
RESEARCH ARTICLE

Prevention of neointimal formation using

miRNA-126-containing nanoparticle-

conjugated stents in a rabbit model

Masayasu Izuhara, Yasuhide Kuwabara, Naritatsu Saito, Erika Yamamoto,

Daihiko Hakuno, Yasuhiro Nakashima, Takahiro Horie, Osamu Baba, Masataka Nishiga,

Tetsushi Nakao, Tomohiro Nishino, Fumiko Nakazeki, Yuya Ide, Masahiro Kimura,

Takeshi Kimura, Koh Ono*

Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan

* kohono@kuhp.kyoto-u.ac.jp

Abstract

Background

Despite recent progress with drug-eluting stents, restenosis and thrombosis after endovas-

cular intervention are still major limitations in the treatment of cardiovascular diseases.

These problems are possibly caused by inappropriate inhibition of neointimal formation and

retardation of re-endothelialization on the surface of the stents. miR-126 has been shown to

have the potential to enhance vascular endothelial cell proliferation.

Methods and results

We designed and constructed a 27-nt double strand RNA (dsRNA) conjugated to choles-

terol, which has high membrane permeability, and formed mature miR-126 after transfec-

tion. For site-specific induction of miR-126, we utilized poly (DL-lactide-co-glycolide)

nanoparticles (NPs). miR-126-dsRNA-containing NPs (miR-126 NPs) significantly reduced

the protein expression of a previously identified miR-126 target, SPRED1, in human umbili-

cal vascular endothelial cells (HUVECs), and miR-126 NPs enhanced the proliferation and

migration of HUVECs. On the other hand, miR-126 NPs reduced the proliferation and migra-

tion of vascular smooth muscle cells, via the suppression of IRS-1. Finally, we developed a

stent system that eluted miR-126. This delivery system exhibited significant inhibition of

neointimal formation in a rabbit model of restenosis.

Conclusions

miR-126 NP-conjugated stents significantly inhibited the development of neointimal hyper-

plasia in rabbits. The present study may indicate the possibility of a novel therapeutic option

to prevent restenosis after angioplasty.
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Introduction

Currently, percutaneous coronary intervention is a major therapeutic option to treat ischemic

heart diseases with low invasiveness. The introduction of drug-eluting stents (DESs) has effec-

tively reduced in-stent restenosis (ISR). However, the rate of ISR has been reported as between

3% and 20%, depending on which DES is evaluated, the duration of follow-up, and the com-

plexity of the lesions in which the stents were placed [1]. ISR usually presents as recurrent

angina, but can present as acute myocardial infarction as well. Thus, patients with ISR require

additional revascularization. In addition, DESs have been also implicated as having a risk of

stent thrombosis (ST) associated with impaired vascular healing [2]. In clinical trial popula-

tions, the risk has been estimated at 0.2–0.3% per year after the first year [3], but a number of

studies have demonstrated the risk beyond 1 year is higher in routine practice settings [4].

After angioplasty, several cellular and molecular events occur sequentially in the vascular

wall [5]. The lack of endothelial cells disrupt the homeostatic regulation of thrombosis and leu-

kocyte adhesion. Activation of vascular smooth muscle cells (VSMCs) is also caused by vascu-

lar damage, resulting in VSMC growth and extracellular matrix deposition, leading to the

progression of neointimal hyperplasia [6]. Although several approaches have been proposed to

regulate neointimal growth, modulation of a single molecule or pathway might only have lim-

ited success against this multifactorial process.

MicroRNAs (miRNAs; miRs) are small, single-stranded non-coding RNAs that act as post-

transcriptional regulators of gene expression [7,8,9]. Each miRNA has been shown to regulate

the expression of multiple genes. miR-126 is an endothelial cell-enriched abundant miRNA,

and its expression is induced by the mechano-sensitive zinc finger transcription factor KLF2a.

miR-126 is known to have the potential to promote the proliferation of endothelial cells by tar-

geting SPRED1, an intracellular inhibitor of vascular endothelial growth factor signaling

[10,11]. miR-126 also has anti-inflammatory effects on endothelial cells, because transfection

of endothelial cells with an oligonucleotide that decreases miR-126 permitted an increase in

tumor necrosis factor (TNF)-α-stimulated vascular adhesion molecule 1 (VCAM-1) expres-

sion and increased leukocyte adherence to endothelial cells [12]. We also found that miR-126

can inhibit VSMC proliferation and migration via the regulation of IRS-1.

