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Abstract 

While machine learning models ha v e been successfully applied to predicting gene expression from promoter sequences, it remains a great 
challenge to derive intuitive interpretation of the model and re v eal DNA motif grammar such as motif cooperation and distance constraint be- 
tween motif sites. Previous interpretation approaches are often time-consuming or ha v e difficulty to learn the combinatory rules. In this w ork, w e 
designed interpretable neural network models to predict the mRNA expression levels from DNA sequences. By applying the Contextual Regres- 
sion frame w ork w e de v eloped, w e e xtracted w eighted f eatures to cluster samples into diff erent groups, which ha v e different gene e xpression 
le v els. We perf ormed motif analy sis in each cluster and f ound motifs with activ e or repressiv e regulation on gene e xpression. By comparing the 
co-occurrence locations of disco v ered motifs, w e also unco v ered multiple grammars of motif combination including communities of cooperative 
motifs and distance constraints between motif pairs. These results revealed new insights of the regulatory architecture of promoter sequences. 
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romoters are critical for regulating gene expression. The
romoter sequences influence the strength, number and po-
ition of transcription factor (TF) binding sites, which in turn
egulate the transcriptional levels of genes ( 1–3 ). In eukary-
tic cells, a promoter sequence can be divided into three re-
ions based on the distance from the transcription start site
TSS): core promoter, proximal promoter, and distal promoter
 4 ). The core promoter includes TSS, key DNA sequence el-
ments such as T A T A box, and downstream promoter ele-
ent (DPE) ( 5 ). The proximal promoter is upstream from

he core promoter, where transcription factors (TFs) predomi-
antly bind ( 1 ). The distal promoter is further upstream from
he proximal promoter that often contains weak TF binding
ites ( 6 ). Uncovering the information encoded in the promoter
equences crucial for transcriptional regulation and unravel-
ng the regulatory rules between gene expression and DNA
equences remain important problems. 

Previous studies have analyzed the type, number, location,
rientation of TF motifs, combinatorial strategies of different
F motifs, and the surrounding sequences of the TF binding
ites in the promoters ( 7–23 ). For example, several known se-
uence motifs such as the T A T A box (T A T AWAAR) and the
nitiator sequence (YYANWYY in human) located at the fixed
osition in the core promoter region have been discovered
 24 ). Distance constraints between motif combinations have
lso emerged from analyzing various TF binding sites. For
xample, the ETS:IRF composite element (EICE) prefers two
ucleotide-long spacers and ETS:IRF response element (EIRE)
refers three nucleotide-long spacers ( 25 ). Furthermore, addi-
ional insights are obtained from recent efforts on generating
illions of synthetic promoter sequences and measuring their

mpacts on gene expressions ( 5 , 16 , 18 , 26 ). Despite these pro-
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gresses, there remain great challenges of uncovering the regu-
latory grammar encoded in the promoter sequences. 

Several studies have been reported to predict the transcrip-
tion strength or mRNA level from promoter or core promoter
sequences by using various deep learning models ( 5 ,26–29 ).
They found that the gene expression levels are controlled by
the entire gene regulatory structure and specific combination
of regulatory elements rather than single motifs or genomic re-
gions ( 29 ). For example, different combinations of promoter
motifs lead to different expression levels ( 4 , 16 , 30 ). However,
the models for studying the regulatory rules are usually com-
plex. Due to the black-box nature of deep learning ( 18 ), these
models still lack a clear interpretation of the promoter archi-
tecture, such as the motif location and identity in the promoter
regions that have the highest active or repressive effects on
gene expression. Furthermore, they cannot reveal motif gram-
mar such as the interactions of the TF binding sites, motif
community, and coregulation effects of the motifs. A few inter-
pretation approaches were reported, such as the perturbation
impact map and saliency map ( 31 ), but they are often time-
consuming or hard to learn the combinatory rules ( 18 ). 

