACE2 expression may partly 
explain why elevated ACE2 levels possibly have no neg-
ative effects on COVID-19 susceptibility.4,6,134 Also, 
there is a negative correlation between ACE2 expression 
and COVID-19 fatality.4,5,144 SARS-CoV-2-induced 
downregulation of ACE2 expression may especially be 
detrimental in people with comorbidities, since they ini-
tially have a lower ACE2 baseline.4,6,21 Additional 
COVID-19-mediated ACE2 deficiency may amplify the 
RAAS dysregulation,5,6,76 resulting in upregulation of 
Ang-II, which is indeed significantly elevated in 
COVID-19 patients.21,76,125 In the lungs, such dysregula-
tion can induce the progression of inflammatory and 
thrombotic processes, because Ang-II is now unopposed 
by ACE2.6,21,125 This suggests that ACE2 may not be the 
culprit in COVID-19, but may actually have an impor-
tant protective role, despite the ACE2-mediated cell-
entry mechanism of SARS-CoV-2.5,76,134 A low ACE2 
expression (or reserve) may contribute to the progres-
sion of COVID-19 to a (more) severe or fatal stage.4,6,125 
Because of the high intrinsic affinity of ACE2 with the 
SARS-CoV-2 spike (S1) proteins,6 a lower ACE2 expres-
sion may not affect the susceptibility for SARS-CoV-2 
infection at all.6,127

Although many effects of ACE2 have been attributed to 
the downregulation of Ang-II levels, other substrates play 
a major role in ACE2-related functions as well.56,64,81

The framework we have now established consists of the 
following hypothesis: “a SARS-CoV-2-induced RAAS 
imbalance, comprised of reduced ACE2 expression (and a 
subsequent elevated Ang-II activity), plays a role in severe 
COVID-19 complications.”

There are still many loose ends in this narrative. In 
order to connect these, two more systems will be dis-
cussed, that is, the CS and the KKS. The CS and the KKS 
are linked.107,148,149 The KKS and the RAAS are linked as 
well.25,56,64 The RAAS, CS, and KKS, form a trinity of sys-
tems with several regulatory axes contributing to severe 
COVID-19 complications.
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Complement system

The CS is an important component of the innate immune 
system, involved in host defense against micro-organisms, 
clearance of immune complexes and removal of apoptotic 
cells,149–151 and is intrinsically linked to the coagulation 
pathway.21,151,152 The CS is a key mediator of lung damage 
during (corona virus) infections, raising the possibility that 
CS activation may play a role in severe COVID-19 
complications.16,74,153

Although most CS components are synthesized in the 
liver, type-II pneumocytes provide local CS proteins.154–156 
The CS components C1, C3a, C5a, as well as the C5b-C9 
MAC, all contribute to increased endothelial 
permeability.107,157,158

The CS can be activated via three pathways, that is, the 
classical, lectin, or alternative pathway.154,159,160 The clas-
sical pathway entails the creation of immune complexes 
with IgM/IgG antibodies, binding predominantly to patho-
genic antigens.107,159,161 C1 binds to the antibody and forms 
C3 and C5, via initiating a series of enzymatic cas-
cades.107,154,162 C3 and C5 are both cleaved to C3a/C3b and 
C5a/C5b respectively.107,154,160 C3a and C5a act as chemot-
actic agents for phagocytes.107,151,154 C3b is involved in 
opsonization of pathogens that are subsequently destroyed 
by phagocytes.107,154,159 C5b-C9 forms a MAC that induces 
cell-lysis by punching holes through their mem-
branes.107,154,161 The lectin pathway involves the interac-
tion of MBL with the pathogen (or the surface of a 
pathogen-infected cell), followed by the subsequent bind-
ing and activation of MASP2, directly activating similar 
CS cascades as in the classical pathway.74,153,154 The alter-
native pathway involves a spontaneous conformation 
change of C3, and after a short cascade, C3 is cleaved into 
C3a and C3b without the use of antibodies, leading to simi-
lar cascades as the classical pathway.151,154,163 The CS is 
inhibited by the SerPin C1INH via inhibition of C1 in the 
classical pathway, MASP2 in the lectin pathway, and C3b 
in the alternative pathway.107,149,164