From these results, we speculated that miR-126 induction is beneficial for inhibiting vascu-

lar injury, and we tried to examine the effect by using miR-126 double-stranded RNA

(dsRNA) containing poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) in vitro.

Then, we further evaluated the effect of miR-126 dsRNA-containing NP (miR-126 NP)-conju-

gated stents in a rabbit model.

Materials and methods

Animal preparation

This investigation conformed to the Guide for the Care and Use of Laboratory Animals pub-

lished by the US National Institutes of Health (NIH Publication No. 85–23, revised 1996). All

animal care, experiments, and methods were approved by the Animal Care and Use Commit-

tees of Kyoto University Graduate School of Medicine.

Cell culture

Primary cultures of human umbilical vein endothelial cells (HUVECs) were purchased from

Kurabo and grown in Endothelial Cell Growth Medium 2 Kit (PromoCell, Heidelberg, Ger-

many). Cells between passages 4 and 8 were used in experiments. HEK293 cells were cultured

in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% FBS.
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Preparation of lipid-conjugated double-stranded RNAs

Recently, 27-nt dsRNAs have been found to exhibit much stronger gene-silencing effects than

21-nt siRNAs [15]. These 27-nt dsRNAs are cleaved by Dicer enzyme, leading to the release of

21-nt siRNAs, and thus are incorporated into the RISC. In order to overexpress miR-126, we

adopted this method to induce dsRNAs to form mature miR-126. Moreover, we prepared cho-

lesterol-conjugated 27-nt dsRNAs with the aim of facilitating cellular uptake and designed to

stabilize mature miR-126 by phosphorothioate backbone modification. The following RNA

oligonucleotides containing a partial phosphorothioate backbone (�) and a cholesterol group

(Chol) were synthesized: miR-126 dsRNA sense, 5’Chol-CGGCGCAUUAUUACUCACGG
UACGAGU-3’ and miR-126 dsRNA antisense, 5’ ACU(�)C(�)G(�)U(�)A(�)C(�)C(�)G
(�)U(�)G(�)A(�)G(�)U(�)A(�)A(�)U(�)A(�)A(�)U(�)G(�)C(�)G(�)CCG-3’. The

following control dsRNA contained a random sequence of nucleotides and was not comple-

mentary to any known miRNA: control dsRNA sense, 5’ Chol-CGGGUCUCCACGCGCAGU
ACAUUUCGU-3’ and control dsRNA antisense, 5’- ACG(�)A(�)A(�)A(�)U(�)G(�)U
(�)A(�)C(�)U(�)G(�)C(�)G(�)C(�)G(�)U(�)G(�)G(�)A(�)G(�)A(�)C(�)CCG
-3’. These dsRNAs were obtained from Hokkaido System Science (Japan).

Preparation of PLGA NPs

The application of nanotechnology-based drug delivery systems (DDSs) is expected to have a

major impact on the development of efficient and safe DDSs. It was reported that such a DDS

was developed using a polymeric NP formulated from biodegradable PLGA, which can entrap

hydrophilic agents such as oligonucleotides, penetrate cellular membranes via endocytosis,

and deliver encapsulated therapeutic agents into the cellular cytoplasm. Biocompatible PLGA

NPs were prepared using an emulsion solvent diffusion method, and the particle surface was

modified with chitosan, as described previously [13,14]. Using this preparation method,

dsRNA could be loaded on both the inner and outer layer of chitosan-modified PLGA NPs.

Transfection

HUVECs were plated in a 6-well plate at 2.0×105 cells per well. The cells were transfected with

2, 10, or 40 nM miR-126 dsRNAs or control dsRNAs using Lipofectamine 2000 (Invitrogen)

for 48 h.

Dual luciferase reporter assay

Three complementary tandem sequences for miR-126 were cloned into a pMIR-REPORT vec-

tor (Ambion). HEK293 cells were plated into 24-well plates and cotransfected with 0.4 μg of

miR-126 luciferase reporter vectors and 2, 20, or 200 nM of miR-126 dsRNAs or 2 nM of con-

trol dsRNAs using Lipofectamine 2000. At 48 h after transfection, luciferase activity was mea-

sured using a dual luciferase reporter assay system (Toyo Ink). Firefly luciferase activity was

normalized to Renilla luciferase activity. For the 3’-UTR assay, IRS-1 3’-UTR (WT) was

inserted downstream of the firefly luciferase cassette in a pMIR-REPORT vector (Ambion).

