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ABSTRACT

Quantitative activity and species source data of nat-
ural products (NPs) are important for drug discov-
ery, medicinal plant research, and microbial inves-
tigations. Activity values of NPs against specific
targets are useful for discovering targeted thera-
peutic agents and investigating the mechanism of
medicinal plants. Composition/concentration values
of NPs in individual species facilitate the assess-
ments and investigations of the therapeutic quality
of herbs and phenotypes of microbes. Here, we de-
scribe an update of the NPASS natural product ac-
tivity and species source database previously fea-
tured in NAR. This update includes: (i) new data of
∼95 000 records of the composition/concentration
values of ∼1 490 NPs/NP clusters in ∼390 species,
(ii) extended data of activity values of ∼43 200 NPs
against ∼7 700 targets (∼40% and ∼32% increase,
respectively), (iii) extended data of ∼31 600 species
sources of ∼94 400 NPs (∼26% and ∼32% increase,
respectively), (iv) new species types of ∼440 co-
cultured microbes and ∼420 engineered microbes,
(v) new data of ∼66 600 NPs without experimental
activity values but with estimated activity profiles
from the established chemical similarity tool Chem-

ical Checker, (vi) new data of the computed drug-
likeness properties and the absorption, distribution,
metabolism, excretion and toxicity (ADMET) proper-
ties for all NPs. NPASS update version is freely ac-
cessible at http://bidd.group/NPASS.

INTRODUCTION

Natural products (NPs) are important sources of modern
drug discovery (1,2). NP research facilitates the mechanis-
tic investigation of herbal medicines (3,4). In particular,
the knowledge of activity values of NPs and their deriva-
tives against specific targets is important for structure-
activity studies in drug discovery (5). This knowledge is
also needed to assess the therapeutic effects of individual
NPs (6), NP combinations (7) and medicinal herbs (8).
The composition/concentration values of NPs in individ-
ual species facilitate the assessments and investigations of
foods, medicinal herbs, and microbes. These include the nu-
tritional, flavor, and beneficial quality of foods (9) and teas
(10), the therapeutic potential of medicinal herbs (11), and
the phenotype of microbial communities (12).

These investigations can be facilitated by the estab-
lishment of the quantitative NP activity and content
databases, which include the NP activity and species
sources database NPASS (13), the USDA Database
for the Flavonoid Content of Selected Foods (https:
//data.nal.usda.gov/dataset/usda-database-flavonoid-
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Table 1. Accumulation of NPs, source organisms, quantitative composition and biological activities in the latest and previous version of NPASS database

NPASS-2018 NPASS-2023

Natural products (NPs) NP (with activity values) 30 926 43 285 (increased by 40.0%)
NP (without activity values) – 51 128 (new)
Total NPs 30 926 94 413 (increased by 205.3%)

Organisms Natural organisms 25 041 31 690 (increased by 26.6%)
Co-culture organisms – 444 co-culture combinations (new)
Engineered organisms – 427 engineered species (new)
Total organisms 25 041 32 561 (increased by 30.0%)

Organism-NP pairs 298 106 872 723 (increased by 192.8%)
Activity records 446 552 958 866 (increased by 114.7%)
Targets 5 863 7 753 (increased by 32.2%)
The composition/concentration of NPs in individual species – 95 004 quantity records (new)

- 398 organisms
- 1 490 NP/NP Clusters
- 15 292 NP-Organism pairs

Bio- and Chem-properties of NPs 1 Category 7 Categories
- Physicochemical property - Physicochemical properties

- Medicinal chemistry properties (new)
- ADMET properties (new)

NP similarity metrics 1 Category 2 Categories
- Chemically structural

similarity
- Chemically structural similarity

- Biological similarity (new)

content-selected-foods-release-32-november-2015), the
Unified Food Composition Database for the European
Project ‘Stance4Health’ (14) and Flavonoid Database
Based on Indonesian Foods (15). The usefulness of
these databases can be further enhanced by expanded
data coverage of activity values, species sources, and
composition/content values for more variety of NPs and
species. Moreover, there are a large number of NPs for
which experimental activity values are not yet available.
Nonetheless, computational methods such as chemical
similarity have been established for estimating molecular
activity values (16). Methods for evaluating the drug-
likeness and the absorption, distribution, metabolism,
excretion and toxicity (ADMET) properties have been
developed to assess the drug development potential of
active molecules (17–19). These tools may be employed
for providing estimated activity values and drug-likeness
scores of NPs.

