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Abstract Studies in a variety of species have shown evidence for positively selected variants

introduced into a population via introgression from another, distantly related population—a

process known as adaptive introgression. However, there are few explicit frameworks for jointly

modelling introgression and positive selection, in order to detect these variants using genomic

sequence data. Here, we develop an approach based on convolutional neural networks (CNNs).

CNNs do not require the specification of an analytical model of allele frequency dynamics and have

outperformed alternative methods for classification and parameter estimation tasks in various areas

of population genetics. Thus, they are potentially well suited to the identification of adaptive

introgression. Using simulations, we trained CNNs on genotype matrices derived from genomes

sampled from the donor population, the recipient population and a related non-introgressed

population, in order to distinguish regions of the genome evolving under adaptive introgression

from those evolving neutrally or experiencing selective sweeps. Our CNN architecture exhibits 95%

accuracy on simulated data, even when the genomes are unphased, and accuracy decreases only

moderately in the presence of heterosis. As a proof of concept, we applied our trained CNNs to

human genomic datasets—both phased and unphased—to detect candidates for adaptive

introgression that shaped our evolutionary history.

Introduction
Ancient DNA studies have shown that human evolution during the Pleistocene was characterised by

numerous episodes of interbreeding between distantly related groups (Green et al., 2010;

Reich et al., 2010; Meyer et al., 2012; Prüfer et al., 2017; Kuhlwilm et al., 2016). We now know,

for example, that considerable portions of the modern human gene pool derive from Neanderthals

and Denisovans (Green et al., 2010; Reich et al., 2010; Prüfer et al., 2014). In the past few years,

several methods have been developed to identify regions of present-day or ancient human genomes

containing haplotypes that were introgressed from other groups of hominins. These include methods

based on probabilistic models (Sankararaman et al., 2014; Steinrücken et al., 2018; Racimo et al.,

2017a), on summary statistics (Vernot and Akey, 2014; Vernot et al., 2016; Racimo et al., 2017b;

Durvasula and Sankararaman, 2019) and on ancestral recombination graph reconstructions

(Kuhlwilm et al., 2016; Hubisz et al., 2020; Speidel et al., 2019). Presumably, some of the intro-

gressed material may have had fitness consequences in the recipient populations. While recent evi-

dence suggests that a large proportion of Neanderthal ancestry was likely negatively selected

(Harris and Nielsen, 2016; Juric et al., 2016), there is also support for positive selection on a

smaller proportion of the genome—a phenomenon known as adaptive introgression (AI)

(Whitney et al., 2006; Hawks and Cochran, 2006; Racimo et al., 2015).
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Figure 1. A schematic overview of how genomatnn detects adaptive introgression. We first simulate a

demographic history that includes introgression, such as Demographic Model A1 shown in (A), using the SLiM

engine in stdpopsim. Parameter values for this model are given in Appendix 3—table 1. Three distinct scenarios

are simulated for a given demographic model: neutral mutations only, a sweep in the recipient population, and

adaptive introgression. The tree sequence file from each simulation is converted into a genotype matrix for input

to the CNN. (B) shows a genotype matrix from an adaptive introgression simulation, where lighter pixels indicate a

higher density of minor alleles, and haplotypes within each population are sorted left-to-right by similarity to the

donor population (Nea). In this example, haplotype diversity is low in the recipient population (CEU), which closely

resembles the donor (Nea). Thousands of simulations are produced for each simulation scenario, and their

genotype matrices are used to train a binary-classification CNN (C). The CNN is trained to output Pr[AI], the

probability that the input matrix corresponds to adaptive introgression. Finally, the trained CNN is applied to

genotype matrices derived from a VCF/BCF file (D).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic overview of Demographic Model A1 and A2.

Figure supplement 2. Schematic overview of Demographic Model B.
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Genomic evidence for AI has been found in numerous other species, including butterflies (Pardo-

Diaz et al., 2012; Enciso-Romero et al., 2017), mosquitoes (Norris et al., 2015), hares

(Jones et al., 2018), poplars (Suarez-Gonzalez et al., 2016), and monkeyflowers (Hendrick et al.,

2016). A particularly striking example is AI in dogs, which appears to show strong parallels to AI in

humans when occupying the same environmental niches. For example, a variant of the gene EPAS1

has been shown to have introgressed from an archaic human population into the ancestors of Tibe-

tans, and subsequently risen in frequency in the latter population, as a consequence of positive

selection to high altitude (Huerta-Sánchez et al., 2014). A different high-frequency EPAS1 variant is

also uniquely found in Tibetan Mastiffs, and appears to also have introgressed into this gene pool

via admixture with a different species, in this case Tibetan wolves (Miao et al., 2017), likely due to

the same selective pressures.

To detect AI, researchers can look for regions of the genome with a particularly high frequency of

introgressed haplotypes from a donor species or population into a recipient species or population.

These haplotypes are often detected assuming neutrality of archaic alleles since the introgression

event (Vernot et al., 2016; Vernot and Akey, 2014; Sankararaman et al., 2016). Other studies

have designed statistics that are sensitive to characteristic patterns left by AI, using simulations

incorporating both admixture and selection (Gittelman et al., 2016; Racimo et al., 2017b). More

recently, Setter et al., 2020 developed a likelihood framework to look for local alterations to the

site frequency spectrum that are consistent with adaptive introgression, using only data from the

recipient species. The main challenge that these studies face is that it is hard to jointly model selec-

tion from material introduced via admixture (Racimo et al., 2015).

To overcome the need to compress data into summary statistics (which might miss important fea-

tures), deep learning techniques are increasingly becoming a popular solution to address problems

in population genetics. These problems include the inference of demographic histories

(Sheehan and Song, 2016; Flagel et al., 2019; Villanea and Schraiber, 2019; Mondal et al., 2019;

Sanchez et al., 2021), admixture (Blischak et al., 2021), recombination (Chan et al., 2018;

Flagel et al., 2019; Adrion et al., 2020b), and natural selection (Schrider and Kern, 2018;

Sheehan and Song, 2016; Torada et al., 2019; Isildak et al., 2021). Deep learning is a branch of

machine learning that relies on algorithms structured as multi-layered networks, which are trained

using known relationships between the input data and the desired output. They can be used for clas-

sification, prediction, or data compression (Aggarwal, 2018). Among the techniques in this field,

convolutional neural networks (CNNs) are a family of methods originally designed for image recogni-

tion and segmentation (LeCun and Bengio, 1995; Krizhevsky et al., 2012), which have been

recently applied to population genetic data (Chan et al., 2018; Flagel et al., 2019; Torada et al.,

2019; Isildak et al., 2021; Blischak et al., 2021; Sanchez et al., 2021). A CNN can learn complex

spatial patterns from large datasets that may be informative for classification or prediction, using a

series of linear operations known as convolutions, to compress the data into features that are useful

for inference.