Excessive CS activation can lead to inflammation and 
(excessive) neutrophil recruitment via opsonization and 
(via C3a- and C5a-mediated)107,153,156 chemotaxis.16,148,153 
Excessive CS activation (on the endothelial surface) can 
lead to vascular problems, for example, endothelial dam-
age (via MAC-induced lysis),74,148,154 vascular permeabil-
ity,107,148,158 thrombosis,148,151,152 (diffuse) TMA,159,162,165 
and DIC.161,166,167 This is how excessive CS activation 
exacerbates ARDS,16,74,154 pulmonary fibrosis,50,168,169 and 
possibly organ dysfunction.16,151,159

In at least a subset of severe COVID-19 patients an 
excessive CS activation is found via the lectin path-
way,153,170,171 as demonstrated by elevated C5b-C9 MAC 
components, MBL-MASP2 in the pulmonary microvas-
culature, and parenchymal neutrophils.74 This is consist-
ent with sustained and systemic CS activation and an 
associated pro-coagulant state.21,74 A possible modus 

operandi for additional CS activation via the lectin path-
way in COVID-19 is the binding of SARS-CoV-2 
N-proteins to MASP2.153 This leads to excessive CS 
activity,153,171 further exacerbating CS-mediated MAC 
formation, inflammation, and concurrent activation of 
the coagulation pathway,21,74 resulting in ARDS16,153 and 
thrombosis74,170 (Figure 2). The observed high D-dimer 
and von Willebrand Factor (and its associated thrombotic 
activity) in severe COVID-19 patients,111,119,120 can at 
least be partially explained by excessive CS activation 
(and associated MAC-mediated endothelial dysfunction), 
followed by an activated coagulation pathway.74,153,159

Our framework can now be expanded with the hypoth-
esis: “an excessive CS activation plays a significant role in 
severe COVID-19 complications.”

The CS is not only linked to the coagulation path-
way,151,161,166 but to the KKS as well,107,148,149 which will be 
discussed next.

Kallikrein-kinin system

The KKS, like the CS, is an important part of the innate 
immune system,149,172,173 and is activated during inflam-
mation.148,164,174 The KKS consists of Hageman Factor 
(Factor XII), PK, HK, the proteolytic KK enzymes, and 
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Figure 2.  The CS including the COVID-19-induced lectin 
pathway feedback mechanism.
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effector peptides, such as BK (and its active metabolite 
des-Arg9-BK).107,149,164 Factor XII gets activated via 
inflammatory processes and converts to Factor XIIa, 
which in turn converts PK into KK, initiating the kinin 
cascade107,149,164 (cleaving HK to generate BK and other 
metabolites, such as des-Arg9-BK).85,148,164 Factor XIIa 
also turns Factor XI into Factor XIa, subsequently acti-
vating the coagulation pathway, linking it to the 
KKS.107,149,175 KK turns Factor XIIa into Factor XIIf, 
which initiates the CS via C1r cleavage, linking the 
KKS directly to the CS.107,149,176 KK also turns pro-
Renin into Renin, linking the KKS directly to the 
RAAS.64,177,178 All these processes are inhibited by the 
SerPin C1INH.107,149,164

The kinin BK is not very stable, and is easily degraded 
by ACE.81,85,88 Another kinin, des-Arg9-BK, is much more 
stable than BK,148,164,179 but can be degraded by ACE2.25,56,64 
This shows another direct link between the KKS and the 
RAAS.36,75,81

KKS signaling is mediated by two receptors, B2R and 
B1R.85,148,180 While the B2R is ubiquitously expressed in 
most healthy tissues, B1R is synthesized de-novo and 
upregulated as a consequence of tissue injury or inflam-
matory processes.81,164,180 BK is the primary ligand for 
B2R, whereas des-Arg9-BK is the primary ligand for 
B1R.85,107,148

