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Abstract

During our daily lives, we often learn about the similarity of the traits and preferences of others to our own and use that
information during our social interactions. However, it is unclear how the brain represents similarity between the self and
others. One possible mechanism is to track similarity to oneself regardless of the identity of the other (Similarity account);
an alternative is to track each other person in terms of consistency of their choice similarity with respect to the choices they
have made before (consistency account). Our study combined functional Magnetic Resonance Imaging (fMRI) and
computational modelling of reinforcement learning (RL) to investigate the neural processes that underlie learning about
preference similarity. Participants chose which of two pieces of artwork they preferred and saw the choices of one agent
who usually shared their preference and another agent who usually did not. We modelled neural activation with RL models
based on the similarity and consistency accounts. Our results showed that activity in brain areas linked to reward and social
cognition followed the consistency account. Our findings suggest that impressions of other people can be calculated in a
person-specific manner, which assumes that each individual behaves consistently with their past choices.
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Introduction
The ability to rapidly form and update our impressions about
other people is a vital skill in navigating our complex social
world. During our daily lives, we frequently learn about the traits
and preferences of other people and use that information to
inform our social interactions. However, the neural mechanisms
that govern our learning of the relationship between our pref-
erences and those of others are currently unclear. The current
study investigated these mechanisms by combining fMRI and
computational modelling.

Researchers investigating impression formation have sought
to determine which brain areas respond when we learn about
other people and when our expectations of others are violated.
Most have done this by providing participants with some
information about a novel person and then presenting either
consistent information that confirms the previous impression
or inconsistent one, which requires participants to update their
impressions. These studies have shown increased activity in

regions like the precuneus/posterior cingulate cortex (PCC),
the temporal-parietal junction (TPJ) and the dorsomedial
prefrontal cortex (dmPFC) when receiving inconsistent vs
consistent information about another person’s moral behaviour
(Mende-Siedlecki et al., 2013a; Mende-Siedlecki and Todorov,
2016; Hughes et al., 2017), competence (Ames and Fiske, 2013;
Bhanji and Beer, 2013), traits (Ma et al., 2012; Hackel et al., 2015;
Van der Cruyssen et al., 2015) and political beliefs (Cloutier et al.,
2011). These regions are key nodes in the ‘mentalising’ network,
which is activated when thinking about the beliefs, preferences
and intentions of others (Adolphs, 2009; Van Overwalle, 2009;
Frith and Frith, 2012; Schilbach, 2015).

The increased activation to inconsistent information seen in
the mentalising network is reminiscent of the prediction error
(PE) signal seen in reinforcement learning (RL) models. These
signals compute the expectation of a future outcome (or reward)
as being a function of the current expectation plus the product
of the learning rate and the PE, i.e. the difference between the
last expected and actual outcome (Behrens et al., 2009; Ruff and
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Fehr, 2014). RL models have been shown to be biologically plau-
sible both at the neurochemical level, where the pattern of
midbrain dopamine neuron response matches that of reward
PEs (Schultz, 2016), and at the level of whole brain anatomy
(Botvinick et al., 2011). This biological plausibility along with
the findings outlined above have led researchers to suggest
that regions in the mentalising network may be involved in
calculating social PEs (Mende-Siedlecki et al., 2013b; Hertz et al.,
2017; Wittmann et al., 2018).

Several studies have investigated this possibility directly,
using computational modelling to parametrically track PE from
trial to trial and have found evidence of social PE tracking in the
dmPFC, the anterior cingulate cortex (ACC), the TJP, the superior
temporal sulcus (STS), the medial temporal gyrus (MTG), ventro-
lateral PFC (vlPFC) and the precuneus (Behrens et al., 2008; Hackel
et al., 2015; Stanley, 2016; Lockwood et al., 2018). A recent study
by Wittmann et al. (2016) examined the related phenomenon of
self-other mergence, in which knowledge about another per-
son’s performance reciprocally influences judgements of one’s
own performance. They found a division between PEs for self-
performance, represented in the anterior cingulate cortex, and
PEs for other performance, represented in the dmPFC. Interest-
ingly, individual variance in the strength of dmPFC activation
also predicted how far participants’ self PEs were affected by
the performance of the others. Such findings have led some
researchers (e.g. Bach and Schenke, 2017; Joiner et al., 2017)
to argue that predictive processing plays a key role in social
cognition.

To date, most studies examining social PEs have considered
cases where participants learn about other individuals, but do
not examine the relationship between those individuals and the
self (although see Will et al., 2017 for an interesting exception).
A distinct literature has examined the role of self-similarity in
impression formation (Boer et al., 2011; Montoya and Horton,
2013) and shown that self-similarity can lead to liking and
affiliation. Numerous studies have shown that those we perceive
as similar to us in terms of traits (Paunonen and Hong, 2013),
attitudes (Montoya and Horton, 2013) and preferences (Boer et al.,
2011) tend to be evaluated more favourably than those perceived
as different. There is evidence for a ventral–dorsal gradient in
the mPFC when processing the similarity of others with similar
others being processed in the ventromedial prefrontal cortex
(vmPFC) and dissimilar others in the dmPFC (Denny et al., 2012;
Sul et al., 2015).