Despite the recent advances in deep learning for population genetics, no dedicated attempts

have been made to identify AI from population genomic data. Here, we develop a deep learning

method called genomatnn that jointly models archaic admixture and positive selection, in order to

identify regions of the genome under adaptive introgression. We trained a CNN to learn relevant

features directly from a genotype matrix at a candidate region, containing data from the donor pop-

ulation, the recipient population and a unadmixed outgroup. The method has >88% precision to

detect AI and is effective on both ancient and recently selected introgressed haplotypes. We then

applied our method to population genomic datasets where the donor population is either Neander-

thals or Denisovans and the recipient populations are Europeans or Melanesians, respectively. In

each case, we used the Yoruba population as a unadmixed outgroup and we were able to both

recover previously identified AI regions and unveil new candidates for AI in human history.

Results

A CNN for detecting adaptive introgression
We assume we have sequence data from multiple populations: the donor population and the recipi-

ent population in an admixture event, as well as an unadmixed population that is a sister group to
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the recipient (Figure 1). Our method relies on partitioning the genomes into windows, which we

chose to be 100 kbp in size. For each window, we constructed an n� m matrix, where n corresponds

to the number of haplotypes (or diploid genotypes, for unphased data) and m correspond to a set of

equally sized bins along the genomic length of the window. Each matrix entry contains the count of

minor alleles in an individual’s haplotype (or diploid genotype) in a given bin. Within each popula-

tion, we sorted these pseudo-haplotypes (or genotypes) according to similarity to the donor popula-

tion, and concatenated the matrices for each of the populations into a single pseudo-genotype

matrix (Figure 1).

We designed a CNN (Figure 1) that takes this concatenated matrix as input to distinguish

between adaptive introgression scenarios and other types of neutral or selection scenarios. The

CNN was trained using simulations, and uses a series of convolution layers with successively smaller

outputs, to extract increasingly higher level features of the genotype matrices—features which are

simultaneously informative of introgression and selection. The CNN outputs the probability that the

input matrix comes from a genomic region that underwent adaptive introgression. As our simula-

tions used a wide range of selection coefficients and times of selection onset, the network does not

assume these parameters are known a priori, and is able to detect complete or incomplete sweeps

at any time after gene flow.

Our method has several innovative features relative to previous population genetic implementa-

tions of CNNs (described extensively in the Materials and methods section). For example, when

loading the genotype matrices as input, we implemented an image resizing scheme that leads to

fast training times, while avoiding the drawbacks of similar methods (Torada et al., 2019), by pre-

serving inter-allele distances and thus the local density of segregating sites. Additionally, instead of

using pooling layers, we used a 2 � 2 step size when performing convolutions. This has the same

effect as pooling, in that the output size of the layer is smaller than the input, so the accuracy of the

model is comparable to traditional implementations of CNNs, but it has a much lower computational

burden (Springenberg et al., 2015).

Furthermore, we incorporated a framework to visualise the features of the input data that draw

the most attention from the CNN, by plotting saliency maps (Simonyan et al., 2014). Saliency maps

can help to understand which regions of the genotype matrix contribute the most towards the CNN

prediction score.

We also provide downloadable pre-trained CNNs as well as a pipeline for training new CNNs

(see Materials and methods). These interface with a new selection module that we designed and

incorporated into the stdpopsim framework (Adrion et al., 2020a), using the forwards-in-time simu-

lator SLiM (Haller and Messer, 2019). We believe this will facilitate the application of the method to

other datasets, allowing users to modify its parameters according to the specific requirements of the

biological system under study.

Performance on simulations
We aimed to assess the performance of our method on simulations. We performed simulations

under two main demographic models:

. Demographic Model A1: a three-population model including an African, a European and a
Neanderthal population, with Neanderthal gene flow into Europeans (Figure 1 and Figure 1—
figure supplement 1)

. Demographic Model B: a more complex model, including an African, a Melanesian, a Neander-
thal and a Denisovan population, with two pulses of Denisovan gene flow into Melanesians,
plus Neanderthal gene flow into non-Africans, based on Jacobs et al., 2019 (Figure 1—figure
supplement 2).

When training a CNN on Demographic Model A1 using phased data, we obtained a precision of

90.2% (the proportion of AI predictions that were AI simulations) and 97.9% negative predictive

value (NPV; the proportion of ‘not-AI’ predictions that were either neutral or sweep simulations) (Fig-

ure 2). The network output higher probabilities for AI simulations with larger selection coefficients,

and for older times of onset of selection. We also observed that the network falsely classified neutral

simulations as AI more frequently than it falsely classified sweep simulations. When the CNN was

trained on this same demographic model assuming genotypes were unphased, the results were very

similar, with 88.1% precision and 98.7% NPV.
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When training a CNN on Demographic Model B (assuming unphased genotypes, as accurately

phased data are not readily available for Melanesian genomes), we obtained 88.8% precision and

82.5% NPV (Figure 2—figure supplement 1). We note here that the network had greater precision

when detecting AI derived from the more ancient pulse of Denisovan gene flow than the younger

pulse.

Kim et al., 2018 and Zhang et al., 2020 recently suggested that introduced genetic material can

mask deleterious recessive variation and produce a signal very similar to adaptive introgression. To

assess whether heterosis following introgression affects the false positive rates in our CNN, we simu-

lated a distribution of fitness effects (DFE) with recessive dominance for 70% of derived mutations

(the rest were simulated as neutral), and found this only slightly increases the false positive rate

(Figure 2).

A. Confusion matrix B. True positive rate / recall

C

Figure 2. CNN performance on validation simulations for Demographic Model A. The CNN was trained using only

AI simulations with selected mutation having allele frequency >0.25. (A) Confusion matrix. For the two prediction

categories, either ’not AI’ or AI, we show the proportion attributed to each of the true (simulated) scenarios. (B)

Average CNN prediction for AI scenarios, binned by selection coefficient, s, and time of onset of selection Tsel. (C)

ROC curves, precision-recall curves and MCC-F1 curves. The positive condition is AI. The negative conditions are

shown using different line styles/colours. The circles indicate the point in ROC-space (respectively Precision-Recall-

space, and MCC-F1-space) when using the threshold Pr[AI]>0.5 for classifying a genotype matrix as AI. DFE:

distribution of fitness effects. TP: true positives; FP: false positives; TN: true negatives; FN: false negatives; TPR:

true positive rate; FPR: false positive rate; ROC: Receiver operating characteristics; MCC: Mathews correlation

coefficient; F1: harmonic mean of precision and recall.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Performance evaluation for Demographic Model B.