Kinins are potent inflammatory mediators,36,88,164 
increasing vascular permeability85,180,181 and neutrophil 
recruitment.56,148,174 This may lead to inflammation,25,148,180 
edema,75,164,180 and pain.85,164,174 Uncontrolled and exces-
sive KKS activation, or abnormal kinin degradation, can 
cause an acute accumulation of BK and/or des-Arg9-BK, 
leading to excessive inflammation.56,107,148 Excessive KKS 
activation may also promote T2DM via (MAPK-
mediated)181–183 destruction of pancreatic Langerhans 
islets,85,184,185 and increase vascular permeability.148,164,180 
This results in exacerbated edema,85,107,164 neutrophil 
migration,56,148,174 thrombosis,148,186,187 ARDS,25,75,188 and 
possibly even organ dysfunction.25,187,189

The KKS and the CS are intrinsically linked at multiple 
levels, and are both activated during (vascular) inflamma-
tion (i.e. via gC1qR, which binds both C1q and HK).107,148,149 
Simultaneous and uncontrolled excessive activation of 
both the KKS and CS (on the endothelial surface) is largely 
responsible for increased vascular permeability and 
edema.107,148,149 KK, which cleaves HK and subsequently 
releases BK, also cleaves and activates C3.148,190,191 The 
KKS107,148,149 and CS150–152 are both intrinsically linked to 
the coagulation pathway. The endothelial permeability-
inducing effect of the C5b-C9 MAC is regulated by 
BK.107,192,193 The KKS and CS are both inhibited by 
C1INH.148,149,164

ACE2 degrades the otherwise stable des-Arg9-BK.56,64,81 
SARS-CoV-2 reduces ACE2 expression.3,6,125 A reduction 
in pulmonary ACE2 subsequently increases Ang-II5,125,194 

and impairs the degradation of the des-Arg9-BK/B1R axis 
of the KKS.6,25,56 This exacerbates neutrophil migra-
tion56,148,174 and ARDS.25,56,75 The des-Arg9-BK/B1R axis 
of the KKS is not affected by corticosteroids,195–197 which 
means that as long as the virus is present, ACE2 will not 
be, and the kinin-induced ARDS will persist.75

We now have established multiple connections between 
the RAAS, CS, KKS, and the coagulation pathway. In our 
trinity of systems, the RAAS3,76,77 controls vasoconstric-
tion and vasodilation, whereas the KKS85,180,181 and the 
CS107,158,198 control vascular permeability and vasodila-
tion. ACE2 is the one ring that rules them all75 (Figure 3). 
The SerPin C1INH effectively suppresses the KKS,107,149,164 
the coagulation pathway,107,151,152 and all three pathways of 
the CS.150,152,176

Our framework can now be further expanded with the 
hypothesis: “a SARS-CoV-2-induced reduction of ACE2 
expression directly causes a disruption and excessive acti-
vation of the KKS, which is not only able to further acti-
vate an already active CS, but directly plays a significant 
role in the exacerbation of severe COVID-19 
complications.”

Next, the T2DM interactions with our trinity of systems 
will be discussed.

stimulation; inhibition

Thrombosis FXIIf CS

FXIa PK

FXIIa HK

FXI KK

Ang-I FXII

ACE BK

Ang-II COVID-19 Infl.

ACE2 des-arg9-BK

AT1R

IR

Ang-(1-7) B1R B2R

MasR

VC VD ARDS VP

Figure 3.  The trinity of systems: RAAS, CS, KKS, and their 
interconnections, as well as their interactions with IR, the 
coagulation pathway, inflammation, and COVID-19.
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Type-2 diabetes mellitus

T2DM is considered to be a metabolic disease, comprising 
insulin resistance and pancreatic β-cell dysfunction, result-
ing in insulin deficiency and subsequent hyperglyce-
mia.99,104,199 T2DM is characterized by comorbid conditions 
of CVD89,104,200 and hypertension.89,201,202 T2DM is also 
associated with vascular problems, for example, endothe-
lial dysfunction, vascular permeability, platelet dysfunc-
tion, and hypercoagulation.113,203,204 This can be partially 
contributed to a dysregulated RAAS5,94,105 (low ACE24,5,82 
and high Ang-II79,94,106). CVD is the main complication of 
T2DM.114,204,205 However, clinical CVD can also precede 
the development of T2DM,200,206,207 suggesting that T2DM 
and CVD may both have an underlying cause, for exam-
ple, a chronic low-grade inflammatory state,199,208,209 insu-
lin resistance,53,210,211 or a dysregulated RAAS.86,89,133