The current study aims to test how the brain tracks and
learns about other people from the self-similarity of their
choices. In particular, we distinguish two possible ways in
which the brain could track others: the similarity approach and
the consistency approach. The similarity approach assumes
that, on each trial, we consider ‘is this person like me on this
trial?’ and assign high PEs to any trial where an agent makes a
different choice to me. The consistency approach assumes that
we model each person we encounter as an individual with a
level of overall similarity to me. On each trial, we then consider
‘is this person’s choice consistent with their overall similarity
to me?’ and assign high PEs to any trial where the agent
behaves in a way that is inconsistent with that agent’s track
record.

To do this, we adapted RL models to investigate how the
brain tracks the choices of two different agents in terms of
how similar they are to the participant’s own choices. It is
important to note that we are not claiming that the tracking of
similarity is necessarily linked to reward-based reinforcement in
a direct manner. Rather, we use RL models because they can track

the accumulation of information and evidence over time. This
allows us to look at how the brain represents confirming and
disconfirming information about other’s similarity to ourselves.
For a related approach applied to the learning of others’ traits,
see Zaki et al. (2016).

Our task created a context in which participants chose which
painting they prefer (an arbitrary aesthetic choice) and then
learn the preferences of two agents for the same paintings (see
Figure Fig. 1). Using fMRI and computational modelling, we can
identify which brain areas track agents’ preferences relative
to self-preferences in a trial-by-trial manner. In each trial, our
participants saw two paintings and indicated which they pre-
ferred. They then saw the preferences of two agents, a similar
agent (ASim) who chose the same painting 75% of the time and
a different agent (ADiff) who chose the same painting 25% of
the time. Using RL models, we are able to calculate the prior
probability of the agents’ choice and the PE of their actual
choice separately for each trial and each agent, allowing us
to localise brain regions where BOLD signal tracks the model
parameters.

We then used RL to create signed PE models of both the
similarity and consistency approaches to tracking the agent’s
choices (see Figure Fig. 2). In the similarity model, agents are
tracked only in relation to the participant’s own preferences, on
a single dimension of ‘distance from me’. This means that the
model will tend to have positive PEs for ASim and negative PEs
for ADiff (see Figure Fig. 2A). In the RL model, each signed PE
then contributes to an accumulated similarity (AS) parameter,
which will tend to be high for ASim (who is often similar) and
low for ADiff (who is often different). To make this model clear,
we term the two parameters the ‘similarity PE’ (PE_Sim) and the
AS.

The alternative is the consistency model, which assumes that
participants track agents and choices in terms of whether the
agent’s choice is consistent with their past level of preference
similarity to the participant. Thus, we label each agent’s choices
as ‘consistent’ or ‘inconsistent’ with that agent’s past behaviour:
agreeing with the participant is consistent for ASim but inconsis-
tent for ADiff. In this model, a trial will have negative consistency
PE when ASim chooses a different picture to the participant,
because this is unlike ASim’s typical preference. In the same
way a trial will have negative PE when ADiff chooses the same
picture as the participant (unlike ADiff’s typical preference) (see
Figure Fig. 2B). These PEs feed into the accumulated consistency
(AC) of each agent, which will be high when that agent conforms
to type (i.e. high for both ASim and ADiff most of the time) but
will fall if the agent makes atypical choices. To make this model
clear, we term the two parameters the ‘consistency PE’ (PE_Con)
and the AC.

Importantly, these two models predict a different pattern
of brain activity in our experimental design, as ASim and
ADiff’s trial-by-trial preferences can have the same sign (both
consistent, according to the consistency approach) or opposite
sign (as they chose different images, according to the similarity
approach, see Figure Fig. 2). It is important to note that while our
study can test how well each of these models fit activation in
different brain areas, we are not claiming that they are mutually
exclusive competing accounts. Indeed, it is entirely plausible
that some brain areas track similarity of choices directly while
others track the consistency of choices. Our design allows for
us to investigate the neural signature of both models, in two
separate GLMs, and thus identify which brain areas (if any)
are involved in each of these two ways of processing similarity
relationships.
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Fig. 1. Outline of experimental trial structure and number of trials per condition. A trial phases and timings. Each trial has four phases (self, similar, different, feedback).