Figure supplement 2. Comparison to other methods and performance evaluation with misspecified demographic
models.
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MCC-F1 curve
While precision, recall, and false positive rate are informative, these each consider only two of the

four cells in a confusion matrix (true positives, true negatives, false positives, false negatives), and

may produce a distorted view of performance with imbalanced datasets (Chicco, 2017). To obtain a

more robust performance assessment, we plotted the Matthews correlation coefficient (MCC; Mat-

thews, 1975) against F1-score (the harmonic mean of precision and recall) for false-positive-rate

thresholds from 0 to 100 (Figure 2, Figure 2—figure supplement 1, Figure 2—figure supplement

2), as recently suggested by Cao et al., 2020. MCC produces low scores unless a classifier has good

performance in all four confusion matrix cells, and also accounts for class imbalance. In MCC-F1
space, the point (1, 1) indicates perfect predictions, and values of 0.5 for the (unit-normalised) MCC

indicate random guessing. These results confirm our earlier findings, that the CNN performance is

excellent for Demographic Model A1 when considering either neutral and sweep simulations as the

condition negative, and performance decreases slightly when DFE simulations are the negative con-

dition (Figure 2). Furthermore, the CNN performance is not as good for Demographic Model B, but

this is unlikely to be caused by using unphased genotypes (Figure 2—figure supplement 1 and Fig-

ure 2—figure supplement 2).

Comparison to other methods
We compared the performance of our CNN to VolcanoFinder (Setter et al., 2020), which scans

genomes of the recipient population for patterns of diversity indicative of AI using a coalescent-

based model of adaptive introgression (Figure 2—figure supplement 2). However, this method

only incorporates information from a single population and is designed to detect ’ghost’ introgres-

sion in cases where the source is not available. VolcanoFinder performed poorly for the demographic

models considered here—in some cases, worse than guessing randomly. We also compared our

CNN to an outlier-based approach for a range of summary statistics that are sensitive to AI

(Racimo et al., 2017b). Our CNN is closest to a perfect MCC-F1 score for Demographic model A1

and B, closely followed by the Q95(1%, 100%) and then U(1%, 20%, 100%) statistics developed in

Racimo et al., 2017b.

Demographic model misspecification
We then tested robustness to demographic misspecification, by evaluating the CNN trained on

Demographic Model A1 against simulations for two other demographic models (Figure 2—figure

supplement 2). We considered weak misspecification, where the true demographic history is similar

to Demographic Model A1 but also includes archaic admixture within Africa following Ragsdale and

Gravel, 2019 (Demographic Model A2; Figure 1—figure supplement 1). This resulted in only a

small performance reduction. We also considered strong misspecification, where the true demo-

graphic history is Demographic Model B. As there are more Melanesian individuals than European

individuals in our simulations (because we aimed to mimic the real number of genomes available in

our data analysis below), we downsampled the Melanesian genomes to match the number of Euro-

pean genomes, so as to perform a fair misspecification comparison. In this case, the performance of

the CNN was noticeably worse than that of the summary statistics, but still better than Volcano-

Finder. We note that the summary statistics performance decreased also, to match their perfor-

mance for the correctly-specified assessments on Demographic Model B. Interestingly, we found

that the Q95(1%, 100%) statistic was the most robust method for both cases of misspecification.

Network attention
To understand which features of the input matrices were used by the CNN to make its predictions,

we constructed saliency maps (Simonyan et al., 2014). This technique works by computing the gra-

dient of a network’s output with respect to a single input. Thus, highlighted regions from the

saliency map indicate where small changes in the input matrix have a relatively large influence over

the CNN output prediction.

We calculated an average saliency map for each simulation scenario (neutral, sweep, or AI), for a

CNN trained on Demographic Model A1 (Figure 3). Our results show that when the network was

presented with an AI matrix, it focused most of the attention on the Neanderthal and European hap-

lotypes, rather than on the African haplotypes. In non-AI scenarios, the network focused sharply on
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the Neanderthal and left-most European haplotypes. The saliency maps also show a concentration

of attention in the central region of the genomic window, closer to where the selected mutation was

drawn (even though this mutation does not exist in neutral simulations, and was removed from

sweep and AI simulations before constructing genotype matrices; see Methods). We also note a

periodic vertical banding pattern in the saliency maps, corresponding to the filter width for the con-

volution layers.

Calibration
We implemented a score calibration scheme to account for the fact that our simulation categories

(neutrality, sweep, and AI) will be highly imbalanced in real data applications (Guo et al., 2017;

Kull et al., 2017). CNN classifiers sometimes produce improperly calibrated probabilities

(Guo et al., 2017). In our case, this occurs because the proportion of each category is not known in

reality, and thus does not match the simulated proportion. For this reason, we fitted our calibration

procedure using training data resampled with various ratios of neutral:sweep:AI simulations (Fig-

ure 4). We tested different calibration methods by fitting the calibrator to the training dataset, and

inspecting reliability plots and the sum of residuals on a validation dataset (see

Materials and methods, Figure 4—figure supplement 1, Figure 4—figure supplement 2, Fig-

ure 4—figure supplement 3, Figure 4—figure supplement 4). When the probabilities are cali-

brated for even class ratios, Manhattan plots show a large number of high probability candidates

across the genome, which obscure the strongest peaks (Figure 4). However, once calibrated for

class ratios that are skewed towards the neutral class, strong candidates for AI become more

apparent.

Figure 3. Saliency maps, showing the CNN’s attention across the input matrices for each simulated scenario,

calculated for the CNN trained on Demographic Model A, filtered for beneficial allele frequency >0.25. Each

panel shows the average gradient over 300 input matrices encoding either neutral (top), sweep (middle), or AI

(bottom) simulations. Pink/purple colours indicate larger gradients, where small changes in the genotype matrix

have a relatively larger influence over the CNN’s prediction. Columns in the input matrix correspond to haplotypes

from the populations labelled at the bottom.
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A. Model A1, AF> 5%,

ratios 1:1:1

B. Model A1, AF> 5%,

ratios 1:0.1:0.1

C. Model A1, AF> 5%,

ratios 1:0.1:0.02

D. Model A1, AF> 25%,

ratios 1:1:1

E. Model A1, AF> 25%,

ratios 1:0.1:0.1

F. Model A1, AF> 25%,

ratios 1:0.1:0.02

G. Model B, AF> 5%,

ratios 1:1:1

H. Model B, AF> 5%,

ratios 1:0.1:0.1

I. Model B, AF> 5%,

ratios 1:0.1:0.02

J. Model B, AF> 25%,

ratios 1:1:1

K. Model B, AF> 25%,

ratios 1:0.1:0.1

L. Model B, AF> 25%,

ratios 1:0.1:0.02

Figure 4. Comparison of Manhattan plots using beta-calibrated output probabilities for different class ratios.

Each row indicates a single CNN, with equivalent data filtering. Each column indicates different class ratios used

for calibration (Neutral:Sweep:AI). AF = Minimum beneficial allele frequency.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Reliability plots for Demographic Model A1 with AF > 5%.

Figure supplement 2. Reliability plots for Demographic Model A1 with AF > 25%.

Figure 4 continued on next page
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Candidates for Neanderthal adaptive introgression in European
genomes
We applied our method to a combined genomic panel of archaic hominins (Prüfer et al., 2017;

Meyer et al., 2012) and present-day humans (The 1000 Auton et al., 2015; Jacobs et al., 2019), to

look for regions of the genome where Non-African humans show signatures of AI from archaic homi-

nins. First, we looked for Neanderthal introgression into the ancestors of Northwestern Europeans

(CEU panel), using Yoruba Africans (YRI panel) as the unadmixed sister population. To give the net-

work the best chance of avoiding false positives, we tried two different beneficial-allele frequency

cutoffs for training: 5% and 25% (Table 1 and Appendix 1—table 1).