Obesity

In T2DM, macrophage infiltration into expanding adi-
pose tissue and pancreatic islets,212–214 as well as mac-
rophage polarization toward the M1 phenotype99,215,216 
(as a result of IL-6 trans signaling),53,214,217 is involved in 
the development of chronic low-grade inflammation in 
obese individuals.199,208,218 Visceral adipose tissue in par-
ticular, is characterized by high secretion of inflamma-
tory cytokines, and T2DM patients have more visceral 
adipose tissue than nondiabetics.53,98,219 Furthermore, 
inflammatory cytokines in adipose tissue stimulate JNK 
and NF-κB,99,214,220 which induces insulin resist-
ance.98,199,221 Finally, the RAAS may be disrupted in 
expanding visceral adipose tissue, exacerbating inflam-
mation and insulin resistance.6,222,223

Insulin resistance

P(Tyr)IRS-1 is required for insulin-stimulated activation 
of the PI3K/Akt/eNOS pathway99,206,224 and multiple 
downstream effectors that promote glucose uptake and NO 
production.112,225,226 NO has vasoprotective effects,79,227,228 
and its bioavailability depends on the balance between the 
rate of its eNOS-mediated production and its ROS-
mediated inactivation.104,109,229

Increased P(Ser)IRS-1 and decreased P(Tyr)IRS-198,224,230 
(both induced by JNK and ERK1/2) disrupt insulin  
signaling,94,199,206 preventing activation of the PI3K/Akt/
eNOS pathway.99,115,231 Chronic P(Ser)IRS-1 also targets 
IRS-1 for degradation or migration to inaccessible subcel-
lular compartments.54,89,232

Hyperinsulinemia, caused by insulin resistance, acti-
vates both JNK230,232,233 and ERK1/2.

88,234,235 Subsequently 
this further stimulates P(Ser)IRS-1,97,99,230 which is how 
hyperinsulinemia exacerbates insulin resistance.94,232,236 
Hyperinsulinemia also upregulates Ang-II, which is how 
insulin resistance may disrupt the RAAS.89,237,238

Ang-II-mediated ROS production increases P(Ser)
IRS-179,88,94 and decreases P(Tyr)IRS-1,86,89,105 effec-
tively inducing insulin resistance87,239,240 (Figure 1). A 
vicious cycle between the RAAS and insulin resistance 
has now been created.89,241,242

Insulin resistance is a risk factor for T2DM,86,206,232 
obesity,85,98,106 hypertension,88,89,105 and CVD.87,210,243

β-Cell dysfunction

The progression from insulin resistance to T2DM impli-
cates the inability of pancreatic β-cells to compensate for 
increased insulin demand.53,221,244

Sustained JNK activation causes pancreatic β-cell dys-
function,230,232 especially in obese individuals with an 
exacerbated inflammatory milieu.99,199,221

IL-6 increases the proliferation of α-cells and apopto-
sis of β-cells in the pancreas,53,245,246 suggesting a link 
between IL-6 and T2DM.208,218,247 The role of IL-6 in the 
proliferation of α-cells may initially compensate for the 
impaired β-cells in T2DM and contributes to limit 
hyperglycemia.53,245,248

Hyperglycemia increases IL-6 levels, both systemically 
and locally in pancreatic Langerhans islets,53,249,250 and 
promotes β-cell death99,246,251 (Figure 1).

In T2DM, the KKS is activated and kinins cause dam-
age to pancreatic Langerhans islets, suggesting a link 
between the KKS and T2DM.85

Furthermore, in T2DM, ACE2 expression is downregu-
lated,15,133 and increased Ang-II plays a part in reducing 
β-cell function via ROS-mediated apoptosis,89,252 suggest-
ing a link between RAAS disruption and T2DM.64,86,89

Hyperglycemia

Pancreatic β-cell dysfunction leading to T2DM results in 
insulin deficiency and subsequent hyperglycemia,104,115,221 
which has a plethora of detrimental effects.