Mutated 3’-UTR (Mut) constructs were created using a QuikChange II Site-Directed Muta-

genesis Kit (Agilent Technologies) in accordance with the manufacturer’s protocol. The miR-

126 target site in the IRS-1 3’-UTR was mutated from GGTACGA to GCAAGCA. HEK293

cells were used for transfection. pMIR-REPORT vectors containing the WT or Mut IRS-1 3’-

UTR were co-transfected with miR-126 or the negative control using TransIT-LT1 Transfec-

tion Reagent (Mirus Bio LLC).

Effect of miR-126 releasing stents on neointimal formation
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Isolation and culture of rabbit aortic smooth muscle cells

Rabbit aortic smooth muscle cells (RAoSMCs) were isolated from the abdominal aortas of Jap-

anese white rabbits. Briefly, after administering anesthesia, the aorta was dissected from its ori-

gin and transferred into phosphate-buffered saline. The aorta was freed from connective tissue

and adventitia and cut open longitudinally. The aorta was transferred to an empty collagen-

coated dish and pressed with the luminal side down onto the plate. After complete adhesion to

the plate was achieved, fresh medium was added slowly to the periphery of the plate until it

just covered the aorta. The dish was then placed in a 37˚C, in a 5% CO2 incubator and left

undisturbed for 5 days. Cells were subcultured as needed for experiments. RAoVSMCs were

maintained at 37˚C with 5% CO2 in DMEM with High Glucose culture medium supplemented

with 10% fetal bovine serum and 100 U/ml penicillin. Experiments were performed using

RAoSMCs between passages 4 and 9.

Intracellular uptake of NPs

The HUVECs and RAoSMCs were seeded onto a chamber slide to an initial concentration of

5.0 × 105 cells per well and incubated at 37˚C in a 5% CO2 environment. The growth medium

was replaced with the FITC-NP suspension medium (0.5 mg/ml) and then further incubated

for 3 hours. The cells were then washed 3 times with PBS to eliminate extracellular NPs. Then,

the cells were fixed with 10% formaldehyde and nuclei were stained with 4’,6-diamidino-

2-phenylindole. Intracellular uptake of FITC-NPs was evaluated by fluorescence microscopy

(KEYENCE).

Quantitative real-time PCR (qPCR) for miR and mRNA expression levels

Total RNA was isolated using Trizol (Invitrogen). miRNAs were quantified using TaqMan

MicroRNA Assays (Applied Biosystems) and a StepOnePlus Real-Time PCR System (Applied

Biosystems) in accordance with the manufacturer’s instructions. miRNA levels were normal-

ized using U6 small nuclear RNA. For mRNA quantification, complementary DNA was syn-

thesized using a Verso cDNA Synthesis Kit (Thermo Fisher Scientific) in accordance with the

manufacturer’s instructions, and analysis of mRNA levels was performed on a StepOnePlus

Real-Time PCR System (Applied Biosystems) with THUNDERBIRD SYBR qPCR Mix

(TOYOBO). β-actin or GAPDH was used as a housekeeping gene. The primer sequences are

listed in Online Table I.

Western blotting analysis

Immunoblotting analysis was performed using standard procedures as described previously.

Cells were lysed in lysis buffer [100 mM Tris-HCl (pH 7.4), 75 mM NaCl, and 1% Triton™ X-

100 (Nacalai Tesque)] containing Complete Mini™ protease inhibitor (Roche), aprotinin

(Sigma), 50 mM NaF, and 1 mM Na3VO4. Protein concentrations were determined using a

bicinchoninic acid protein assay kit (Bio-Rad). For western blotting, 20 μg of protein was elec-

trophoresed using NuPAGE™ 4–12% Bis-Tris (Invitrogen) gels and transferred to a Protran™
nitrocellulose transfer membrane (Whatman). The membrane was incubated with the primary

antibody overnight at 4˚C followed by incubation with the secondary antibody conjugated to

horseradish peroxidase at a 1:2000 dilution. The signals were visualized using ECL-Plus™
chemiluminescent detection reagent (Amersham Biosciences). The following primary anti-

bodies were used: anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Cell Signaling,