We have developed a framework called contextual regres-
sion to interpret nonlinear models ( 32 ,33 ), which concur-
rently optimize prediction accuracy and feature weights re-
flecting their contributions to the prediction. Here, we de-
signed a workflow implementing this framework to predict
the mRNA levels from the promoter sequences. The model
can uncover the most predictive features by calculating the dot
product between the sequence features (i.e. motifs) and their
context weights to predict gene expression, and the contex-
tual weight values indicate the importance of the features. The
weighted features allow to cluster the promoter sequences into
groups with different mRNA levels. By analyzing the extracted
, 2024. Accepted: May 12, 2024 
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features in each group, we uncovered the DNA segments with
the active or repressive effects on expression, and found the
enriched motifs in these segments. This workflow is flexible
to be applied to seven different promoter sequence ranges
(10.5 kb, 800 bp, 400 bp, 200 bp, 100 bp, 50 bp and 19
bp around TSS) with increasing resolution. Starting from the
analysis of 10.5 kb promoter sequences around TSS, we found
that there are several discrete sequence stripes showing higher
contribution to the gene expression level. By comparing the
co-occurrence locations of discovered motifs, we also found
the motif grammars including the motif communities and mo-
tif pairs with specific distance constraints. Then, we analyzed
regions of 800, 400, 200, 100 and 50 bp around TSS to in-
crease resolution of locating the most predictive segments and
motifs. Lastly, we focused on the downstream promoter region
(DPR, +17 to +35 bp around TSS) sequences and elucidated
the differences between synthetic and genomic sequences on
regulating gene expression as well as identified several bases
strongly preferring guanine in highly expressed genes. 

Material and methods 

Xpresso is a state-of-the-art model for predicting gene ex-
pression using promoter sequences ( 27 ). In order to make
our results directly comparable to Xpresso’s, the promoter
sequences and corresponding mRNA expression levels were
downloaded from ( 27 ). The dataset contains 18 377 genes
in 56 human cell types generated by the NIH Roadmap
Epigenomics Consortium. Following the same procedure as
in ( 27 ), the median mRNA expression levels across 56 cell
types were used for prediction because mRNA expression
levels are highly correlated (average correlation of 0.78) be-
tween different cell types ( 27 ). For training the contextual
regression (CR) models, we selected 1000 genes as the test
dataset and another 1000 genes as the independent validation
dataset. The remaining 16 377 genes were used as a training
dataset. We performed 10 times of cross validation by ran-
domly partitioning the dataset to verify the consistency of
our models ( Supplemental Table S1 ). We did DNA sequence
analysis by the BLAST-like alignment tool (BLAT) and per-
formed the chromosome hold-out tests to prove that the data
leakage does not impact our model ( Supplemental Table S9 ).
The synthesized DPR sequences in the core promoter region
and their corresponding transcriptional strength were down-
loaded from ( 5 ). Among the 468 069 sequences with mea-
sured transcriptional level, 7500 sequences were selected as
the test dataset, 20 000 sequences as the validation dataset and
180 000 sequences as the training dataset. 

We applied the same model structure with different fine-
tuned hyperparameters to seven ranges of DNA sequences: the
first one (the CR-1 model) for the 10.5 kb sequences around
the TSS ( −7 kb, +3.5 kb); the second one (CR-2) for the −400
bp to +400 bp sequences around the TSS; the third one (CR-
3) for the −200 bp to +200 bp sequences around the TSS;
the fourth one (CR-4) for the −144 bp to +56 bp sequences
around the TSS; the fifth one (CR-5) for the −112 bp to −12
bp sequences around the TSS; the sixth one (CR-6) for the −92
bp to −42 bp sequences around the TSS; and the seventh one
(CR-7-G for genomic sequences and CR-7-S for synthesized
sequences) for DPR in core promoters that are +17 to +35 bp
relative to the TSS. In each contextual regression model, the
sequence features were extracted by a series of convolutional
layers and subsequently several fully connected layers were 
applied to generate a weight vector with the same dimension 

of the sequence features. Finally, the model output was ob- 
tained by summing the dot product of the feature (CR-1 to 

CR-6) or one-hot-encoded vector (CR -7-G and CR -7-S) vector 
and the weight vector (Figure 1 A). The models were built and 

trained on TensorFlow 1.15.2 ( 34 ) and Keras 2.2.4. The hy- 
perparameters were slightly adjusted from those used in ( 27 ) 
for a specific dataset and model ( Supplemental Table S2 ). The 
initial parameters were generated by the Glorot normal initial- 
izer ( 35 ). The Stochastic Gradient Descent (SGD) optimizer 
was used to optimize the parameters with a learning rate of 
0.0005 and momentum of 0.9. 