On every screen, three icons at the top represent the participant (blue outline in the centre) and the two agents (two photos), with one icon enlarged in a green square

to show who is the ‘active player’ in this phase. In the self-phase, participants chose which of two pictures they prefer. In the ASim phase and ADiff phase, the two

agents ASim and ADiff chose pictures and the participant sees the outcome. The order of these two phases was counterbalanced. Finally, in the Feedback phase, the

participant sees a reminder of his/her own choice. B. Detail of one phase. This shows an expanded view of the two different screens within the ASim phase; the same

structure was used for the Self phase and ADiff phase. Participant’s first see a ‘decision screen’ with the two pictures used on this trial. During the decision screen

participants either chose their own preferred painting (Self phase) or waited to see the choice of the agent (similar and different phases). Then they see an ‘outcome

screen’ which shows either the painting they chose (Self phase) or the painting the agent chose (ASim and ADiff phases). The durations of each screen are given at

the bottom of the figure, and multiple times separated by a dash represent the jittering in order to effective temporal sampling resolution much finer than one TR. C.
Number of trials of each type. This table shows the breakdown of the four possible combinations of choices made by the two agents, ASim and ADiff. Each agent could

agree with the participant’s choice (Ag) or disagree (Dis). The columns show the percentage of trials, number of trials by block and total number of trials which had a

particular pattern of choices.

Methods
Design

In our study, participants tracked the choices of two agents on
multiple trials, in relation to their own choices. On each trial, the
participant and two agents, ASim and ADiff, indicated which of
two paintings they preferred. ASim chose the same painting as
the participant in 75% of all trials, while ADiff only chose the
same painting in 25% of trials.

Participants

Twenty-five participants (mean age ± SD: 25.1 ± 5.7, 11 male)
took part in this study, which was approved by the University
College London, Institute of Cognitive Neuroscience Research
Department’s Ethics Committee. All participants gave their
informed consent to participate and were paid for their
participation. All participants were right handed and were
screened for neurological disorders. Due to technical issues, pre-
and post-ratings data were lost for seven participants. Therefore,
our final sample size for the ratings analysis was n = 18. As we
did not use this ratings data for model fitting, and data on all
25 participant’s choices during the task were collected, this issue

did not impact on the fMRI analysis so the full sample n = 25 was
used for fMRI analysis.

Procedure
Experimental task

The main task in this study was an aesthetic choice task. Par-
ticipants were told that in each trial, they would see a pair of
paintings (see Supplementary Materials S1.1) and would have
to choose which painting they preferred. They were informed
that other participants had previously indicated which of the
paintings they preferred and that they would see the choices
of two previous participants during the study. Names and faces
were assigned to these ‘previous participants’, but in fact they
were computer agents whose choices were determined based
on the participant’s own choices. Prior to entering the scan-
ner, participants completed a training block of the task (see
Supplementary Materials S1.2). After the training, participants
learnt the names of the agents with whom they would do the
experimental task. They also rated their faces for similarity,
likeability and attractiveness, using a 10-point scale in order
to provide us with a manipulation check as to how well the
participants learnt the similarity of the agent to themselves.
Other than being asked to rate their similarity to the agent,
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Fig. 2. Two possible ways that the choices of the two agents, ASim and ADiff, may be tracked in the brain. A. Similarity approach. The yellow/green boxes in the top

row show how trials are classified as Similar or Different according to whether the agent choose the same picture as the participant or not, and the same classification

is used for both agents. Green indicates that a choice is given a positive value and yellow that it has a negative value. This is reflected in the sample sequence of 20

trials, where the ‘choice similarity’ tends to be high for ASim and low for ADiff. Based on the choice similarity, the Sim_PE and AS parameters are calculated as in

equations 1 and 2. B. Consistency approach. Trials are classified as Consistent or Inconsistent according to whether the agent conforms to type. Both agents show

high choice consistency most of the time in the sample of 20 trials shown below. Based on the choice consistency the PE_Con and AC parameters are calculated as

in equations 3 and 4.

participants were not given any information to suggest the
relationship between their choices and those of the agents were
important to the task.

Each trial was divided into four phases (see Figure Fig. 1A).
The first three phases were each split into two screens, a decision
screen and an outcome screen (see Figure Fig. 1B). In the self-phase,
participants were shown a pair of paintings on the decision screen
and had 2.75 s to choose which they preferred using the left
and right buttons on a response box. They then saw an outcome
screen displaying their preferred painting for a jittered interval
(1–3 s). In the similar phase, participants first saw a 1-s decision
screen, which displayed the pair of paintings along with an
indicator that ASim was choosing. This was followed by an out-
come screen, which displayed the agent’s preferred painting for a
jittered interval (2.75–4.75 s). In the different phase, participants
again saw a decision screen with an indicator that ADiff was
choosing, followed by a jittered outcome screen displaying that
agent’s preferred painting. The order of the similar and different
phases was pseudorandomised across trials. Finally, each trial
contained a feedback phase in which participants again saw their
own choice for an interval of 2 s.