14C10), 1:3000; anti-β-actin antibody (Sigma-Aldrich, AC-15), 1:3000; anti-SPRED1 antibody

(abcam, M23-P2G3), 10 μg/ml; and anti-IRS-1 antibody (Cell Signaling, #2382), 1:1000. Anti-
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rabbit IgG (GE Healthcare) and anti-mouse IgG (GE Healthcare) were used as secondary anti-

bodies, each at a dilution of 1:2000. Luminescence was detected using an ImageQuant LAS

4000mini (GE Healthcare). The densities of the band on western blots were quantified by

using ImageJ software (NIH).

Cell proliferation assay

HUVECs and RAoVSMCs proliferation in vitro was determined by cell counting and MTT

assays. For cell counting, cells were plated in 6-well culture plates at 2.0×105 cells per well.

Either miR-126 NPs or control RNA NPs were added to medium at a concentration of 100

nM, and cells were incubated for 48 h. The cells were detached by trypsinization and resus-

pended in PBS. The cells were then counted using a Z1™ COULTER COUNTER (Beckman

Coulter). For MTT assays, cells were seeded at a density of 1000 cells per well in 96-well culture

plates for 24 h. miR-126 NPs or control RNA NPs were added to medium at a concentration

of 100 nM. Cell proliferation was measured at intervals of 2 days. At the end of each time

point, 10 μl of 5 mg/ml MTT (Dojindo Molecular Technologies) was added to each well. Four

hours later, 100 μl acidic isopropanol (0.04 N HCl) was added to the MTT-treated wells and

the absorption was determined at 595 nm (reference wavelength 690 nm) using an automated

plate reader.

Migration assay

HUVECs or RAoVSMCs were plated in a collagen type I-coated 35 mm glass-based dish

(IWAKI) at a density of 1.0×105 cells and either miR-126 NPs or control RNA NPs were added

to medium at a concentration of 100 nM, and cells were incubated until a complete monolayer

was formed. After serum starvation for 24 h, straight scratches for each dish were made using a

200 μl pipette tip. Cellular debris was removed by gently washing cells with PBS. Pictures were

captured at intervals of 2 h using a FLUOVIEW FV10i-LIV (OLYMPUS), and then the migra-

tion areas were calculated using Image J.

Preparation of miR-126 incorporated PLGA NP-coated stent

Conventional bare metal stents were coated with chitosan-modified PLGA NPs containing

dsRNAs using an electrostatic coating method. dsRNA-incorporating chitosan-modified

PLGA NPs were dissolved in distilled water (10% wt/wt), and the stent was immersed in this

solution for 10 minutes and dried at low temperature. This procedure was repeated several

times to coat a sufficient dose of PLGA NPs onto the stent surface. The amount of RNA per

stent is 33.4±0.79 μg for miR-126 and 44.6±1.27 μg for control RNA.

In vitro release of miR-126 from a miR-126-incorporating PLGA NP-

coated stent

miR-126-incorporating PLGA NP-coated stents were immersed in PBS at 37˚C. Periodically,

PBS was removed and the miR-126 expression levels were measured using qPCR.

Stent implantation

Male Japanese white rabbits weighing 2.5–3.5 kg were used. Animals were fed a hypercholes-

terolemic diet at 1 week before intervention and given water ad libitum. All animals received

low-dose aspirin for 7 days before intervention and thereafter until sacrifice. Rabbits were

anesthetized intramuscularly with a mixture of xylazine and ketamine. After administration of

anesthesia, the right carotid artery was surgically exposed, and a 5-Fr introducer sheath
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(Terumo Co., Tokyo, Japan) was introduced into the artery. A control RNA NP-coated or

miR-126 NP-coated stent mounted on a balloon catheter was placed in the iliac artery on the

same day (N = 10 vessels/group). The stent delivery system was advanced to the distal portion

of the iliac artery using the guide wire, and the stent was deployed to achieve a stent-to-artery-

size ratio range of 1.2:1.4. Post-stent deployment angiography was carried out in all animals.