The motifs are found by the software STREME ( 36 ) with 

p-value threshold of 10 

−3 . The similarities between all pairs 
of motifs are determined by software T OMT OM ( 37 ) with 

the default parameters. The motifs’ occurrence sites are ex- 
plored by the software FIMO ( 38 ) with p-value threshold of 
10 

−5 . The GO term enrichment analysis is performed by the 
software GOMO ( 39 ). 

Results 

Predicting gene expression using promoter 
sequences 

Xpresso is a state-of-the-art model for predicting gene expres- 
sion using promoter sequences ( 27 ), but it does not discover 
which regions have an active or repressive effect on gene ex- 
pression. We proposed to use the contextual regression model 
( 32 ,33 ) for this task. It first extracted features from the 10 kbp 

promoter sequences, showing that the promoter sequences are 
not equally important for predicting gene expressions and par- 
ticular locations in the upstream of TSS are crucial for regu- 
lating transcription. The distinction between highly-expressed 

and lowly-expressed genes largely comes from sequences close 
to the TSS. To study the sequence features at finer resolutions,
we trained additional models on the sequences of 800 to 50 bp 

around TSS and also the downstream promoter region (DPR,
+17 to +35 bp around TSS). 

We first trained a contextual regression model ( 32 ,33 ),
referred to as CR-1, to predict gene expression levels us- 
ing promoter sequences that span from −7 kb to +3.5 kb 

around the TSS (Figure 1 A). The model’s input is promoter 
sequences from 18 377 genes in 56 human cell types gener- 
ated by the NIH Roadmap Epigenomics Consortium, and the 
model’s output is the median mRNA expression levels across 
56 cell types. The model was composed of three convolu- 
tional blocks, followed by two fully connected blocks and one 
fully connected layer. The convolutional filter lengths were 
7, 7, 7, and the convolutional filter numbers were 32, 16,
8. The strides of max pooling layers were 50, 2, 2, which 

resulted in 200 bp bins in the extracted feature vector. The 
numbers of neurons in the fully connected layers were 64,
2, 410 (52 bins × 8 filters). To avoid overfitting, a dropout 
layer was added after the first two fully connected layers and 

the dropout probability was set to 0.00099. In the third fully 
connected layer, we applied L1 regularization on the weight 
with a penalty coefficient 0.0001 to make the weighted fea- 
tures more interpretable. The model performed well, with the 
predicted and measured values closely aligned along the diag- 
onal line in the scatter plots (Figure 1 B and C). The Pearson 

correlations for the training and testing datasets were close to 
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Figure 1. ( A ) The contextual regression model structure. ( B ) Prediction performance of CR-1 for the training dataset. The expression level is defined by 
the formula y ∧ = log 10 ( y + 0.1). ( C ) Prediction performance of CR-1 for the testing dataset. The expression level is defined by the formula y ∧ = log 10 ( y + 

0.1). 
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ach other (0.736 and 0.720, respectively), which suggests no
verfitting. These correlation values are also comparable with
he Xpresso results ( 27 ) ( Supplemental Table S3 ). 

The model CR-1 successfully uncovered the regions with
ositive and negative contextual weights (indicating active or
epressive effects on gene expression) that are most predic-
ive of gene expression (see below and Figure 2 ). Interestingly
hile not surprisingly, the contextual weights of the highly

nd lowly expressed genes are most distinct on the region next
o TSS. As the CR-1 model was 200 bp resolution consider-
ng sequence information extraction efficiency and prediction
bility, we zoomed into the −400 bp to +400 bp sequences cor-
esponding to the 33rd to 36th bins to retrain the contextual
egression model with higher resolution (referred to as CR-2
odel). For different resolutions, some hyperparameters such

s strides of max pooling layers and neuron numbers of the
ast fully connected layer were adjusted. The strides of max
ooling layers were 4, 2, 2, which resulted in 16 bp-bins in
he extracted feature vector. The numbers of neurons in the
ully connected layers were 8, 2, 400 (50 bins × 8 filters). We
lso checked the prediction performance of model CR-2. As
hown in Supplementary Figure S1 , the Pearson correlations
or the training and testing datasets are 0.709 and 0.688, re-
pectively. Since the sequences used in CR-2 are much shorter
than CR-1, it is reasonable that the correlation values in CR-2
are slightly lower than CR-1. Such a minor difference suggests
that the sequences around the TSS heavily govern the gene ex-
pression. 