We focus here on describing the results from the 25% condition (Figure 5 and Appendix 4). We

found several candidate genes for AI that have been reported before (Sankararaman et al., 2014;

Vernot and Akey, 2014; Gittelman et al., 2016; Racimo et al., 2017b), including BNC2, KCNQ2/

EEF1A2 WRD88/GPATCH1 and TANC1. Notably, the candidate region we identify on chromosome

2 around TANC1 extends farther downstream of this gene, also overlapping BAZ2B (Appendix 4—

figure 3). This codes for a protein related to chromatin remodelling, and may have a role in tran-

scriptional activation. Mutations in BAZ2B have recently been associated with neurodevelopmental

disorders, including developmental delay, autism spectrum disorder and intellectual disability

(Scott et al., 2020).

Additionally, we found two novel candidates for AI that have not been previously reported, span-

ning the regions chr6:28.18 Mb–28.32 Mb (Appendix 4—figure 7) and chr20:62.1 Mb–62.28 Mb

(Appendix 4—figure 13), including multiple genes encoding zinc finger proteins. UK-biobank Phe-

WAS associations (Canela-Xandri et al., 2018) suggest both regions generally affect phenotypes

Figure 4 continued

Figure supplement 3. Reliability plots for Demographic Model B with AF > 5%.

Figure supplement 4. Reliability plots for Demographic Model B with AF > 25%.

Table 1. Top ranking gene candidates corresponding to Neanderthal AI in Europeans.

We show genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals.

Adjacent intervals have been merged. The CNN was trained using only AI simulations with selected

mutation having allele frequency >0.25, and subsequently calibrated with resampled neutral:sweep:AI

ratios of 1:0.1:0.02.

Chrom Start End Genes

1 104500001 104600000

2 109360001 109460000 LIMS1; RANBP2; CCDC138; EDAR

2 160160001 160280000 TANC1; WDSUB1; BAZ2B

3 114480001 114620000 ZBTB20

4 54240001 54340000 SCFD2; FIP1L1; LNX1

5 39220001 39320000 FYB; C9; DAB2

6 28180001 28320000 ZSCAN16-AS1; ZSCAN16; ZKSCAN8; ZSCAN9; ZKSCAN4; NKAPL; PGBD1;
ZSCAN31; ZKSCAN3; ZSCAN12; ZSCAN23

8 143440001 143560000 TSNARE1; BAI1

9 16700001 16820000 BNC2

12 85780001 85880000 ALX1

19 20220001 20380000 ZNF682; ZNF90; ZNF486

19 33580001 33740000 RHPN2; GPATCH1; WDR88; LRP3; SLC7A10

20 62100001 62280000 CHRNA4; KCNQ2; EEF1A2; PPDPF; PTK6; SRMS; C20orf195; HELZ2; GMEB2;
STMN3; RTEL1; TNFRSF6B; ARFRP1; ZGPAT; LIME1; SLC2A4RG; ZBTB46

21 25840001 25940000
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related to blood, including platelet, erythrocyte and leukocyte counts (at the p<10�8 association

level, the chr6 region has 91 hits, while the chr20 region has 19, with 10 of these traits in common).

Candidates for Denisovan adaptive introgression in Melanesian
genomes
We then looked for Denisovan AI in Melanesian genomes from the IGDP panel (Jacobs et al.,

2019), also considering Yoruba Africans as the unadmixed sister group, and using two different ben-

eficial-allele frequency cutoffs for training: 5% and 25% (Table 2 and Appendix 1—table 2).

Again, we focus on describing the results from the 25% condition (Figure 6 and Appendix 5)

Among the top candidates, we found a previously reported candidate for AI in Melanesians:

TNFAIP3 (Vernot et al., 2016; Gittelman et al., 2016). Denisovan substitutions carried by the intro-

gressed haplotype in this gene have been found to enhance the immune response by tuning the

phosphorylation of the encoded A20 protein, which is an immune response inhibitor (Zammit et al.,

2019).

We found evidence for Denisovan AI in Melanesians at several other candidate regions. A few of

these regions (or contiguous regions) were previously reported by Sankararaman et al., 2016 but

not extensively described, possibly because the previously reported sections of those regions

deemed to be introgressed were intergenic. One of the regions with strong evidence for AI

(chr7:25.1 Mb–25.2 Mb; Appendix 5—figure 8) overlaps the CYCS gene. This gene codes for cyto-

chrome C: a small heme protein that plays a crucial role in the electron transport chain in mitochon-

dria, and has been associated with various blood-related diseases, like thrombocytopenia

(Morison et al., 2008; De Rocco et al., 2014; Uchiyama et al., 2018). Another top candidate

region (chr12:108.24–108.34 Mb, Appendix 5—figure 13) is upstream of PRDM4 and ASCL4. The

former gene codes for a transcription factor that may be involved in the nerve growth factor cell sur-

vival pathway and might play a role in tumour suppression (Yang and Huang, 1999). The latter gene

codes for a different transcription factor that may be involved in skin development (Jonsson et al.,

2004).

We detected signatures of Denisovan AI in a region in chromosome 3 near SUMF1 and LRNN1

(Appendix 5—figure 2), which was also identified in Jacobs et al., 2019. SUMF1 codes for an

Figure 5. Application of the trained CNN to the Vindija and Altai Neanderthals, and 1000 genomes populations

YRI and CEU. The CNN was applied to overlapping 100 kbp windows, moving along the chromosome in steps of

size 20 kbp. The CNN was trained using only AI simulations with selected mutation having allele frequency > 25%,

and subsequently calibrated with resampled neutral:sweep:AI ratios of 1:0.1:0.02.
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enzyme involved in the hydrolysis of sulfate esters, which has been associated with sulfatase defi-

ciency (Cosma et al., 2003). LRNN1 encodes a protein involved in neuronal differentiation, which

has been associated with neuroblastoma and Alzheimer’s disease (Bai et al., 2014; Hossain et al.,

2012). Another candidate region is in chromosome 7 and is upstream of SFRP4 (Appendix 5—fig-

ure 9), which encodes a protein associated with diabetes (Mahdi et al., 2012) and Pyle’s disease

(Kiper et al., 2016). Moreover, there is also a candidate region upstream of RAB27A, in chromo-

some 15 (Appendix 5—figure 18). Mutations in this gene cause Griscelli syndrome, which results in

pigmentary dilution in the hair and skin, as well as melanosome accumulation in melanocytes

(Ménasché et al., 2000). Finally, we found evidence for Denisovan AI in two nearby regions in chro-

mosome 14 (Appendix 5—figure 15 and Appendix 5—figure 16). One of these overlaps with

PRKCH—encoding a protein kinase associated with cerebral infarction (Kubo et al., 2007). The

other overlaps with KCNH5—coding for a potassium channel that may be associated with epileptic

encephalopathy (Veeramah et al., 2013).