Expanding the diversity of NP-producing sources is the
fundamental driving force for the discovery of novel NPs
(20). To this end, intensive efforts have been made for
decades to explore new natural organisms (e.g. organ-
isms of underexplored taxonomic space or novel organ-
isms from extreme living environments like deep-sea sed-
iments) (20). In recent years, new strategies are emerging
as attractive lines of NP research, and these include: (i)
co-cultures of multiple organisms for mimicking their nat-
ural living ecosystems (also termed as microbial consor-
tia or co-cultivation), e.g. fermenting producer and inducer
species together to mimic cell-cell communications for in-
duction of novel NPs (21); (ii) genetic engineering of mi-
croorganisms through synthetic biology strategies, e.g. in-
troducing synthetic genes to model strains, reprogramming
their metabolic pathways, and activating silenced synthetic
pathways (22,23). These new NP-producing sources provide
either highly-expanded NP chemical diversity or optimized
metabolic profiles, contributing to the discovery of many
novel NPs or increased production yields of high-value NPs

(e.g. biofuel, pharmaceuticals and industrial chemicals).
However, current bioinformatics resources basically focus
on NPs isolated from naturally individual species. There is
a lack of an open-access database for data on NPs from
species co-cultivations and engineered microorganisms.

We therefore conducted several major updates of the
NPASS database (Table 1). The first is the addition of ∼95
000 new records of the composition/concentration values
of ∼1 500 NPs/NP clusters in ∼400 species. The second is
the extended data of activity values of ∼43 200 NPs against
∼7 700 targets (∼40% and ∼32% expansion, respectively).
The third is the expanded data of ∼31 600 species sources
of ∼94 400 NPs (∼26% and ∼32% increase, respectively).
The fourth is the new data of species types of ∼440 co-
cultured microbes and ∼420 engineered microbes. The fifth
is the new data of ∼67 000 NPs without experimental ac-
tivity values but with estimated activity profiles from the es-
tablished bioactivity similarity tool Chemical Checker (16).
The sixth is the computed drug-likeness properties and the
absorption, distribution, metabolism, excretion and toxicity
(ADMET) properties for all NPs using the established tool
ADMETlab 2.0 (17). The key features of these updates were
illustrated in Figure 1. A comparison of NPASS with sev-
eral representative NP databases, including StreptomeDB
(24), The Natural Products Atlas (25), CMNPD (26) and
COCONUT (27) was provided in Table 2. NPASS is freely
accessible at http://bidd.group/NPASS.

COMPOSITION/CONCENTRATION VALUES OF NAT-
URAL PRODUCTS

Knowledge of the composition/concentration values of
natural products is valuable in assessing the nutrition and
health-beneficial quality of foods and medicinal plants. For
instance, the plant family Brassicaceae includes well-known
vegetables such as broccoli, cabbage, cauliflower, mustard,
rapeseed, rocket and turnip, which were among the first
plants cultivated and domesticated by humanity (28). These

https://data.nal.usda.gov/dataset/usda-database-flavonoid-content-selected-foods-release-32-november-2015
http://bidd.group/NPASS
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Figure 1. Illustration of key features of NPASS-2023 was shown using the example NP succinic acid. (A) Several types of species sources are included: in-
dividual natural species, co-cultured species and genetically engineered species. (B) Experiments-derived biological activities of NPs were significantly
expended in this update. (C) In addition to physico-chemical properties, new property layers were calculated by ADMETlab 2.0. (D) Quantitative
composition/concentration data of NPs in their producing species was included in this update. (E) In addition to traditional structure-based similar-
ity, a five-level bioactivity similarity distribution was built based on Chemical Checker descriptors and visualized in 2D UMAP projection. The current
NP was labeled with a small circle (indicated by those long arrows) in UMAP projections.
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Table 2. Different features of representative NP databases

Database name NPASS StreptomeDB
The natural
products atlas CMNPD COCONUT

Coverage of organism category Diverse (plants,
bacteria,
metazoan,
fungi)

Specialized
(Streptomyces
genus)

Specialized
(bacteria, fungi)

Specialized
(marine species,
e.g. bacteria,
fungi, algae,
sponges)

Diverse (plants,
bacteria, fungi,
marine species,
animals)

No. of organisms Natural organisms 31 690 3302 1200 3354 n.a.
Co-culture Organisms 444 n.a.* n.a. n.a. n.a.
Engineered
Organisms

427 n.a. n.a. n.a. n.a.