To further improve the resolution of defining the sequence
contribution to gene expression with a focus on the region
around TSS, we trained four additional models for sequences
of lengths 400, 200, 100 and 50 bp around the TSS. The
last model was able to locate every base in its 50-bin length
weighted feature layer. As shown in Supplementary Figures 
S2 - S5 , the Pearson correlation of CR-3 ( −200 bp to +200 bp
around TSS) was 0.696, only slightly decreasing from CR-1
and comparable with CR-2, while CR-4 to CR-6 with fur-
ther decreased prediction performance with shorter sequence
length. This observation suggested −200 bp to +200 bp se-
quences around TSS likely contain the majority of the regula-
tory information of gene expression. 

We also analyzed the proximal downstream region around
TSS (i.e. the DPR regions which are located in the 26th bin
in the model CR-2) and focused on the sequence of +17 bp
to +35 bp relative to TSS. This region has been shown to be
crucial for transcription by, for example, analyzing gene ex-
pressions controlled by random sequences ( 5 ). We trained an-
other contextual regression model CR-7-S for this region on

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae055#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae055#supplementary-data
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Figure 2. ( A ) The average weighted features of seven groups of samples. Red and blue colors represent positive and negative contributions to the 
prediction, respectively. The TSS is located in the 35th bin (bin index from 0 to 51). ( B ) The motif numbers in each group and each bin position. In each 
figure, the top shows the sequence range and TSS location. Left shows the sample numbers and the average mRNA levels ( y ∧ = log 10 ( y + 0.1)). The 
groups are ordered by the descending order of average mRNA levels. ( C ) The distribution of correlations between the weighted features and the 
non-linear combination of CG content and H3K27ac signal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the synthetic dataset ( 5 ). The model structure was slightly ad-
justed ( Supplementary Figure S6 ). Instead of using the output
from three convolutional layers, the weight layer was mul-
tiplied with the one-hot-encoded layer, which let each node
in the weighted feature matrix correspond to each base. The
strides of max pooling layers were 2, 2, 2. The numbers of
neurons in the fully connected layers were 16, 2, 76. The Pear-
son correlations for the training and testing datasets are 0.896
and 0.836 respectively, indicating that the model successfully
captured the regulatory relationship between sequences and
gene expressions ( Supplementary Figure S7 ). As a compari-
son, we also used genomic sequences to train another model
CR-7-G for the same region. The Pearson correlations for the
training and testing datasets are only 0.486 and 0.483 respec-
tively ( Supplementary Figure S8 ). This observation suggests
that the genomic sequences of +17 bp to +35 bp only account
for a small portion of random sequences and are insufficient
for regulating transcription, highlighting the importance of se-
quences outside this region in the natural promoters in precise
control of gene expressions. 

We further analyzed the base preferences of the genomic
(CR -7-G) and synthetic (CR -7-S) datasets in DPR. As shown
in Supplementary Figure S15 , we counted the base frequencies
of sequences in DPR and compared them in the two groups
with the highest (red line) and lowest (blue line) one percent
of expression level. Overall, the genomic sequences have more
G and C than A and T consistently in all positions while the
synthetic sequences show larger fluctuation and some posi-
tions such as +30 have more A / T than C / G. Another striking
observation is that G is present at significantly higher percent-
age in synthetic sequences compared to genomic sequences.
Furthermore, the percentage profile of each base is also quite
different between the genomic and synthetic sequences. These
observations suggest that the genomic DPR sequences lack the
additional features included in the synthetic sequences to reg-
ulate gene expression, which is consistent with that CR-7-G
could not accurately predict gene expression levels using the
genomic DPR sequences. 
Promoter sequences are not equally important for 
regulating gene expression 