Discussion
We have developed a new method to detect adaptive introgression along the genome using convo-

lutional neural networks. The method has high precision when reporting candidate AI loci, and high

negative predictive value when rejecting loci as not-AI: we obtain greater than 90% accuracy under

a variety of different selection scenarios (Appendix 2—table 1), with low false positive rates.

Table 2. Top ranking gene candidates corresponding to Denisovan AI in Melanesians.

We show genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals.

Adjacent intervals have been merged. The CNN was trained using only AI simulations with selected

mutation having allele frequency >0.25, and subsequently calibrated with resampled neutral:sweep:AI

ratios of 1:0.1:0.02.

Chrom Start End Genes

2 129960001 130060000

3 3740001 3840000 SUMF1; LRRN1

4 41980001 42080000 TMEM33; DCAF4L1; SLC30A9; BEND4

5 420001 520000 PDCD6; AHRR; C5orf55; EXOC3; CTD-2228K2.5; SLC9A3; CEP72

6 74640001 74740000

6 81960001 82060000

6 137920001 138120000 TNFAIP3

7 25100001 25200000 OSBPL3; CYCS; C7orf31; NPVF

7 38020001 38120000 EPDR1; NME8; SFRP4; STARD3NL

7 121160001 121260000

8 3040001 3140000 CSMD1

12 84640001 84740000

12 108240001 108340000 PRDM4; ASCL4

12 114020001 114280000 RBM19

14 61860001 61960000 PRKCH

14 63120001 63220000 KCNH5

14 96700001 96820000 BDKRB2; BDKRB1; ATG2B; GSKIP; AK7

15 55260001 55400000 RSL24D1; RAB27A

16 62600001 62700000

16 78360001 78460000 WWOX

18 22060001 22160000 OSBPL1A; IMPACT; HRH4

22 19040001 19140000 DGCR5; DGCR2; DGCR14; TSSK2; GSC2; SLC25A1; CLTCL1
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As reported previously (Kim et al., 2018; Zhang et al., 2020), heterosis following introgression

can produce patterns very similar to AI, and we found this can inflate false positive detection of AI

by our CNN to a small extent. However, we simulated a DFE with recessive dominance for all muta-

tions, which is not realistic in general, so our results in this regard represent a worst-case scenario. A

possible future improvement would be to train the CNN on simulations incorporating heterosis. We

did not attempt this here because realistic DFE simulations represent a substantial computational

burden.

When the demographic model is correctly specified, our CNN performed better than using sum-

mary statistics, although the Q95(1%, 100%) statistic (Racimo et al., 2017b) also performed remark-

ably well. This statistic captures high-frequency derived alleles that are shared between the donor

and recipient population, to the exclusion of a non-introgressed sister population—intuitively, these

are the same features we expect our CNN to be learning. Because of its relative robustness to

model misspecification, an outlier approach based on Q95 may be a better choice than our CNN

when there is uncertainty regarding the demographic history of the study system. We also found

that VolcanoFinder performed very poorly across all our tests, but this is arguably an unfair compari-

son because it only incorporates information from a single population, and Setter et al., 2020 them-

selves found that their method has low sensitivity when the donor population split from the recipient

population recently (on the order of N generations ago for Neanderthals/Denisovans and humans).

The CNN took approximately 15 min to train on one NVIDIA Tesla T4 GPU, which amounts to 60

CPU hours for an equivalent CPU-only training procedure. All data were loaded into memory, which

required approximately 120 GB RAM during training. The computational bottleneck lay in the gener-

ation of SLiM forward simulations: 300,000 simulations took approximately 80 weeks of CPU time for

each of demographic models A1 and B. In the future, considerable speedups could potentially be

obtained by optimising the simulation step, perhaps by implementing an adaptive introgression sim-

ulation framework that takes advantage of the backwards coalescent (e.g. building on the work by

Setter et al., 2020).

We applied the method to human data, to look for adaptive introgression from archaic humans

into the ancestors of present-day human genomes. When looking for Neanderthal AI in European

genomes, we found previously reported candidate genes (BNC2, WRD88/GPATCH1, KCNQ2/

EEF1A2, TANC1/BAZ2B). We also recovered candidates for adaptive introgression from Denisovans

Figure 6. Application of the trained CNN to the Altai Denisovan and Altai Neanderthal, 1000 genomes YRI

populations, and IGDP Melanesians. The CNN was applied to overlapping 100 kbp windows, moving along the

chromosome in steps of size 20 kbp. The CNN was trained using only AI simulations with selected mutation

having allele frequency > 25%, and subsequently calibrated with resampled neutral:sweep:AI ratios of 1:0.1:0.02.
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by applying our method to unphased Melanesian genomes. The top candidates include TNFAIP3,

which has been reported before, but also include other, novel regions, containing genes involved in

blood diseases (CYCS), neurological diseases (PRKCH, KCNH5, LRNN1), metabolism (SFRP4,

SUMF1), and skin development (ASCL4, RAB27A).

We note, however, that, as with previous methods, visual inspection of the haplotypes or geno-

types of the top candidate regions remains a necessary criterion to accurately assess whether a

region may have been under adaptive introgression. For example, in the scans we performed, we

found a few candidate regions for Neanderthal AI in Europeans that are likely to be false positives,

for example chr2:109360001–109460000 (Appendix 4—figure 2); chr4:54240001–54340000

(Appendix 4—figure 5); chr8:143440001–143560000 (Appendix 4—figure 8). These appear to be

the result of shared ancestral variation between European and African populations, and yet are clas-

sified as having high probability of being under AI. These regions also appear to be generally low in

diversity, which is possibly a result of data missingness rather than low diversity per se. Thus, our

method allows for a rapid scan and prioritisation of potential targets, but these need to be further

assessed with care. Inclusion of more complex selection scenarios, involving positive or balancing

selection on ancestral variation, as well as linked selection, might serve to ameliorate the rate of false

positives in the future. Furthermore, our simulation procedure does not model genotype errors or

variation in data missingness. Not explicitly accounting for this may negatively impact the robustness

of the minor allele density computation and the subsequent haplotype sorting procedure, and, in

turn, affect the accuracy of the CNN.

Conversely, there may be regions under AI that are classified as highly probable by the CNN, but

that did not appear in our top candidates. Validating a large number of candidates might be diffi-

cult, but one could imagine running a differently trained CNN (perhaps one better tailored to distin-

guish AI from more similar scenarios, like selection on shared ancestral variation) on the subset of

the regions that are predicted to be AI using a lenient probability cutoff. One could also use our

method more generally, to assess the impact of AI across the genome, by comparing the distribu-

tion of probability scores with those of simulation scenarios under different amounts of admixture

and selection, though in that case one would need to train the CNN on a wider range of admixture

rates and demographic models.