At the time of stent implantation, an intravenous bolus of heparin at 100 U/kg was adminis-

tered to prevent acute thrombosis. Rabbits were then visually monitored for signs of pain, dis-

tress, or moribundity (sudden behavioral change, poor posture or ambulation difficulty, loss of

hair coat condition, sudden activity change, painful facial expressions, neurological disorders,

and cardiopulmonary disorders, according to the Kyoto University Institutional Animal Care

and Use Guidelines) and weighed three times a week. Animals reaching these endpoints, or

exhibiting at 15% reduction in weight were to be euthanized. However, no rabbit exhibited

signs of pain, distress, or moribundity or during the course of evaluation, and all rabbits in this

study were humanely euthanized at the fixed time point of 28 days post implantation when fol-

low-up angiography was performed. After administration of anesthesia as before, angiography

was performed. Then, the animals were euthanized with a lethal dose of pentobarbital. Stented

vessels were harvested and stored overnight at 4˚C in buffered formalin.

Optical coherence tomography (OCT) was conducted ex vivo on coronary arteries after ves-

sel fixation, using Light lab and a Dragonfly™ OCT catheter (St Jude Medical, Stratford-upon-

Avon, UK).

The stented vessels were fixed in 4% paraformaldehyde. To prepare cross-sections of

stented vessels, fixed arteries were embedded in plastic resin (Technovit 8100, Heraeus Kulzer,

Armonk) in accordance with the manufacturer’s instructions and cut into 5 μm sections in

each part. Each section was stained with hematoxylin and eosin for histological analysis.

Statistics

Data are presented as means ± SEM. Statistical significance (P<0.05) was determined between

groups using an ANOVA followed by Tukey’s Multiple Comparison Test for multiple groups

or a Student’s t-test for two groups.

Results

Cholesterol conjugated 27-nt dsRNAs to form miR-126 and its delivery

using PLGA NPs

The structures of pri-miR-126, miR-126 dsRNA and control scrambled oligonucleotide

dsRNA (control dsRNA) are described in the Material and Methods and Fig 1A. We trans-

fected miR-126 dsRNAs and control dsRNAs into 293T cells using Lipofectamine 2000. As

shown in Fig 1B, mature miR-126 levels were significantly increased in cells transfected with

miR-126 dsRNA compared with control dsRNA. The effect of miR-126 after the induction of

these oligonucleotides was measured using the reporter assay. Luciferase genes with three

miR-126 binding sites were induced in 293T cells with the transfection of control dsRNA or

miR-126 dsRNA. As shown in Fig 1C, luciferase activity was significantly reduced by the

induction of miR-126 dsRNA compared with control dsRNA.

We first tried to observe the effect of PLGA NPs to deliver FITC to HUVECs. As shown in

Fig 1D, PLGA NPs were efficiently incorporated into HUVECs. Then we produced miR-126

dsRNA and control RNA containing PLGA NPs (miR-126 NPs and control NPs, respectively)

(Fig 1E). Addition of miR-126 NPs efficiently induced miR-126 expression in HUVECs com-

pared with control NPs (Fig 1F).
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Fig 1. Structure of miR-126 dsRNA and miR-126 expression from miR-126 NPs in vitro. (A) Structure of miR-

126 dsRNA and control dsRNA. (B) miR-126 expression after the induction of miR-126 dsRNA and control dsRNA

using Lipofectamine 2000 in 293T cells. Values are means ± SEM; n = 5 each; *P<0.05, **P<0.01. (C) Luciferase

activity of a reporter gene with miR-126 binding sites. Values are means ± SEM; n = 4 each; *P<0.05, **P<0.01.

(D) FITC levels in HUVECs after the addition of FITC-NPs. Fluorescence intensity (left panel) and phase contrast

image (right panel). (E) Electron micrograph of miR-126 NPs and control NPs. (F) miR-126 expression levels after

the addition of miR-126 NPs and control NPs in HUVECs. Values are means ± SEM; n = 4 each; *P<0.05,

**P<0.01. ***P<0.001.

doi:10.1371/journal.pone.0172798.g001
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Increase in growth and migration of HUVECs by miR-126 NPs

The effect of miR-126 NPs on endothelial cells was examined in HUVECs. After the induction

of miR-126 NPs and control RNA NPs, expression levels of several previously defined miR-

126 target genes were measured by RT-PCR. As shown in Fig 2A, the expression levels of