The weighted feature layer of CR-1 comprises 410 neurons,
corresponding to 52 bins, i.e. 8 neurons per bin. Before visu- 
alizing the features, the 8 weighted features belonging to each 

bin were summed together, resulting in weighted feature vec- 
tor 52 bins in length for each 10 500 bp promoter sequence.
The similar feature processing procedures were performed for 
CR -2 to CR -6, leading to 50-bin long weighted feature vec- 
tors for each 800 bp to 50 bp promoter sequence. The above 
six vectors were concatenated together resulting in 302-bin 

length weighted feature vector for each sequence. Next, we 
clustered all promoters into seven groups based on their 302- 
bin weighted feature vectors using the Ward linkage criterion 

( Supplementary Figure S9 ). Then, we calculated the average 
expression levels ( Supplementary Figure S10 ) and averaged 

weight features for the samples in each group (Figure 2 A,
Supplementary Figure S11 A, and Supplementary Figure S12 ).

Clearly, the promoter sequences are not equally predictive 
of gene expression (Figure 2 A) and several upstream regions 
show strong activating effects on transcription (positive con- 
textual weights), such as 0th, 3rd, 8th, 19th and 21st bins.
These stripes of high contextual weights suggest that these lo- 
cations have more contribution to the gene expression regula- 
tion than the other locations. The most prominent distinction 

between the highly and lowly expressed genes is in the bins 
next to TSS, consistent with the literature that these core pro- 
moter regions are crucial for transcriptional regulation. For 
the model with finer resolutions ( Supplementary Figure S11 A 

and Supplementary Figure S12 ), different promoter regions 
also exhibit different contributions to gene expression, which 

helps us gradually zoom in to key regions and eventually reach 

base-pair resolution. In the DPR sequences, most of positions 
show positive contributions especially for +20, reflecting its 
important ability of gene expression regulation. 

To find what sequence and chromatin features may con- 
tribute to the striping patterns of regulatory importance 
in promoters, we calculated the correlations between each 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae055#supplementary-data
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equence’s weighted features and several simple sequence
eatures including CG content, H3K27ac, H3K4me1 and
3K4me3. We used the random forest to perform non-linear

egressions and found the combination of CG content and
3K27ac from H1-hESC cell line had the high correlation to

he weighted feature (Figure 2 C, Supplemental Table S7 ). 

dentification of motifs and regulatory grammar of 
he promoters 

he largest contributions came from the bins around the TSS,
anging from activating to repressing transcription consistent
ith the gene expression levels. This result indicates that the
ajor sequence difference between variant groups is largely

round the TSS including the core promoter region. We used
he motif finding software STREME ( 36 ) to find motifs in each
roup and each 200 bp bin defined in model CR-1 (200 bp
rovided a sufficient segment for motif finding) with a p-value
utoff of 0.001 (Figure 2 B, Supplementary Figure S11 B for
R-2). We found 4003 motifs in total. To remove redundant
otifs, we used Tomtom ( 37 ) to determine the similarities be-

ween all pairs of motifs (Figure 3 A and B). Using a P -value
utoff of 10 

−5 , we extracted 76 unique motifs. 
We analyzed the distribution of these motifs accord-

ng to the groups or bins identified by our CR models
 Supplementary Table S5 and Table S6 ). There are 24 mo-
ifs preferred in the highly-expressed groups, in which 8 of
hem are TF-associated. On the other hand, there are 6 motifs
referred in the lowly-expressed groups, in which 3 of them
re TF-associated. In Table S6, we also noticed that there are
 exclusive motifs in the 34th and 35th positively-weighted
ins, indicating that they are strongly associated with activat-
ng gene expression. And there are 3 exclusive motifs in the
1st negatively-weighted bin, indicating that they are associ-
ted with repressing the gene expression. 

Then, we compared these 76 motifs with the known ones
n HOCOMOCO v11 ( 40 ) as well as the DNA motifs that
re associated with histone modifications (361 motifs) ( 41 ),
nd DNA methylation (313 motifs) ( 42 ) using Tomtom with
n E-value cutoff of 0.05 ( Supplemental Table S4 ). The 27
atched known motifs include TFs, such as well-known pro-
oter binding factors of TBP and TAF1 ( 43 ) as well as SP4

nd EGR1, which have been reported to regulate gene expres-
ion by binding to the CG rich promoters ( 44 ). The majority
55 motifs) of the 76 motifs matched with motifs associated
ith histone modifications (42 motifs) ( 41 ) and DNA methy-

ation (32 motifs) ( 42 ) (see details in Supplemental Table S4 ).
he matched histone motifs are associated with histone mod-

fications of H3K27ac, H3K27me3, H3K36me3, H3K4me1,
3K4me3 and H3K9me3. This observation highlights the im-
ortance of epigenetic modifications and the factors involved
n establishing or maintaining these modifications on regulat-
ng gene expression. 