Hyperglycemia increases the production of IL-653,55,250 
and AGEs.104,113,253 AGEs bind to RAGEs99,104,254 (which 
are expressed on the surface of many cell types, including 
endothelial, epithelial, and immune cells),62,113,255 and sub-
sequently increases PKC-mediated55,256,257 ROS produc-
tion via NADPH oxidase.118,203,258 Hyperglycemia-mediated 
ROS production stimulates ERK1/2,

259–261 JNK,99,262,263 and 
p38-MAPK,264–266 subsequently initiating crosstalk with 
NF-κB86,104,267 (Figure 1). This ROS-mediated MAPK 
signaling downregulates ACE2,14,15,268 and upregulates 
ACE,14,268,269 Ang-II,89,268,270 ADAM-17,5,271,272 and 
IL-6.114,249,267 It also disrupts endothelial tight-junc-
tions,45,108,257 and reduces NO bioavailability (via eNOS 
uncoupling,113,273,274 decreased NO production,55,115,267 and 
NO scavenging104,109,275). Hyperglycemia-mediated ROS 
production effectively promotes endothelial dysfunc-
tion.104,108,113 Therefore hyperglycemia increases vascular 
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permeability,39,115,276 and subsequently promotes (pulmo-
nary) edema.55,203,277

Hyperglycemia also promotes thrombosis,24,113,118 via 
platelet activation, increased coagulation factors, and 
decreased fibrinolysis.114,205,278

Furthermore, hyperglycemia (even short-term) dysreg-
ulates both the innate and adaptive immune system.24,55,265 
This may affect neutrophil-IL-6 signaling, chemotaxis, 
phagocytosis, respiratory burst, anti-microbial activity, 
and production of inflammatory cytokines.23,55,266 This cre-
ates a milieu in which SARS-CoV-2 can flourish.15,23,24

Finally, hyperglycemia also interferes with the CS, 
upregulating expression of several CS component genes, 
hindering C3b-mediated opsonization and IG-function via 
glycation.55,279,280

Well-controlled blood-glucose levels reduce the risk of 
severe COVID-19 complications.23,24,281 Therefore, our 
framework can now be further expanded with the hypoth-
esis: “T2DM-induced hyperglycemia is not only just a risk 
factor for severe COVID-19 complications, but is actually 
exacerbated (possibly even induced) by COVID-19.”

Next, the role of IL-6 signaling, and the interactions 
with T2DM and COVID-19 complications, will be 
discussed.

Interleukin 6

IL-6 has both pro- and anti-inflammatory characteris-
tics.53,208,282 Dysregulated or excessive IL-6 signaling is 
considered to be involved in insulin resistance,104,206,247 β-
cell dysfunction,53,245,251 T2DM,53,208,218 and CVD.208,283,284

Various cell types can locally produce IL-6,284–286 which 
can be transported through the circulation, affecting more 
distant regions in the body.53 Immune cells are simultane-
ously both sources and targets of IL-6.53,283,286 Beta-
coronavirus infection of immune cells, for example, 
monocytes, macrophages, and dendritic cells, will result in 
their activation and subsequent secretion of IL-6.287

To exert its physiological effects, IL-6 utilizes both the 
classic and trans signaling pathway.208,213,288 In classic 
signaling, IL-6 binds to mIL-6R and forms a complex with 
gp130, after which downstream signaling is mediated via 
JAK and STAT3.283,284,286 In trans signaling, extracellular 
sIL-6R can bind to IL-6, forming a complex with gp130, 
after which downstream signaling is mediated via JAK and 
STAT3 in cells that do not express mIL-6R53,284,289 (such as 
endothelial53,116,284 and pancreatic α and β cells245,246,248). 
IL-6 classic signaling is mostly involved in anti-inflamma-
tory activities, whereas IL-6 trans signaling is mostly 
involved in pro-inflammatory activities.53,213,289

Most cells express gp130, while mIL-6R is mostly 
found on monocytes, macrophages, neutrophils, and α- 
and β-cells of pancreatic Langerhans islets.53,208,245 The 
widespread expression of gp130 on most cell types, includ-
ing endothelial cells, dramatically expands the range of 