The performance of our method necessarily depends upon the demographic history of the popu-

lations involved. We found it more challenging to detect AI when the timing of gene flow is younger

or the introgressing population is more diverged from the panel that is used to represent it. This is

apparent when comparing results for the Neanderthal-into-European demographic scenario and the

Denisovan-into-Melanesian demographic scenario. In the former, gene flow is older (~55 kya versus

~50 kya and ~30 kya) (Sankararaman et al., 2016; Jacobs et al., 2019) and sequences are available

for a population closely related to the putative source, which increases power. Furthermore, for the

two putative pulses of Denisovan gene flow (Jacobs et al., 2019), we find our model has greater

recall with AI for the more ancient pulse (94% versus 83.6%; Figure 2—figure supplement 1), likely

because haplotypes from the older pulse have more time to rise in frequency. Similarly, recall is

diminished when the onset of selection is more recent. We also found that distinguishing AI from a

selective sweep (hard or soft), is relatively easier than distinguishing AI from neutral variation.

Our method requires sequencing data from the population from which the introgression event

originated. This may be problematic in cases where the source of introgression may be distantly

related to the population genomic panel that is used to represent it. Future work could involve

developing a CNN that can detect adaptive introgression from a ghost (unsampled) population, for

cases in which genomic data from the source is unavailable (e.g. see Setter et al., 2020).

The method can take either phased or unphased data as input. This flexibility allows for its appli-

cation to a range of study systems in the future, in which phasing may not be financially or methodo-

logically feasible. It does, however, require called genotypes and is therefore not yet suitable for

genomes sequenced at low coverage. One could envision extending the framework developed here

to low-coverage genomes by working with matrices of genotype likelihoods (Korneliussen et al.,

2014) rather than matrices of genotypes or haplotypes. Flagel et al., 2019, for example, developed

a CNN to infer recombination rates in tetraploids without genotype calls, using read pileup informa-

tion. A CNN could learn the relationship between observed read counts or genotype likelihoods

under a given adaptive introgression scenario and the model parameters that can generate that

data, but we leave that to a future work.
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Future studies could also address the fact that we must use simulations to train the network,

which involves an implicit amount of supervision by the user. The range of parameters and models

that are simulated during training are necessarily specified a priori, and misspecification can nega-

tively affect CNN performance. Progress in this regard could involve the use of generative adversar-

ial networks (GANs), which appears to be a fruitful way to address this. Indeed, recent work

suggests that one can train a GAN to learn to generate realistic population genomic data for any

population (Wang et al., 2020).

The attention analyses performed here allowed only a posteriori reasoning on how the network

learned to predict AI, so further work is needed in this area. For instance, interpretability of neural

networks can be assessed using symbolic metamodelling (Alaa and van der Schaar, 2019) with rein-

forcement learning algorithms deployed to identify the subset of most informative features of input

data (Yoon et al., 2019). In this context, such approaches should be able to pinpoint the important

characteristics of genomic data, and possibly derive more informative summary statistics to predict

complex evolutionary events.

In summary, we have shown that CNNs are a powerful approach to detecting adaptive introgres-

sion and can recover both known and novel selection candidates that were introduced via admixture.

As in previous applications to other problems in the field (Sheehan and Song, 2016; Flagel et al.,

2019; Schrider and Kern, 2018; Villanea and Schraiber, 2019; Mondal et al., 2019; Torada et al.,

2019; Isildak et al., 2021), this exemplifies how deep learning can serve as a very powerful tool for

population genetic inference. This type of technique may thus be a useful resource for future studies

aiming to unravel our past history and that of other species, as statistical methodologies and compu-

tational resources continue to improve.

Materials and methods

Simulations
For CNN training, we performed simulations under three scenarios: neutral mutations only; positive

selection of a de novo mutation in the recipient population (selective sweep); and positive selection

of a derived mutation that was transferred via gene flow from the donor population to the recipient

population (adaptive introgression, AI). In the sweep and AI scenarios, the selection coefficient was

drawn log-uniformly from between 0.0001 and 0.1 for Europeans and between 0.001 and 0.1 for

Melanesians (in the latter case, very few selected alleles survive with a very small selection coeffi-

cient, so we narrowed the range to reduce computational burden). The uniformly distributed time of

mutation was decoupled from the uniformly distributed time of selection onset, thus allowing for

soft sweeps (Hermisson and Pennings, 2005). For the selective sweep scenario, the mutation and

selection times could occur at any time older than 1 kya but more recent than the split between the

recipient population and its unadmixed sister population, with the constraint that the mutation must

be introduced before the onset of selection. For the AI scenario, a neutrally evolving mutation was

introduced to the donor population any time more recent than the split between the donor and the

ancestor of recipient and unadmixed sister population, but older than 1 kya before the introgression

event. Then, this mutation was transmitted to the recipient population, whereupon selection could

start to act on it at any time after introgression but before 1 kya.

We further evaluated our Demographic Model A1 CNNs using an additional 10,000 simulations

that incorporated a DFE using the parameters estimated for Europeans in Kim et al., 2017 and used

in Kim et al., 2018. We considered two mutation types: 30% neutral and 70% deleterious. The dele-

terious portion of introduced mutations had a selection coefficient drawn from a reflected gamma

distribution with shape parameter 0.186, and expected value �0.01314833. We approximated the

dominance scheme from Kim et al., 2018, using a fixed dominance coefficient for deleterious muta-

tions of 0:5=ð1� 7071:07 � E½s�Þ where E½s� is the expected value from the gamma distribution (i.e. all

deleterious mutations were effectively recessive).

To incorporate selection, we implemented a new module in stdpopsim (Adrion et al., 2020a),

which leverages the forwards-in-time simulator SLiM (Haller and Messer, 2019) for simulating selec-

tion. For consistency, we also used stdpopsim’s SLiM engine for neutral simulations. stdpopsim uses

SLiM’s ability to output tree sequences (Haller et al., 2019; Kelleher et al., 2018), which retains

complete information about the samples’ marginal genealogies. Further, stdpopsim recapitates the
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tree sequences (ensuring that all sampled lineages have a single common ancestor), and applies neu-

trally evolving mutations to the genealogies, using the coalescent framework of msprime

(Kelleher et al., 2016).

We simulated 100 kbp regions, with a mutation rate of 1:29� 10
�8 per site per generation

(Tian et al., 2019), an empirical recombination map drawn uniformly at random from the HapMapII

genetic map (Frazer et al., 2007), and the selected mutation introduced at the region’s midpoint.

For both the sweep scenario and the AI scenario, we used a rejection-sampling approach to condi-

tion on the selected allele’s frequency being � in the recipient population at the end of the simula-

tion. This was done by saving the simulation state prior to the introduction of the selected mutation

(and saving again after successful transmission to the recipient population, for the AI scenario), then

restoring simulations to the most recent save point if the mutation was lost, or if the allele frequency

threshold was not met at the end of the simulation.