Participants completed four sessions of 20 trials (see
Figure Fig. 1C for a breakdown of trial types by block); at the
end of each block, they rated the similarity, likeability and
attractiveness of each agent using a 10-point scale. Using fast
event-related design, i.e. varying the intervals of the outcome
screen in the three choice phases and using many trials, an
effective temporal sampling resolution much finer than one
TR for each of these periods was achieved. The lengths of the
intervals were uniformly distributed for each period, ensuring
that evoked haemodynamic responses time locked to the events
were sampled evenly across the time period following each
choice period.

Model-based fMRI analysis

For full details of image acquisition and fMRI data analysis,
please see Supplementary Materials S1.3. To examine whether
the relationship between the participant preferences and those
of the agents was coded in terms of similarity or consistency,
two general linear models (GLM) were created, which include
different trial types and the parameters of the two RL models.
Both GLMs modelled BOLD activation during outcome screen for
ASim and ADiff separately. Regressors of no interest modelled
activity during the self-choice outcome screen, the feedback phase,
the ratings periods and trials where participants failed to make
a choice and the residual effects of head motion. In addition,
parametric modulators linked to the outcome screen regressors
allowed us to model the values of our RL parameters on a trial-
by-trial basis. Note that we also conducted a more traditional
GLM without RL parameters, the details of which can be found
in Supplementary Materials S2.

In the similarity GLM, we modelled the signed similarity PE
(PE_Sim) and accumulated similarity (AS) between the agent
choice and the participant choice for each agent (n), using the
following algorithms:

PE_Simn(t) = ChoiceSim(t) − ASn(t) [1]

ASn (t + 1) = ASn(t) + λ ∗ PE_Sim(t) [2]

where

ChoiceSim(t) =
{

1 agent chose same picture as participant
-1 agent chose different picture from participant
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As we did not fit the model to any response, we set the
learning rate (λ) with a fixed value of 0.5 and initial AS was
set to 0. The learning rate of 0.5 was chosen a priori and fixed
for all participants, to indicate the carry-on effect of previous
trials to the current trials. This value was chosen because it is
in the middle of the LR range (0–1) and indicates a decaying
memory window of about four trials. We chose this conservative
approach and did not explore learning rates further to avoid dou-
ble dipping the data or post hoc analysis. AS was set at 0 as this
represented no a priori expectation of a similarity relationship
between the participant and the agents. In total, there were six
regressors-of-interest in our similarity GLM: outcome screens,
AS values, and PE_Sim values for both ASim and ADiff.

In the consistency GLM, we modelled the signed consistency
PE (PE_Con) and AC between the agent choice and the participant
choice for the two agents (n = ASim or ADiff), using the following
algorithm.

PE_Conn(t) = ChoiceCon(t) − ACn(t) [3]

ACn (t + 1) = ACn(t) + λ ∗ PE_Conn(t) [4]

where

ChoiceCont(t)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 Agent’choice was consiststent with their
overall similarity to the participant’s choice

-1 Agent’s choice was inconsitent with their
overall similairty to the participant’s choices

Again, the learning rate (λ) was set to 0.5 and initial AC was
set to 0 (see Figure Fig. 2C for examples of how AS and PE varied
across 20 trials). In total, there were six regressors of interest in
our consistency GLM: outcome screens; AC values and PE_Con
values for both ASim and ADiff.

Results
Behavioural results

To examine whether learning about the preferences of the
agents changed participants’ feelings of affiliation towards
them, we collected ratings of similarity, likeability and trust-
worthiness at the start of the study and after every 20 trials.
This meant that each participant contributed five ratings of
each of the three attributes across the study. These ratings
were then z-scored within participant to remove baseline
differences between participants, before the next analysis.
Three separate 2 (agent: similar/different) × 5 (session number:
pre/S1/S2/S3/S4) repeated measures ANOVAs were carried out
on the z-scored ratings of similarity, liking and trust (see
Figure Fig. 3). Due to problems with data recording, the ratings
from seven participants were incomplete and were excluded
from the behavioural analysis leaving a remaining sample of 18
participants.

The ANOVA on similarity ratings found a significant main
effect of agent, F(1.17) = 23.52, P < 0.001, η2

p = 0.58. Overall partic-
ipants rated ASim as being more similar (M = 0.33, MSE = 0.15)
to them than ADiff (M = −0.68, MSE = 0.12). There was also a
significant interaction between agent and session F(1.17) = 5.65,
P = 0.001, η2

p = 0.25. To examine this interaction further, ratings
for ADiff were subtracted from the ratings of ASim for each
session to create a difference score. Pairwise comparisons
(Bonferroni corrected) showed that the difference score for

the pre-session (M = −0.16, MSE = 0.36) significantly differed
from the scores after sessions S1 (M = 1.49, MSE = 0.35), P < 0.05,
S3 (M = 1.26, MSE = 0.29), P < 0.05, and S4 (M = 1.43, MSE = 0.25),
P < 0.01. No other pairwise comparisons were significant.