IL-6 target cells using trans signaling.208,284,287 In order to 
prevent a systemic response to IL-6 trans signaling, sgp130 
specifically blocks trans signaling without affecting classi-
cal signaling, and basically constitutes a physiological 
buffer for circulating IL-6.53,284,288

IL-6 activates ERK1/2,
54,206,290 JNK,291–293 and p38-

MAPK,89,294,295 subsequently initiating crosstalk with 
NF-κB44,104,249 (Figure 1). This IL-6-mediated MAPK 
signaling decreases P(Tyr)IRS-154,104,247 and increases 
P(Ser)IRS-1,206,296,297 inducing insulin resistance53,89,296 
and impairing NO production.54,206,290 IL-6-mediated 
MAPK signaling also disrupts endothelial tight-junc-
tions116,285,298 and induces endothelial cell contraction.285,299 
Therefore, IL-6 effectively increases vascular permeabil-
ity70,104,285 and exacerbates edema116 and lung injury/
ARDS.70,300,301 The lack of mIL-6R on endothelial cells 
indicates trans signaling as the main mechanism involved 
in the detrimental effects of IL-6 on vasculature.53,116,284

IL-6 also induces epigenetic changes (regarding genes 
involved in insulin signaling) via DNMT-induced altera-
tion of DNA methylation patterns, promoting endothelial 
dysfunction54,302 and insulin resistance.213,303,304

IL-6 levels are significantly elevated in COVID-19 
patients.22,305,306 IL-6 plays an important role in 
CRS,16,306,307 exacerbates ARDS,70,287,305 and predicts mor-
tality282,305,308 (Figure 4).

Our framework can now be further expanded with the 
hypothesis: “Excessive IL-6 trans signaling significantly 
contributes to severe COVID-19 complications.”

In the last section, we will briefly discuss some poten-
tial attractive therapeutic targets and their pharmacological 
interactions.

stimulation
inhibition

CS Thrombosis

Estrogen ARDS KKS ACE

IL-6 ACE2 Ang-II Ang-I

Age IR T2DM

HT

CVD

Figure 4.  The RAAS, CS, KKS, IR, IL-6, and their interactions 
regarding severe COVID-19 complications, for example, ARDS 
and thrombosis, with ACE2 as master regulator.
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Pharmacological interactions

Due to the lack of approved targeted medication for 
COVID-19,16,22,309 and developing an effective and safe 
vaccine may require some time, it is recommended to 
explore multiple potential therapeutic targets to mitigate 
severe COVID-19 complications.

TMPRSS2 inhibition

Since TMPRSS2 is essential for SARS-CoV-2 membrane 
fusion and subsequent cell-entry,2,3,7 inhibition of 
TMPRSS2 activity can potentially prevent severe COVID-
19 complications.3,8,310 Nafamostat Mesylate, a clinically 
approved and safe medication for pancreatitis, inhibits 
TMPRSS2-mediated SARS-CoV-2 envelope-membrane 
fusion and subsequent cell-entry.3,311,312 Nafamostat 
Mesylate may also protect against thrombosis and DIC via 
its anti-coagulant properties.3,313

ACE inhibition/angiotensin II receptor blockage

Both ACE-inhibitors and ARBs reduce hyperten-
sion,85,96,129 CVD,80,96,129 pneumonia,314–316 insulin resist-
ance (and T2DM).85,86,106 They also increase ACE2 
expression1,76,80 and mitigate pulmonary edema.71,317,318 
ACE-inhibitors however, also inhibit BK degradation, 
subsequently increasing BK, possibly increasing vascu-
lar permeability75,107,149 and systemic acquired 
angioedema.75,149,319

Because ACE-inhibitors and ARBs upregulate ACE2 
expression,1,76,80 and SARS-CoV-2 uses ACE2 for cell-
entry,3,6,8 it has been speculated that ACE-inhibitors and 
ARBs can have negative effects in COVID-19 patients.140–142 
Multiple studies however, show no association between 
both ACE-inhibitors and ARBs, and increased susceptibility 
for COVID-19 or the severity of its complications.320–322