To speed up simulations, we applied a scaling factor of Q ¼ 10. Scaling divides population sizes

(N) and event times (T ) by Q, and multiplies the mutation rate m, recombination rate r and selection

coefficient s by Q, such that the population genetic parameters � ¼ 4N�, � ¼ 4Nr, and Ns remain

approximately invariant to the applied scaling factor (Haller and Messer, 2019). After simulating,

we further filtered our AI scenario simulations to exclude those that ended with a minor beneficial

allele frequency less than a specific cutoff. We tried two cutoffs—5% and 25%—and present results

for both. Rejection sampling within SLiM was not possible at these higher thresholds, as simulations

often had low probability of reaching the threshold, particularly for recently introduced mutations.

We note that this post-simulation filtering alters the distributions of selection coefficients and times

of selection onset used for CNN training.

To investigate Neanderthal gene flow into Europeans, we simulated an out-of-Africa demo-

graphic model with a single pulse of Neanderthal gene flow into Europeans but not into African Yor-

uba (Demographic Model A1, Figure 1—figure supplement 1), using a composite of previously

published model parameters (Appendix 3—table 1). The number of samples to simulate for each

population was chosen to match the YRI and CEU panels in the 1000 Genomes dataset

(Auton et al., 2015), and the two high coverage Neanderthal genomes (Prüfer et al., 2014). The

two simulated Neanderthals were sampled at times corresponding to the estimated ages of the sam-

ples as reported in Prüfer et al., 2017. To test model misspecification, we performed an additional

10,000 simulations per simulation scenario on a modified version of this model that also incorporates

archaic admixture in Africa (Ragsdale and Gravel, 2019) (Demographic Model A2; Figure 1—figure

supplement 1).

To investigate Denisovan gene flow into Melanesian populations, we simulated an out-of-Africa

demographic history incorporating two pulses of Denisovan gene flow (Malaspinas et al., 2016;

Jacobs et al., 2019) implemented as the PapuansOutOfAfrica_10J19 model in stdpopsim

(Adrion et al., 2020a). For this demographic model we sampled a single Denisovan and a single

Neanderthal (with sampling time of the latter corresponding to the Altai Neanderthal’s estimated

age). The number of Melanesian samples was chosen to match a subset of the IGDP panel

(Jacobs et al., 2019). The Baining population of New Britain was excluded at the request of the

IGDP data access committee, and we also excluded first-degree relatives, resulting in a total of 139

Melanesian individuals used in the analysis. As this demographic model includes two pulses of Deni-

sovan admixture, we simulated half of our AI simulations to correspond with gene flow from the first

pulse, and half from the second pulse.

Conversion of simulations to genotype matrices
We converted the tree sequence files from the simulations into genotype matrices using the tskit

Python API (Kelleher et al., 2016). Major alleles (those with sample frequency greater than 0.5 after

merging all individuals) were encoded in the matrix as 0, while minor alleles were encoded as 1. In

the event of equal counts for both alleles, the major allele was chosen at random. Only sites with a

minor allele frequency >5% were retained. For sweep and AI simulations, we excluded the site of

the selected mutation.

We note that different simulations result in different numbers of segregating sites, but a con-

straint for efficient CNN training is that each datum in a batch must have the same dimensions. Exist-

ing approaches to solve this problem are to use only a fixed number of segregating sites

(Chan et al., 2018), to pad the matrix out to the maximum number of observed segregating sites
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(Flagel et al., 2019), or to use an image-resize function to constrain the size of the input data

(Torada et al., 2019). Each approach discards spatial information about the local density of segre-

gating sites, although this may be recovered by including an additional vector of inter-site distances

as input to the network (Flagel et al., 2019).

To obtain the benefits of image resizing (fast training times for reduced sizes and easy application

to genomic windows of a fixed size), while avoiding its drawbacks, we chose to resize our input

matrices differently, and only along the dimension corresponding to sites. To resize the genomic

window to have length m, the window was partitioned into m bins, and for each individual haplotype

we counted the number of minor alleles observed per bin. Compared with interpolation-based resiz-

ing (Torada et al., 2019), binning is qualitatively similar, but preserves inter-allele distances and thus

the local density of segregating sites. Furthermore, as we do not resize along the dimension corre-

sponding to individuals, this also permits the use of permutation-invariant networks (Chan et al.,

2018), although we do not pursue that network architecture here.

We report results for m ¼ 256, but also tried m ¼ 32, 64, and 128 bins. Preliminary results indi-

cated greater training and validation accuracy for CNNs trained with more bins, around 1% differ-

ence between both 32 and 64, and 64 and 128, although only marginal improvement for 256

compared with 128 bins. When matching unphased data, we combined genotypes by summing

minor allele counts between the chromosomes of each individual. We note that all data were treated

as either phased, or unphased, and no mixed phasing was considered.

We then partitioned the resized genotype matrix into submatrices by population. Submatrices

were ordered left-to-right according to the donor, recipient, and unadmixed populations respec-

tively. For genotype matrices including both Neanderthals and Denisovans, we placed the non-

donor archaic population to the left of the donor. To ensure that a non-permutation-invariant CNN

could learn the structure in our data, we sorted the haplotypes (Flagel et al., 2019; Torada et al.,

2019). The resized haplotypes/individuals within each submatrix were ordered left-to-right by

decreasing similarity to the donor population, calculated as the Euclidean distance to the average

minor-allele density of the donor population (analogous to a vector of the donor allele frequencies).

An example (phased) genotype matrix image for an AI simulation is shown in Figure 1.

Conversion of empirical data to genotype matrices
Using bcftools (Li, 2011), we performed a locus-wise intersection of the following VCFs: 1000

Genomes (The 1000 Auton et al., 2015), IGDP (Jacobs et al., 2019), the high coverage Denisovan

genome (Meyer et al., 2012), and the Altai and Vindija Neanderthal genomes (Prüfer et al., 2014).

All VCFs corresponded to the GRCh37/hg19 reference sequence. Genotype matrices were con-

structed by parsing the output of bcftools query over 100 kbp windows, filtering out sites with sam-

ple allele frequency <5% or with more than 10% of genotypes missing, then excluding windows with

fewer than 20 segregating sites. Each genotype matrix was then resized and sorted as described for

simulations. When data were considered to be phased, as for the CEU/YRI populations, we also

treated the Neanderthal genotypes as if they were phased according to REF/ALT columns in the

VCF. While this is equivalent to random phasing, both high-coverage Neanderthal individuals are

highly inbred, so this is unlikely to be problematic in practice.

CNN model architecture and training
We implemented the CNN model in Keras (Chollet, 2015), configured to use the Tensorflow back-

end (Abadi et al., 2015). To save disk space and memory, the input matrices were stored as eight

bit integers rather than floating point numbers, and were not mean-centred or otherwise normalised

prior to input into the network. We instead made the first layer of our network a batch normalisation

layer, which simultaneously converts the input layer to floating point numbers and learns the best

normalisation of the data for the network.