The ANOVA on liking ratings found a significant main effect
of agent, F(1.17) = 23.8, P < 0.001, η2

p = 0.58. Overall participants
rated ASim as being more likeable (M = 0.55, MSE = 0.07) than
ADiff (M = −0.2, MSE = 0.12). There was no significant effect
of session and no interaction between session and agent.
The ANOVA on trust ratings found a significant main effect
of agent, F(1.17) = 7.67, P < 0.05, η2

p = 0.31. Overall participants
rated ASim as being more trustworthy (M = 0.23, MSE = 0.11
than ADiff (M = −0.24, MSE = 0.01). There was no significant
main effect of session and no interaction between session and
agent.

fMRI results

Main effect of agent preference similarity. Two contrasts investi-
gated the main effect of agent identity (ASim/ADiff) on BOLD
response. The regressors, which contribute to these contrasts,
were identical in the similarity GLM and the consistency GLM, so
the results here are the same for both. The ADiff > ASim contrast
revealed that observing the choice of ADiff compared to ASim
led to a greater activation in the right inferior frontal sulcus (rIFS)
and in a cluster centred on the right fusiform gyrus (rFG) (Table 1
and Figure Fig. 4A). No significant activations were found in the
ASim > ADiff contrast.

Parametric analysis of the similarity GLM. To identify brain
regions, which tracked accumulated similarity (AS) across both
agents, we calculated a conjunction of the RL parameters for
each of the agents, that is ASASim ∩ ASADiff. This did not reveal
any significant clusters in either a positive or negative direction,
suggesting that no brain areas directly tracked preference
similarity between agents and participant. Similarly, there were
no significant clusters that tracked the positive conjunction of
similarity PE for both agents, that is, PE_SimASim ∩ PE_SimADiff.
This means that no areas showed increased activation when
both agents preferences were unexpectedly similar to that
of the participant. However, the negative PE_Sim conjunction
analysis revealed that unexpected dissimilarity between either
agent choice and participant choice correlated with activation
in a number of clusters within the occipital cortex including
the bilateral lateral occipital cortex (LOC) and the lingual gurus
(Table 2 and Figure Fig. 4B).

Parametric analysis of the consistency GLM

To identify brain regions tracking the consistency of agents’
choices across both agents, we first examined the conjunction of
areas tracking AC, that is ACASim ∩ ACADiff. The positive conjunc-
tion showed a significant activation in a cluster-corrected region
centred on the superior medial frontal gyrus (smFG) (Table 3 and
Figure Fig. 5A). This region showed greater activation as evidence
for the consistency of the agents’ choice similarity to the self-
increased, and lower activation during inconsistence periods. No
significant activations were found in the conjunction analysis
testing for areas negatively correlated with AC.

The conjunction analysis testing for areas tracking PE in
consistency (PE_ConASim ∩ PE_ConADiff) identified significant
cluster-corrected activations bilaterally in a dorsal region of the
caudate nucleus as well as in a more ventral midbrain region
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Fig. 3. Z-scored ratings of liking similarity and trustworthiness for the similar and different agents across rating sessions.

Table 1. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the outcome screen showing significant effects after
cluster correction for main effect of similarity. Same shading indicates local maxima in distinct anatomical regions within the same cluster,
BA indicates Brodmann area and k indicates the cluster size threshold for whole brain significance of P < 0.05

Region Hem. X Y Z Z-Score Cluster size

Different > similar
(k = 33)
Inferior frontal
sulcus (BA 44)

R 38 10 34 3.86 57

Fusiform gyrus
(BA 18)

R 14 −82 −10 3.51 72

Lateral occipital
gyrus (BA 19)

R 30 −82 −14 3.40

Table 2. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the outcome screen in the similarity GLM showing
significant effects after cluster correction for conjunction analyses of the AS and PE parametric modulators. Same shading indicates local
maxima in distinct anatomical regions within the same cluster, BA indicates Brodmann area and k indicates the cluster size threshold for
whole brain significance of P < 0.05

Region Hem. X Y Z Z-Score Cluster size

Negative PE_Sim similar ∩ different (k = 42)
Lateral occipital gyrus (18) L −28 −94 16 4.06 324
Lateral occipital gyrus (37) R 32 −54 −16 3.81 86
Lateral occipital gyrus (18) R 24 −90 18 3.80 457
Middle occipital gyrus (19) R 36 −80 22 3.74
Lingual gyrus (17) L −6 −78 8 3.79 249
Lateral occipital gyrus (19) R 28 −82 −16 3.67 64
Lateral occipital gyrus (37) L −28 −60 −16 3.54 100
Fusiform gyrus (37) L −26 −48 −14 3.39

of the left hemisphere (Table 3 and Figure Fig. 5B). These areas
showed increased BOLD response when the agents’ choices were
unexpectedly consistent with their overall preference, and
decreased activation when agents’ choices were unexpectedly
inconsistent. Note that while the peak activation in the
more dorsal left hemisphere cluster is in fact found in the
neighbouring corpus callosum, both dorsal clusters showed
considerable overlap with the caudate nucleus. The conjunction
analysis testing for areas tracking PE_Con in a negative direction
identified significant clusters in several right hemisphere
regions, namely the angular gyrus (rAG), the superior frontal
sulcus (rSFS), the rSTS, the rMTG and the precuneus (Table 3 and
Figure Fig. 5C). These areas showed increased BOLD response
when the agents’ choices were unexpectedly inconsistent with
their overall preference, and reduced activity when the agents’
choices were highly predictable.