Various experimental models37,71,76 show that rhsACE2 
activates the protective ACE2/Ang-(1-7)/MasR-axis of the 
RAAS,71,76,80 degrades des-Arg9-BK,75 and improves 
ARDS symptoms.44,71,82 Therapeutic use of rhsACE2 in 
COVID-19 patients may have beneficial effects, such as 
effectively sequestering circulating viral particles to pre-
vent S-protein interactions with membrane-bound ACE2, 
while simultaneously rebalancing the RAAS into a more 
protective equilibrium.6,76,323 Clinical-grade rhsACE2 can 
significantly inhibit SARS-CoV-2 infections in vitro (in a 
dose-dependent manner), reduce viral load by a factor of 
1.000 – 5.000,324 and is currently being tested in a phase-II 
trial in Europe.5,127

Complement/kinin inhibition

Inhibiting an excessively active CS may reduce severe 
COVID-19 complications, for example, ARDS,153 pulmo-
nary fibrosis,50,154 (diffuse) TMA,159,171 and DIC.74,151,153 

Eculizumab is a monoclonal antibody that binds to C5 and 
prevents cleavage into C5a and C5b, as well as the forma-
tion of the C5b-C9 MAC,16,74,325 and may also reduce the 
risk of TMA162,163,165 and DIC.166,326

Inhibiting the KKS, either by inhibiting kinin produc-
tion or blocking B1R/B2R, may improve COVID-19-
induced ARDS.25,75,327 Since B1R is upregulated during 
inflammation,56,107,180 and des-Arg9-BK is much more sta-
ble than BK,148,164 the des-Arg9-BK/B1R axis is of major 
importance in vascular permeability during inflamma-
tion.164 Unfortunately, there currently is no approved B1R-
inhibitor available.25,75,327 Icatibant is a selective B2R 
antagonist, traditionally used for hereditary angi-
oedema,25,107,164 and may improve severe COVID-19 com-
plications.75,327 B2R inhibition, besides reducing the KKS, 
also reduces the CS.148

C1INH inhibits the activation of both the CS and KKS,148 
qualifying it as an attractive potential therapeutic option for 
severe COVID-19 complications. Plasma-derived C1INH, a 
first-line therapy for hereditary angioedema, appears to be 
safe.328 Ruconest, a recombinant human C1-esterase-
inhibitor, has achieved some good preliminary results in 
treating COVID-19 patients, according to a press release.329

Interleukin 6 inhibition

IL-6 inhibition mitigates vascular permeability and alveo-
lar-capillary barrier disruption.70,116,309

Tocilizumab is a monoclonal antibody, mainly used for 
the treatment of rheumatoid arthritis.22,308,330 It inhibits 
IL-6305,306,331 via binding to both mIL-6R and sIL-6R, 
resulting in complete blockade of both classic and trans 
IL-6 signaling pathways.287,308,330 Disruption of both pro- 
and anti-inflammatory activities of IL-6 may cause side-
effects, for example, secondary (bacterial or fungal) 
infections, liver malfunction, or hypercholesterolemia.53,208 
Despite the possible side-effects, preliminary studies show 
that Tocilizumab appears to be effective and safe regarding 
severe COVID-19 complications.22,306,309 Tocilizumab 
however, seems less effective in hyperglycemic patients.332

Sgp130Fc (a recombinant version of sgp130) specifi-
cally blocks IL-6 trans signaling, without affecting the 
anti-inflammatory and protective classical IL-6 signal-
ing.53,208,288 Therefore sgp130Fc may result in better thera-
peutic outcomes with fewer undesired side-effects.53,208,333 
Sgp130Fc has demonstrated robust efficacy in the treat-
ment of several autoimmune and inflammatory condi-
tions53,288 with fewer side-effects than global 
IL-6-inhibitors.53,208,333 Sgp130Fc may potentially have 
therapeutic benefits for COVID-19-induced ARDS.333