Total organisms 32 561 3302 1200 3354 n.a.
No. of NPs 94 413 6524 32 552 31 561 1 136 517
No. of activity records 958 866 1 031 n.a. 72 349 n.a.
No. of quantity records 95 004 n.a. n.a. n.a. n.a.
No. of organism-NP pairs 872 723 10 912 n.a. n.a. n.a.
No. of targets 7753 n.a. n.a. 2652 n.a.
Properties of NPs physicochemical

properties
Y* Y N* Y N

Medicinal chemistry
properties

Y N N N N

ADMET properties Y Y N Y N
Similarity metrics Chemically structural

similarity
Y N N N N

Biological similarity Y N N N N
Latest version 2.0 (2023) 3.0 (2021) 2.0 (2022) 1.0 (2021) 1.0 (2022)

*Note: n.a. means not available; Y means this data category was included; N means this data category was not included.

vegetables contain chemical ingredients of high nutritional
and health beneficial value. In particular, glucosinolates are
one of the most important classes of secondary metabolites
in the Brassicaceae family, and the compositions of these
metabolites influence the level of protective and preventive
effects against several cancer (28). Moreover, Brassicaceae
plants contain an important inorganic micronutrient, Se,
which serves as part of the active site of the antioxidant
enzyme glutathione peroxidase, and the content of Se af-
fects the antioxidant effects of the vegetables (28). There-
fore, the experimentally determined composition/content
of individual NPs in plants and microbes was searched
from the PubMed database (29). These search results were
obtained by using the keywords ‘composition’, ‘content’,
‘chemical characterization’, ‘biochemical characterization’,
‘phytochemical characterization’, ‘abundance’ or ‘profile’
in combination with ‘plant’, ‘herb’, ‘vegetable’, ‘fruit’, ‘mi-
crobe’ and ‘bacterium’.

CO-CULTURED AND ENGINEERED ORGANISMS
FOR ENHANCED NP-PRODUCTION

In the genomic and synthetic biology era, strategies for
the discovery of novel NPs are rapidly evolving (1). Op-
timization of cultivation systems and genetic modification
of species are emerging strategies to expand the sources of
NP discovery from traditional models (individual natural
organisms) to more sophisticated ones (co-cultivation of
multiple species and unnatural organisms). Naturally, mi-
croorganisms grow and function (e.g. producing special-
ized metabolites) in concert within their surrounding micro-
bial ecosystem, rather than as individual/isolated species.
Species communities can exert positive microbial inter-
actions that benefit community members through several

mechanisms such as syntrophy, cooperation, mutualism,
and commensalism (30). By recovering or designing spe-
cialized positive microbial interactions, co-culture systems
can produce novel NPs or increase the yield of existing
NPs through reshaping metabolic profiles of individual or-
ganisms (21,31). In addition, many synthetic gene clus-
ters for high-value NPs biosynthesis are silenced in nat-
ural organisms. By activating silenced synthetic pathways
or introducing synthetic enzyme genes, natural species can
be engineered to produce high-value NPs more efficiently
(22,32).

These strategies represent promising trends in NP re-
search, which leverages large-scale mining of synthetic gene
clusters to exploit biosynthetic potential and manipulate
key genes or metabolic parameters to enable the production
of novel NPs or increased NP yields (33–35). Therefore, we
compiled NP yields or yield changes of NPs in co-cultured
species and engineered species through an extensive search
of PubMed. Finally, NPASS included 444 co-culture species
combinations and 427 engineered species/strains manually
extracted from 221 and 382 publications, respectively. Dur-
ing data curation, key manipulation parameters, such as
the taxonomic background of parent species, the synthetic
genes regulated/introduced, the fold-changes of NP yields
and other information, were also extracted from the origi-
nal references when available. As shown in Figure 2, diverse
co-culture combinations were curated in NPASS. Phyloge-
netic trees were generated based on NCBI taxonomy (36)
and visualized using the iTOL web server (37) to present
the landscape of co-culture combinations. These curated en-
gineered species (Figure 2B) and co-culture combinations
(Figure 2C) contributed to both the discovery of novel NPs
(4% and 36%, respectively) and yield increase of existing
high-value NPs (89% and 40%, respectively).
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Figure 2. An overview of co-cultured and engineered species for optimized NP production. (A) An overview of co-culture combinations was projected on a
family-level phylogenetic tree of bacteria and fungi. Taxonomic classes that enriched co-cultured species were highlighted with different colors and labeled
with different shapes. The phylogenetic tree was built using phyloT-v2 (https://phylot.biobyte.de/) based on NCBI taxonomic identifiers and visualized
using iTOL. Connection lines between taxonomic tree leaves indicate co-culture combinations. NPs produced by engineered or co-cultured species were
classified into three categories: (i) novel NP: novel structure that reported for the first time; (ii) new found NP: NPs that produced by engineered species but
not found in wild type parent species; (iii) existing NP (Yield-increased): NPs produced by both parent species and engineered species but have increased
yield in engineered species. The percentages of NPs produced by engineered species (B) and co-cultured species (C) were shown in pie charts. (D) The family-
level phylogenetic tree in (A) was zoomed in at genus-level for Actinomycetia and Sordariomycetes class to illustrate typical examples of NP production in
co-culture combinations. NCBI Taxonomic IDs used to generate phylogenetic trees were provided in Supplementary Table S1.