Discussion

Our study examined the neural basis of learning about prefer-
ence similarity between self and others and its role in promot-
ing affiliation. We created a context where participants could
express a preference for a painting and learn about the pref-
erences of two agents for the same paintings. Our behavioural
data show that similar preferences lead to higher ratings of
liking, trustworthiness and similarity, indicating that partici-
pants tracked the agents’ preferences in relation to their own
preferences.

Our introduction outlined two possible, non-mutually exclu-
sive, ways in which preference similarity might be tracked in the
brain: either by a general mechanism, which tracks an agent’s
choice in relation to one’s own, i.e. how similar or dissimilar
they are from the self, or via a model of consistency, which
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Fig. 4. A. Brain areas showing significant cluster corrected results in the ADiff > ASim contrast for the Outcome screen. B. Brain areas tracking the PE_Sim parameter

(similarity PE) for the outcome screen across both agents, cluster corrected. Parameter estimates in the lower panel are averaged across the whole cluster. Error bars

represent SEM. Graph border colours indicate matching circled area. Red/yellow represents positive activations and blue/green represents negative activations.

Table 3. Peak voxel coordinates in MNI space, z-values and cluster sizes for analyses of the outcome screen in the consistency GLM showing
significant effects after cluster correction for conjunction analyses of the AS and PE parametric modulators. Same shading indicates local
maxima in distinct anatomical regions within the same cluster, BA indicates Brodmann area and k indicates the cluster size threshold for
whole brain significance of P < 0.05

Region Hem. X Y Z Z-Score Cluster size

Positive AC ASim ∩ ADiff (k = 43)
Superior medial frontal gyrus (9) R 8 56 34 3.37 76
Superior medial frontal gyrus (10) L −2 54 24 3.25
Superior medial frontal gyrus (10) R 6 56 22 3.17
Positive PE_Con ASim ∩ ADiff (k = 42)
Corpus callosum L −12 −6 28 4.54 52
Caudate nucleus R 16 −6 28 3.90 71
Corpus callosum L −4 14 12 3.64 56
Negative PE_Con ASim ∩ ADiff (k = 42)
AG (40) R 56 −46 50 4.22 341
Interparietal sulcus (40) R 32 −50 40 3.70
Superior frontal sulcus (10) R 34 50 10 4.20 270
Superior temporal sulcus (37) R 60 −58 16 3.85 76
Superior temporal sulcus (41) R 44 −42 20 3.72 43
Superior temporal sulcus (39) R 42 −54 16 3.19
Precuneus (39) R 10 −56 48 3.72 106
Middle temporal gyrus (21) R 60 −20 −16 3.46 57
Superior temporal sulcus (21) R 62 −28 −10 3.43

tracks agent’s choices in terms of their consistency to that
agent’s previous choice, i.e. how consistently similar or dissim-
ilar they are from the self. To examine the evidence for each
of these two mechanisms, we created two RL models, which

tracked the agents’ choices based on similarity and consistency,
respectively. Our results from the similarity model indicated
that regions of the visual cortex negatively tracked similarity PE
(PE_Sim). Results from the consistency model showed a number
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Fig. 5. Brain areas showing significant cluster corrected tracking of AC and PE_Con for the Outcome screen. A. Areas significantly tracking AC in the positive ASim ∩
ADiff conjunction. B. Areas significantly tracking PE_Con in the positive ASim ∩ ADiff conjunction. C. Areas significantly tracking PE_Con in the negative ASim ∩ ADiff

conjunction. Parameter estimates averaged across whole cluster. Error bars represent SEM. Graph border colours indicate matching circled area. Red/yellow represents

positive activations and blue/green represents negative activations. sMFG = superior medial frontal gyrus, rCN = right caudate nucleus, rAG = right AG, rSFS = right

superior frontal sulcus.

of brain areas tracking different variables associated with the
consistency model; the dorsomedial pre-frontal cortex (dmPFC)
tracking AC, and the caudate nucleus, AG and precuneus tracked
consistency PE (PE_Con). The caudate is involved in value updat-
ing (O’Doherty et al., 2004; Bhanji and Delgado, 2014), while the
AG and precuneus are associated with social cognition (Spreng
et al., 2009; Murray et al., 2015). Below, we elaborate on the results
of the AC conjunction before moving on to discuss the findings
on PE_Con and PE_Sim.