Summary

We have established the concluding framework  
regarding the COVID-19 pathophysiological crossroads: 
“COVID-19 disrupts the RAAS balance via reduction of 
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ACE2 expression and a subsequent elevation of Ang-II. 
COVID-19-induced reduction of ACE2 expression induces 
excessive activation of the KKS and subsequently the CS. 
T2DM-induced hyperglycemia is not only just a risk factor 
for severe COVID-19 complications, but is actually exacer-
bated (possibly even induced) by COVID-19. Ang-II, exces-
sive KKS and CS activation, hyperglycemia, and IL-6 trans 
signaling, all contribute significantly to severe COVID-19 
complications (e.g. ARDS and thrombosis/DIC).” The 
RAAS, CS, KKS, and the coagulation pathway, are all 
intrinsically connected sensitive systems, with ACE2 as 
master regulator. Elevated ACE2 baseline levels may pro-
tect from severe COVID-19 complications.

There are no effective approved medications against 
COVID-19 yet, and a vaccine may be a long way off. 
However, several attractive therapeutic targets in the 
RAAS, CS, and KKS have shown promising preliminary 
results against severe COVID-19 complications.
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Appendix

Abbreviations

ΔΨM	 mitochondrial membrane potential
A-AComplex	 antigen–antibody complex
ACE	 angiotensin-converting enzyme

ACh	 acetylcholine
ADAM-17	� a disintegrin and metalloprotease 

domain 17
ADAMTS13	� ADAM with a thrombospondin type 1 

motif, member 13
AFC	 alveolar fluid clearance
AGE	 advanced glycation end product
Akt	 protein kinase B
ALI	 acute lung injury
Ang	 angiotensin
ARB	 AT1R blocker
ARDS	 acute respiratory distress syndrome
AT1R	 Ang-II type 1 receptor
B1/2R	 bradykinin receptor 1/2
BK	 bradykinin
C1INH	 C1 inhibitor
CNS	 central nervous system
COVID-19	 coronavirus disease 2019
CRS	� cytokine release syndrome (cytokine 

storm)
CS	 complement system
CVD	 cardiovascular disease
DIC	� disseminated intravascular 

coagulation
DNA	 desoxyribonucleic acid
DNMT	 DNA methyl transferase
ECM	 extra-cellular matrix
ENaC	 epithelial sodium channel
eNOS	 endothelial nitric oxide synthase
ERK	 extracellular signal-regulated kinase
(s)gp130	 (soluble) glycoprotein 130
HK	 high molecular weight kininogen
HT	 hypertension
ICU	 intensive-care unit
IG	 immunoglobulin
IL-6	 interleukin 6
IR	 insulin resistance
IRS-1	 insulin receptor substrate 1
JAK	 Janus kinase
JNK	 c-Jun N-terminal kinase
KATP	 membrane potassium channels
KK	 kallikrein
KKS	 kallikrein-kinin system
MAC	 membrane attack complex
MAPK	 mitogen-activated protein kinase
MASP2	 MBL serine protease 2
MasR	 Mas receptor
MBL	 mannose-binding lectin
(m/s)IL-6R	 (membrane-bound/soluble) IL-6 receptor
NADPH	� nicotinamide adenine dinucleotide 

phosphate
NET	 neutrophil extracellular trap
NF-κB	� nuclear factor κ light-chain-enhancer 

of activated B cells
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N-P	 SARS-CoV-2-produced N-proteins
NO	 nitric oxide
PI3K	� phosphatidyl inositol-4,5-bisphos-

phate 3-kinase
PK	 prekallikrein
PKC	 protein kinase C
P(Ser/Tyr)IRS-1	� serine/tyrosine phosphorylation of 

IRS-1
RAAS	 renin angiotensin aldosterone system
RAGE	 receptor for AGE
rhsACE2	 recombinant human soluble ACE2
RNA	 ribonucleic acid
ROS	 reactive oxygen species

SARS-CoV-2	� severe acute respiratory syndrome 
coronavirus 2

SerPin	 serine protease inhibitor
SSRNA+	 positive-sense, single-stranded RNA
STAT	� signal transducer and activator of 

transcription
T2DM	 type-2 diabetes mellitus
TJ	 (endothelial) tight-junction(s)
TMA	 thrombotic microangiopathy
TMPRSS2	 transmembrane protease serine 2
VC	 vasoconstriction
VD	 vasodilation
VP	 vascular permeability