SPRED1, PIK3R2, VCAM1, and ALCAM1 were significantly reduced by the induction of

miR-126 NPs compared with control RNA NPs. However, IRS1 expression was not changed

by miR-126 NPs (Fig 2A). Western blotting analysis indicated that miR-126 NPs significantly

reduced the protein levels of SPRED1 (Fig 2B). When cellular proliferation was assessed using

an MTT assay, miR-126 NPs significantly increased the proliferation of HUVECs compared

with control RNA NPs (Fig 2C). Moreover, the effect on cellular migration activity was exam-

ined by the use of FLUOVIEW FV10i-LIV (OLYMPUS). miR-126 NPs significantly increased

the migration activity as shown in Fig 2D.

Decrease in VSMC growth and migration by miR-126 NPs

Next, we analyzed the effect of miR-126 NPs on VSMCs. Primary VSMCs were prepared from

rabbit iliac arteries. Because miR-126 is not expressed in VSMCs, miR-126 expression levels

were strikingly enhanced by the addition of miR-126 NPs compared with control RNA NPs

(Fig 3A). After the incubation with miR-126 NP and control RNA NP, the expression levels of

several target genes were measured by RT-PCR. As shown in Fig 3B, the expression level of

IRS-1 was significantly reduced by miR-126 NPs compared with control dsRNA NPs. How-

ever, SPRED1, VCAM1, and ALCAM expression levels were not changed by miR-126 NPs

compared with control dsRNA NPs. We also confirmed that IRS-1 protein levels were reduced

by the induction of miR-126 NPs compared with control NPs (Fig 3C). Previously, IRS-1 was

reported to be targeted by miR-126 in tumor cells [15]. As shown in Fig 3D, the miR-126 bid-

ing site in the 3’-UTR is evolutionally conserved. miR-126 NPs significantly reduced the lucif-

erase activity in cells transfected with the luciferase reporter gene with an IRS-1 3’-UTR.

Mutations in the miR-126 binding sites of the IRS-1 3’-UTR abolished the reduction in lucifer-

ase activity (Fig 3E). Thus, miR-126 NPs most likely reduced the levels of IRS-1 through its

binding to the IRS-1 3’-UTR. Then, the effects of miR-126 on VSMC proliferation and migra-

tion was analyzed. As shown in Fig 4A, miR-126 NPs reduced the proliferation of VSMCs

compared with control NPs. Migration activity of VSMCs was also reduced by miR-126 NPs

compared with control NPs (Fig 4B). Knockdown (KD) of IRS-1 reduced the proliferation of

VSMCs, and the effect of miR-126 NPs on VSMC proliferation was reversed by the induction

of IRS-1 (Fig 4C and 4D). Migration activity was also reduced by IRS-1 KD, which was abol-

ished by overexpression of IRS-1 (Fig 4E and 4F). Moreover, several genes that indicated

VSMCs differentiation were also measured. Taglin and Acta2 were upregulated by miR-126

NPs (S1A Fig), and these levels were enhanced by IRS-1 KD (S1B Fig), accordingly.

In vivo effect of miR-126 NP-conjugating stents

We further evaluated the effect of miR-126 NPs using a rabbit model of neointimal formation.

We first conjugated miR-126 NPs and control NPs to bare metal stents as indicated previously

(Fig 5A). The cumulative release of miR-126 from a miR-126 NP-conjugated stent is shown in

Fig 5B. We delivered these miR-126 NP- and control NP-conjugated stents to a rabbit model

of neointimal formation of the iliac artery, in which stenting was performed immediately after

endothelial denudation (Fig 5C). Neointimal formation was analyzed by angiography and

OCT at 4 weeks after treatment. Vascular stenting with a control NP-conjugated stent was

associated with marked neointimal hyperplasia. In contrast, miR-126 NP-conjugated stents

inhibited the progression of neointimal hyperplasia (Fig 5D–5G). We measured the levels of

Effect of miR-126 releasing stents on neointimal formation
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Fig 2. Effect of miR-126 NPs on HUVECs. (A) mRNA expression changes of potential target genes of miR-

126 in HUVECs determined by real-time PCR analyses. Values are means ± SEM; n = 5 each; *P<0.05,

**P<0.01. ***P<0.001. (B) Protein levels of SPRED1 after addition of control RNA NPs and miR-126 NPs.

Values are means ± SEM; n = 6 each; *P<0.05. (C) Proliferation of HUVECs determined by MTT assay.