dmPFC tracks AC

The AC parameter represents a trial-by-trial estimate of the
probability that a person makes choices in line with his previous
choices, this is, that the similar agent (ASim) should choose
the same painting as the participant while the different agent
(ADiff) should choose differently. The only area we found track-
ing AC was a cluster in the bilateral superior medial frontal
gyrus (smFG) corresponding to the anterior region of the dmPFC.
The dmPFC is known to be a key area for the processing of
information about both self and other (Amodio and Frith, 2006;
Eickhoff, Laird, Fox, Bzdok, and Hensel, 2016; Mitchell, Banaji,
and Macrae, 2005). See Supplementary Materials S3 for a more
detailed survey of previous results.

The dmPFC’s involvement in coding prior knowledge of other
people is supported by previous research suggesting that the
dmPFC encodes reputational priors of one’s partners during
economic games (Hampton et al., 2008; Fouragnan et al., 2013).
Our results build on these findings by suggesting that dmPFC
PEs track the consistency of the agent’s similarity to the self rather
than simply tracking preference similarity.

Consistency PEs are tracked by regions involved
in reward and social cognition

PE_Con reflects the difference between the agent’s choice and
the participant’s expectation of what choice the agent will make.
For example, the model assigns a positive update signal when
ADiff picked the painting not chosen by the participant, and
a negative signal when ADiff picked the same painting (see
Figure Fig. 2). Areas that tracked PE_Con revealed two distinct
patterns of activation. Clusters in the bilateral caudate nucleus
(Fig. 4B) showed increased activity when the agents chose con-
sistently with their type. Meanwhile, clusters in regions asso-
ciated with social cognition including the superior temporal
sulcus (STS), the AG, precuneus and superior frontal sulcus (SFS;
Figure Fig. 4C) showed increased activations when the agent’s
choice was inconsistent with their type. Overall, this pattern
shows that PE tracking in these regions is not a ‘generic’ signal of
how similar a person is to me, but rather reflects how much each
person’s choice conforms to their typical pattern of similarity
to me.

The caudate nucleus, along with other parts of the striatum,
has been heavily implicated in the generation of PEs during
RL of rewards for self (O’Doherty et al., 2004; Balleine et al.,
2007; Schultz, 2015) and others (Báez-Mendoza and Schultz,
2013; Bhanji and Delgado, 2014; Ruff and Fehr, 2014). Previous
studies have shown that the caudate nucleus is also involved
in signalling PEs when learning the characteristics of others.
King-Casas et al. (2005) found that the caudate nucleus activity
tracked PEs regarding the trustworthiness of other during an
economic game. Subsequent studies have found similar results
for trustworthiness (Fareri et al., 2012; Fouragnan et al., 2013; Fett
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et al., 2014), generosity (Fareri et al., 2012), reliability in advice
giving (Diaconescu et al., 2017) and general behavioural traits
(Mende-Siedlecki and Todorov, 2016). Our findings add to this
literature by showing that caudate nucleus activity also tracks
PE when learning about the similarity of others’ preferences to
one’s own.

The regions showing greater activations when PE_Con was
negative, i.e. when the agents’ choice was inconsistent with
their typical choices, are key nodes of the mentalising net-
work involved in processing information about self and others
(Spreng et al., 2009; Van Overwalle, 2009; Barrett and Satpute,
2013; Murray et al., 2015). These areas have been implicated in
the formation of impressions about other peoples’ traits (Gilron
and Gutchess, 2012; Hackel et al., 2015; Hughes et al., 2017; Ma
et al., 2012; Mende-Siedlecki et al., 2013b), beliefs (Cloutier et al.,
2011) and abilities (Bhanji and Beer, 2013; Mende-Siedlecki et al.,
2013a). Of particular note are two studies which directly mod-
elled PEs for learning about the traits of other. Hackel et al.
(2015) found that the precuneus and STS tracked PEs for other
generosity during an economic game, while Stanley (2016) found
that only the precuneus showed greater tracking of PEs in a
social verses non-social setting. The current study shows that
these regions also track PEs regarding the similarity relationship
between self and others, underlining the role of PEs in social
learning (Joiner et al., 2017).

It is also notable that while previous studies on social
impression formation have tended to show bilateral acti-
vations of the mentalising network, in the current studies,
activity was limited to the right hemisphere. This is con-
sistent with previous research demonstrating right later-
alisation for tasks involving self and other differentiation
(Decety, 2003; Uddin et al., 2005; Kaplan et al., 2008; Hu et al.,
2016).