Next, we investigated whether there is any distance con-
traint between the co-occurring motifs. We used FIMO ( 38 )
o find all motifs’ occurrence sites and calculated the co-
ine similarities with different lags for all pairs of motifs
 Supplementary Figure S13 ). For a pair of motifs, if their av-
rage cosine similarity is larger than 0.7 and co-occurrence
requency is larger than a quarter of the total sequence num-
ers in the group, they were considered to tend to co-occur.
igure 3 C–E and Supplementary Figure S16 show that these
otifs form three large communities in which the motifs are
densely connected to one another. The genome ontology term
enrichment analysis was performed by using GOMO for the
motifs in these three communities. We found that there are
two communities showing enriched GO terms. One of them
is associated with ‘translational elongation’ and ‘ribosome’,
and another is associated with ‘transcription’ (the full results
have been uploaded to GitHub). 

For the 64 pairs of motifs that show high cosine simi-
larity (Figure 3 C–E), we checked whether they tend to co-
occur with certain distance constraint. Figure 4 A shows that
more than half of them prefer to co-occur in the same
200 bp-bin and interestingly these bins avoid the region
around TSS ( Supplementary Figure S14 ). To further reveal
distance constraint rules on base-pair resolution, we checked
33 motif pairs preferring to co-occur in the same 200 bp-
bin. We found that most of the motif pairs do show pre-
ferred distance spacing between their occurrences (Figure 4 B,
Supplemental Table S8 ). For example, the distance between
motif 17 (AGTGC AR TGGYGYGA) and motif 41 (GCT-
C ACTGC AASCTC) prefers to be −20 bp (accounting for
96% of all the occurrences). Another example is motif 1
(CCA GCCTGGSCRA CA) and motif 2 (CCTCRGCCTCC-
CRAR) that mostly prefer to be 47 or 45 bp apart (accounting
for 42% of all the pairs). 

A trade-off between prediction accuracy and 

interpretability of deep-learning methods 

Compared with other deep-learning methods, such as En-
former ( 45 ), Expecto ( 46 ) and Basenji ( 47 ), the gene expres-
sion prediction correlations of CR models are slightly lower
(0.750, 0.709, 0.699 of CR-1 / 2 / 3 versus 0.85, 0.819, 0.85 of
Enformer, Expecto and Basenji), which is likely due to much
shorter input sequences to the CR models (10.5 kb promoter
sequences in CR-1, 800 bp in CR-2, and 400 bp in CR-3, while
200 kb in Enformer, 40 kb in Expecto, and 131 kb in Basenji to
consider both promoter and enhancer). However, our models
are interpretable and can uncover regulatory direction (active
or repressive) of promoter regions, key motifs and regulation
grammars such as motif cooperation and distance constraint
between motif sites. 

We also compared with other interpretable methods, such
as DeepLIFT ( 48 ) and GKMexplain ( 49 ) that can detect mo-
tifs. We have tested them by performing a clustering task based
on feature scores, as our CR models have done in Figure 2 ,
Supplementary Figure S10 , and Supplementary Figure S11 . As
shown in Supplementary Figure S17 , we found that DeepLIFT
failed to cluster sequences to different gene expression levels,
while GKMexplain cannot reach a higher prediction accuracy
using an SVM model. Additionally, both DeepLIFT and GK-
Mexplain are much slower than CR, and it is hard to use them
for larger database and longer sequences. 