Values are means ± SEM; n = 8 each; *P<0.05, **P<0.01. ****P<0.0001. (D) Photograph of scratch assay

and serial changes in the migration area determined using Image J. Values are means ± SEM; n = 8 each;

*P<0.05, ***P<0.001. ****P<0.0001.

doi:10.1371/journal.pone.0172798.g002
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Fig 3. miR-126 NPs target IRS-1 in VSMCs. (A) miR-126 expression levels after the addition of miR-126 NPs and control

NPs to VSMCs. Values are means ± SEM; n = 4 each; **P<0.001. (B) mRNA expression changes of potential target genes of

miR-126 in VSMCs determined by real-time PCR analyses. Values are means ± SEM; n = 4 each; **P<0.01. (C) Protein

levels of IRS-1 after addition of control RNA NPs and miR-126 NPs. Values are means ± SEM; n = 6 each; **P<0.001. (D)

Conservation of the miR-126 target site in the 3’-UTR of IRS-1. (E) 3’-UTR reporter assay used to verify the target. Luciferase

reporter activity of rabbit IRS-1 gene 3’-UTR constructs with or without mutation of the miR-126 binding site in 293T cells

overexpressing miR-control and miR-126; n = 4 each; *p < 0.05 and ***p < 0.001.

doi:10.1371/journal.pone.0172798.g003
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Fig 4. Effect of miR-126 NPs on VSMCs. (A) Proliferation of VSMCs determined by cell count. Values are

means ± SEM; n = 6 each; ***P<0.001. (B) Photograph of scratch assay and the serial changes in migration

area determined using Image J. Values are means ± SEM; n = 4 each; *P<0.05. (C and D) Proliferation of

VSMCs determined using an MTT assay. Values are means ± SEM; n = 6 each; *P<0.05, ***P<0.001. (E and

F) Serial changes in migration area determined using Image J. Values are means ± SEM; n = 4 each; *P<0.05,

**P<0.01, ***P<0.001.

doi:10.1371/journal.pone.0172798.g004
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Fig 5. Effect of miR-126 NP-conjugated stents on a rabbit model of neointimal formation. (A) Photograph

of an miR-126 NP-conjugated stent. (B) Cumulative release of miR-126 from an miR-126 NP-conjugated stent.

(C) Protocol of the in vivo rabbit model of neointimal formation. (D) Representative OCT images of a rabbit iliac

artery after the implantation of control RNA NP-conjugated stents or miR-126 NP-conjugated stents. (E)

Representative images of HE staining of a rabbit iliac artery after the implantation of a control RNA NP-

conjugated or miR-126 NP-conjugated stent. (F) Changes in neointimal area of rabbit iliac arteries after the

implantation of a control RNA NP-conjugated or miR-126 NP-conjugated stent; n = 8 each; *P<0.05. (G)

Changes in mean neointimal thickness of rabbit iliac arteries after the implantation of a control RNA NP-

conjugated or miR-126 NPs-conjugated stent; n = 8 each; *P<0.05.

doi:10.1371/journal.pone.0172798.g005
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miR-126 in rabbit iliac arteries 1 week after the implantation of control NP- and miR-126 NP-

conjugated stents. miR-126 levels were higher in samples with miR-126 NP-conjugated stents

than control stents. However, there was no statistical difference (S1C Fig).

Discussion

In these experiments, we designed and constructed a 27-nt dsRNA conjugated with choles-

terol, which has high membrane permeability, and this dsRNA formed mature miR-126 after

transfection. Moreover, we utilized poly PLGA-NPs for site-specific induction of miR-126.

miR-126 NPs significantly reduced the protein expression of SPRED1 in HUVECs and

enhanced the proliferation and migration of HUVECs. On the other hand, miR-126 NPs

reduced IRS-1 levels in rabbit SMCs and reduced the proliferation and migration of VSMCs

via the suppression of IRS-1. Finally, we developed a stent system that eluted miR-126, and

this delivery system exhibited significant inhibition of neointimal formation, which indicated

the possibility of a novel therapeutic option to prevent restenosis after angioplasty by the

induction of miR-126.