Similarity-related responses in regions involved
in visual attention

In addition to modelling the RL parameters, we also directly con-
trasted the outcome screen where participants see the choices
of ASim with the outcome screen for ADiff. This contrast shows
greater activation for ADiff in two clusters: one centred on the
rIFS and the other on the rFG. The IFS has been implicated in
attentional processing and in particular in the control of atten-
tional shifts by both internal goals and by salient external stimuli
(Aron et al., 2004, 2014; Asplund et al., 2010; Levy and Wagner,
2012; Filimon et al., 2013), while the FG is known to play a key role
in the visual perception of faces (Rotshtein et al., 2005; Kanwisher
and Yovel, 2006; Contreras et al., 2013). Interestingly, a previous
study found greater FG activation when participant observed
faces of individuals judged to have different traits to themselves
(Leshikar et al., 2016). These findings were also consistent with
our conjunction analysis of regions that showed a negative
relationship to the value of PE_Sim. This analysis revealed that
when an agent made an unexpectedly dissimilar choice to that
of the participant, it led to increased activation across a series
of visual areas including regions in the bilateral LOC and in the
left FG.

The activation of these areas suggests that participants may
have found the choices of ADiff to be more attention-grabbing
than those of ASim in a comparable way to studies that have
demonstrated an attentional bias towards untrustworthy as
opposed to trustworthy agents (Vanneste et al., 2007; Dzhelyova
et al., 2012; Farmer et al., 2016).

Comparison with non-RL GLM

In addition to running our main RL analysis, we also conducted
a more traditional GLM, which divided our trails using a 2 ×
2 design with confederate/agent identity (similar vs different)
as one factor and choice decision (agree vs disagree) as the
other factor, the interaction between them (i.e. similar agree and
different disagree vs similar disagree and different agree) was
equivalent to our consistency model. This allowed us to compare
the results of our RL model to more traditional non-parametric
approaches (see Supplementary Materials S2 for full details and
results). When comparing the results of the RL models and the
conventional GLM the activations for the choice main effects and
the consistency (interaction effects) were largely similar with the
disagree > agree contrast showing activations equivalent to the
clusters shown for areas that negatively tracked similarity PEs,
the consistent > inconsistent contrast showing activations for
two of the three clusters we identified that positively tracked
consistency PE and the results for the inconsistent > consistent
contrast showing results largely consistent with areas negatively
tracking consistency PE.

Despite these similarities, our model has two advantages
over the non-RL GLM. First, it is more sensitive to the tempo-
ral order of observations, as it takes history into account. For
example, it treats differently two consecutive inconsistencies
as the first one is more surprising than the second one, while
the standard GLM treats them in the same way. This makes
our approach more sensitive, more powerful (statistically) and
more relevant to our research question. The second advantage
is that we can estimate the hidden variables of AC/similarity
which the standard GLM cannot. This allowed our model to
identify the dMPFC area, which is involved in the tracking of
AC.

Limitations

One key limitation of the current study is that our task did
not allow us to collect trial-by-trial behavioural data showing
what participants had learnt about the agents. This is because
we wanted participants to learn implicitly, rather than making
explicit predictions of the agent’s choice on each trial. Because
of this, we approximated a learning rate (0.5) and used it in our
RL models to track changes in preference tracking according to
the actual choices made by the agents. This raises the possibility
that there may only be a weak fit between the learning rate used
in our model and the actual learning rate of our participants.
However, our main predictions related to the direction of the
tracked PEs and accumulated preferences, and not with the spe-
cific magnitude of these variables, are less likely to be affected
by our approximation. This is in line with a recent theoretical
paper (Wilson and Niv, 2015) that demonstrated that model-
based fMRI results are, under some conditions, insensitive to
changes in individual learning rates. While it is possible that
our approximation may lead to lower power at detecting brain
responses to PEs, we feel that the main hypothesis concerning
the direction of the effects (similarity approach vs consistency
approach) is supported by our analysis.

Conclusions
In this study, we combined computational modelling and fMRI to
investigate the neural processes that underlie learning about the
similarity of other people’s preferences to one’s own. We found
that more regions of the brain encode information about the
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similarity of others’ choices in a consistency driven manner than
encode that information purely based on each particular prefer-
ence’s similarity to one’s own. This was particularly the case for
the accumulated information about the other’s similarity with
no areas showing sensitivity to purely accumulated similarity
while a region of the dmPFC showed significant tracking of
AC.

These findings suggest that higher level neural representa-
tions of similarity to the self are coded in a person-specific man-
ner, which reflects how consistent are that person’s preference
related to the self, i.e. do we usually agree or disagree in our
preferences. As such our study highlights the role of context-
dependent predictive processing in the learning of preference
similarity between self and others and, by extension, in the
formation of social impressions more generally. Further research
in this area could build on our results by examining whether the
neural correlates of similarity learning are modulated by having
pre-existing cues about how similar that person is to oneself.
In addition, it is possible that this consistency approach also
applies to learning about other domains including people’s traits,
attitudes and competence.

Supplementary data
Supplementary data are available at SCAN online.
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