Discussion 

In this study, we trained interpretable neural network models
based on the contextual regression (CR) framework. These
CR models can predict gene expression from DNA sequences
and reveal the key features by using the contextual weight.
Their interpretability is reflected in the identification of active
or repressive regions. This identification process can be done
on DNA sequences of varying lengths. Thus, we can not only
narrow down the region of performing motif extraction, but

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae055#supplementary-data
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Figure 3. ( A ) The hierarchical clustering of similarity vectors of 3667 motifs by using the Ward variance minimization algorithm. The red dashed line is 
the distance threshold of 1200. ( B ) The similarities between all pairs of motifs were calculated using Tomtom. ( C–E ) The motif communities for the 
samples in the group with the highest expression level. The whole version of the figure is shown in Supplementary Figure S13 . The layout was 
generated using the Fruchterman–Reingold force-directed algorithm and the width of the edge represents the cosine similarity score. 

Figure 4. ( A ) The lag distribution for the 64 co-occurring motif pairs. The numbers in red are the median values of the lag. The blue box includes the 25 
motif pairs that prefer to co-occur in the same 200 bp-bin. ( B ) The distance constraint for the 25 co-occurring motif pairs. The numbers in red are the 
median values of distances (bp). 

 

 

 

 

 

 

 

 

 

 

  
also analyze the active or repressive effect at the base level by
CR -7-G and CR -7-S, as shown in Supplementary Figure S15 .
The first model CR-1, with a resolution of 200 bp, found sev-
eral stripes that significantly contribute to gene expression lev-
els, either actively or repressively. These stripes are related to
the non-linear combination of CpG signals and H3K27ac sig-
nals. In particular, the regions around TSS show the most dis-
tinction between highly and lowly expressed genes. We thus
built higher resolution models (CR-2 to CR-6) zoomed into
the regions around TSS to illustrate the most important con-
tributing sequences. A repeating observation is that the pro-
moter sequences are not equally important for gene expres- 
sion, suggesting the importance of the underlying promoter 
sequences in regulating transcription. While the overall per- 
formance of our model is not as good as that reported in the 
literature, the difference is marginal. More importantly, this 
small sacrifice is made in exchange for a huge improvement in 

model interpretability. The CR model tells us the active or re- 
pressive regions, important motifs, and regulation grammars. 

By combining CR-1 to CR-6 models with increasing reso- 
lution, we found the promoter regions around TSS have the 
most distinction between highly and lowly expression genes.

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae055#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae055#supplementary-data
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sing the contextual weight profiles, we could cluster all the
enes into 7 groups with expression levels ranging from high
o low, suggesting that the contextual weight reflect the se-
uence features associated with transcriptional regulation. 
An interesting observation is that the CR-7-G model trained

n the genomic DPR regions (+17 bp to +35 bp relative to TSS)
ould not predict gene expression well while the gene expres-
ion levels of the synthetic DPR sequences could be accurately
redicted, suggesting the necessity of promoter sequences be-
ond the DPR in the genomic promoters on regulating tran-
cription. Our analysis revealed that the genomic and syn-
hetic sequences differ in multiple ways such as CG content
nd preference of certain bases in some positions, suggesting
ossible features lacked in the genomic DPRs for controlling
ene expression. 

We next discovered 76 unique motifs important for pre-
icting gene expression, among which 27 are matched with
nown TF motifs including those important for transcription
uch as TBP and TAF1. Interestingly, 55 out of the 76 mo-
ifs (72%) are matched with epigenetic motifs including 42
atched with histone associated motifs, and 32 with DNA
ethylation associated motifs. While the epigenetic motifs are

upposed to be associated with establishing or maintaining
pigenetic modifications and their importance in regulating
ene expression is not unexpected, their dominance in the 76
nique motifs is still surprising and encourages future studies
f the underlying mechanisms. 
Our analysis also revealed the motif combination grammars

ncluding three motif communities and distance constraint
ules. The three communities represent possible collaboration
etween a set of regulatory proteins. There are 64 pairs of
otifs with a high co-occurrence frequency, and about half
f them have preferred distance spacing in the same 200 bp-
in. This observation indicates strong cooperation between
he regulatory proteins binding to the promoters. 

ata availability 

he code and intermediate analysis data sets generated in this
tudy are available at GitHub ( https:// github.com/ swang066/
R- for- Promoter ), Zenodo ( https:// doi.org/ 10.5281/ zenodo.
1157639 ) and as Supplemental File. 

upplementary data 

upplementary Data are available at NARGAB online. 
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