https://phylot.biobyte.de/
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ESTIMATING ACTIVITY PROFILES OF NATURAL
PRODUCTS WITH THE MOLECULAR SIMILARITY
PRINCIPLE

NPs are the most significant source for drug discovery,
while the majority of isolated NPs have not been subjected
to bioactivity evaluation against broad therapeutic targets.
Characterizing the bioactive space of NP is critical for more
efficient NP-based research and drug discovery. The molec-
ular similarity principle has become a driving force of drug
discovery, particularly in molecular activity prediction and
activity profile estimation (16,38). This principle has also
been applied for charting and navigating NP chemical space
(39), probing clustered patterns of NP drugs against privi-
leged molecular target sites (40), and developing NP like-
ness scores (41).

Recently, these chemical structure-centric similarity met-
rics have been extended to a broad level of biology, aim-
ing to capture more comprehensive representations of bio-
logical properties/behaviors of chemical compounds at dif-
ferent biological levels. For example, a five-levels (chem-
istry, targets, networks, cells, and clinics) Chemical Checker
bioactivity descriptor was proposed (16), and it exhibits
enhanced performance in predicting the biological activ-
ity of compounds that lack experimental bioactivity eval-
uation (42). This provides clues for revealing the bioactive
space of NPs. In the updated NPASS database, we em-
ployed the Chemical Checker (16) to generate bioactivity
descriptors for all NPs and subsequently constructed the
NPs’ bioactivity similarity space for NPASS. In detail, con-
tinuous descriptor vectors generated by Chemical Checker
were subjected to Uniform Manifold Approximation and
Projection (UMAP) manifold learning for dimension re-
duction. Five 2D sub-spaces A, B, C, D and E (represent
chemistry, targets, networks, cells, and clinics levels, respec-
tively) were built (based on the first two dimensions learned
by UMAP) and visualized as density maps generated by
ChemPlot Python package (43). For each NP, its locations
in density maps were highlighted using a small circle. Bi-
ological similarities of all NP pairs were calculated using
Euclidean distance based on UMAP projection coordinates
(UMAP distance) to navigate the NP biological similarity
space. A smaller UMAP distance between NPs indicated
a closer bioactivity similarity, which allowed us to explore
top-N similar NPs of an individual NP in each bioactivity
sub-spaces. Due to the inherent differences between Chem-
ical Checker sub-spaces, for a specific NP, the lists of top-N
similar NPs in different bioactivity sub-spaces are not nec-
essarily consistent (16). This may be useful for inferring ac-
tivity profiles of those NPs which have no experimental ac-
tivity record via exploring their top similar active NPs in
each sub-space.

DRUG-LIKENESS AND ADMET PROFILING OF NAT-
URAL PRODUCTS

The drug development potential of active molecules can
be partly judged by the drug-likeness properties (18,19).
In particular, drug-likeness rules have been developed and
widely used in drug discovery (19,44,45). These rules exploit
the drug’s distinguished physicochemical properties, such as

molecular weight and the number of hydrogen bond donors,
as the basis for drug-likeness evaluations (46). The thera-
peutic effectiveness and safety of drugs are also strongly in-
fluenced by the absorption, distribution, metabolism, excre-
tion (ADME) and toxicity (T) profiles of these drugs (47).
Early evaluation of ADMET properties of molecules, in-
cluding NPs, is useful for selecting promising candidates in
drug discovery (48). We therefore used the ADMETlab 2.0
(17) web server for computing physical-chemical properties,
medicinal chemistry properties, and ADMET properties for
each NP.

CONCLUDING REMARKS

There has been increasing interest in NP drug dis-
covery (1), new nutrition sources from plant diversity
(49), and the exploration of beneficiary effects of herbs
(50). These extensive investigations are generating data
on a wider variety of NP activity (51,52) and on the
composition/concentration of NPs in various species
(53,54). The rich information generated from these
and future investigations can be incorporated into the
NPASS database and other established databases (https:
//data.nal.usda.gov/dataset/usda-database-flavonoid-
content-selected-foods-release-32-november-2015)
(14,15). These databases with extended data collectively
provide enriched resources for facilitating drug discovery
(1), functional food development (55), and investigations
and explorations of herbal medicines (3).
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