For miRNAs whose expression is beneficial for a specific condition, overexpression of such

a mature miRNA into the proper tissue could provide a therapeutic benefit by enhancing the

regulation of target genes. It was realized that siRNAs resemble a mature miRNA duplex, and

in fact, they are functionally interchangeable in terms of RISC action against target mRNAs

[16]. Thus, the introduction of synthetic siRNA-like molecules that mimic the Dicer-processed

miRNA duplex is a potential method to enhance the expression of desired miRNAs. Therefore,

we adopted this method to deliver a 27-nt dsRNA conjugated to cholesterol, which has high

membrane permeability, and this dsRNA formed mature miR-126. Moreover, it is known that

therapeutic oligonucleotides are generally modified in the phosphate backbone and/or include

ribose sugars to increase nuclease resistance and enhance affinity for target RNAs. The phos-

phorothioate backbone modification replaces a non-bridging oxygen atom with a sulfur atom

and extends the half-life of oligonucleotides in plasma from minutes to days [17]. Therefore,

we designed a stabilized mature miR-126 through the inclusion of a phosphorothioate back-

bone modification. We found that transfection of the miR-126 dsRNA significantly enhanced

miR-126 expression. For clinical applications of a miR-126 dsRNA, it will be necessary to

enhance transfection efficiency and to release oligonucleotides over a period of several weeks.

Thus, we incorporated miR-126 dsRNA into PLGA NPs, and the addition of miR-126 NPs

into the medium significantly enhanced the expression levels of miR-126 and reduced the

expression of target genes.

It is known that miR-126 enhances the proangiogenic actions of VEGF and FGF by repress-

ing the expression of SPRED1, an intracellular inhibitor of angiogenic signaling [11]. We con-

firmed that miR-126 NPs can repress the protein levels of SPRED1 in HUVECs. Moreover,

miR-126 NPs significantly enhanced the proliferation and migration of HUVECs. We also

confirmed that IRS-1 is targeted by miR-126 in VSMCs, which mediate the suppression of pro-

liferation and migration of SMCs. This was in agreement with previous reports that IRS1 is

translationally inhibited by miR-126 in HEK293 and MCF-7 cells [18]. Overexpression of

miR-126 also increased differentiation marker gene expression levels in VSMCs, which was

compatible with VSMCs with reduced proliferation. Previously, Zhou et al. indicated that loss

of miR-126 reduced the ligation–induced neointimal growth in mice carotid artery [19]. How-

ever, their findings are mainly based on the loss-of-function experiment, which are different

from our over-expression model.

Another hurdle for miRNA-based therapeutics is the delivery of nucleic acids to the target

tissue or cells. Although systemic delivery of siRNAs has already shown promising results
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[20,21], there is still the possibility of undesirable side-effects. For the local release of miR-126,

we conjugated miR-126 NPs to stents, which released mature miR-126 for about 2 weeks

locally. We evaluated miR-126 NP-conjugated stents in a rabbit model of neointimal forma-

tion. miR-126 NP-conjugated stents significantly inhibited the development of neointimal

hyperplasia in rabbits.

There were several limitation of our in vivo experiments. We could not detect the changes

in potential target gene expression in the stent implanted artery because it was hard to measure

endothelial and smooth muscle cell-specific gene expression separately in vivo. Moreover, we

could not observe the detailed miR-126 release profile in the iliac artery. It is possible that the

measurement of miR-126 in the whole iliac artery may ameliorated the expression levels of

miR-126.

The present study demonstrates the possible utility of this novel therapeutic option to pre-

vent restenosis and thrombosis after angioplasty.

Supporting information

S1 Fig. mRNA expression changes in VSMC and relative expression of miR-126. (A)

mRNA expression changes in VSMC differentiation-associated genes in VSMCs determined

using real-time PCR analyses after the addition of miR-126 NPs or control NPs. Values are

means ± SEM; n = 4 each; ��P<0.01. (B) mRNA expression changes in VSMC differentiation-

associated genes in VSMCs determined using real-time PCR analyses with or without knock-

down of IRS-1. Values are means ± SEM; n = 4 each; �P<0.05. (C) Relative expression of miR-

126 treated in iliac arteries with miR-126 NP-conjugated or control RNA NP-conjugated

stents at 1 week after the implantation; n = 3.
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