The CNN architecture (Figure 1) consists of k convolution blocks each comprised of a batch nor-

malisation layer followed by a 2D convolution layer with 2 � 2 stride, 16 filters of size 4 � 4, and

leaky ReLU activation. The k blocks are followed by a single fully-connected output node of size one,

with sigmoid activation giving the probability Pr[AI]. We do not include pooling layers, as is common

in a CNN architecture (e.g. Torada et al., 2019), and instead use a 2 � 2 stride size to reduce the

output size of successive blocks (Springenberg et al., 2015). This is computationally cheaper and
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had no observable difference in network performance. We sought to maximise the depth of the net-

work, but the size of the input matrix constrains the maximum number of blocks in the network due

to successive halving of the dimensionality in each block. For m ¼ 256 resizing bins, we used k ¼ 7

blocks.

We partitioned 100,000 independent simulations for each of the three selection scenarios into

training and validation sets (approximate 90%/10% split). The hyperparameters and network archi-

tecture were tuned on a smaller preliminary set of simulations that did not vary the selection coeffi-

cient or time of onset of selection, so we chose not to split the simulations into a third ’test’ set

when evaluating the models trained on our final simulations. The model was trained for three

epochs, with model weights updated after batches of 64, using the Adam optimiser and cross-

entropy for the loss function. We evaluated model fit by inspecting loss and accuracy terms at the

end of training (Appendix 2—table 1). Preliminary analyses indicated three epochs were sufficient

for approximate convergence between training and validation metrics, but we did not observe diver-

gence (likely indicating overfitting) even when training for additional epochs.

Comparison to other methods
We converted our simulated tree sequences to VolcanoFinder (Setter et al., 2020) input (a per-locus

allele counts file, and a frequency-spectrum input file). One frequency-spectrum input file was cre-

ated for each distinct demographic model, obtained by averaging over all neutral-scenario simula-

tions. VolcanoFinder was run following examples in the manual, using 800 evenly-spaced genomic

bins (-G 800), and taking the maximum value for the likelihood-ratio test statistic (LRT) as the sum-

mary statistic for that simulation. VolcanoFinder further requires a value for the divergence between

the donor and recipient populations, which it can estimate by doing a grid search for the value which

maximises the LRT. However, this is more computationally intensive than providing a value, so we

obtained a value by grid search for a small sample of our simulations for each of Demographic Mod-

els A1 and B, and used the most frequently observed value (-D 0.001075 for Demographic Model

A1 and A2, and -D 0.001465 for Demographic Model B).

Additional AI-related summary statistics were chosen based on Racimo et al., 2017b and calcu-

lated on the simulated tree sequences. The fd statistic was implemented from the description in

Martin et al., 2015 and the remaining statistics were implemented from their description in

Racimo et al., 2017b. Summary statistics (including the VolcanoFinder LRT) were obtained for

600,000 simulations (100,000 for each of three simulation scenarios, for each of Demographic Mod-

els A1 and B). We calculated p-values by comparing each statistic to the null distribution that was

obtained from the neutral simulation scenarios.

Calibration
For a well calibrated output, we expect proportion x of the output probabilities with Pr[AI] ~ x to be

true positives. It has been noted elsewhere (Guo et al., 2017) that CNNs may produce improperly

calibrated probabilities. However, even if the probabilities are calibrated with respect to the valida-

tion dataset (which has even class ratios), this is unlikely to hold for empirical data, as the relative

ratios of AI versus not-AI windows in the genome are very skewed.

We tested three calibration methods: beta regression (Kull et al., 2017), isotonic regression

(Chakravarti, 1989), and Platt, 1999 scaling. To calibrate our CNN output, we first resampled our

training dataset to the desired class ratios. We then fit each calibrator to predict the true class in the

resampled training dataset from the CNN prediction for the resampled training dataset. To assess

the calibration procedure, we inspected reliability plots for our calibrated and uncalibrated predic-

tions, as evaluated with a resampled validation dataset (Figure 4—figure supplement 1, Figure 4—

figure supplement 2, Figure 4—figure supplement 3, Figure 4—figure supplement 4). We also

checked if the sum of the residuals was normally distributed, following the approach of

Turner et al., 2019. Both beta calibration and isotonic regression gave well-calibrated probabilities

compared with uncalibrated model outputs, and for our predictions on empirical data we chose to

apply beta calibration due to its relative simplicity.
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Saliency maps
We computed average saliency maps, by averaging over a set of input-specific saliency maps that

were calculated for a set of 300 simulated genotype matrices for each simulated scenario. The input-

specific saliency maps were calculated using tf-keras-vis v0.5.5 (Kubota, 2020) configured to

use ‘vanilla’ saliency maps. A sharper image was obtained by exchanging the CNN output layer’s

sigmoid activation with linear activation, as recommended in the tf-keras-vis documentation.

For the ‘vanilla’ saliency option, the image-specific class saliency is calculated by computing the gra-

dient of a network’s output with respect to a single input. The exact details of how the saliency is

calculated via propagation through a neural network can be found in Simonyan et al., 2014, who

offer this interpretation: ‘[T]he magnitude of the derivative indicates which pixels need to be

changed the least to affect the class score the most’.

Application of trained CNN to empirical datasets
We show Manhattan plots where each data point is a 100 kbp window that moves along the genome

in steps of size 20 kbp. Gene annotations were extracted from the Ensembl release 87 GFF3 file

(with GRCh37/hg19 coordinates), obtained via ensembl’s ftp server. We extracted the columns with

source=‘ensembl_havana’ and type=‘gene’, and report the genes which intersected with the 30 top

ranking CNN predictions or a 100 kbp flanking region. Adjacent regions were merged together prior

to intersection, so that genes were reported only once.

Compute resources
All simulations and results reported here were obtained on an compute server with two Intel Xeon

6248 CPUs (80 cores total), 768 GB RAM, and five NVIDIA Tesla T4 GPUs. 300,000 SLiM simulations

took approximately 80 weeks of CPU time for each of Demographic Model A1 and B. Each simula-

tion executes independently, and is readily distributed across cores or compute nodes. This pro-

duced 450 GB of tree sequence files. The resized genotype matrices were compressed into a Zarr

cache (Zarr Development Team, 2020) with size 2.8 GB, for faster loading. Training a single CNN

on one GPU took approximately 15 min, or 60 CPU hours for an equivalent CPU-only training proce-

dure. We did not attempt to optimise memory usage, and thus all data were loaded into memory,

requiring approximately 120 GB RAM during training. Predicting AI for all genomic windows on an

empirical dataset (22 single-chromosome BCF files) took 1 CPU hour. However, our prediction pipe-

line uses multiprocessing and efficiently scales to 80 cores.

Code availability
The source code for performing simulations, training and evaluating a CNN, and applying a CNN to

empirical VCF data, were developed in a new Python application called genomatnn, available at

Gower, 2021.
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nal draft, Writing - review and editing; Pablo Iáñez Picazo, Software, Formal analysis, Visualization,

Methodology, Writing - review and editing; Matteo Fumagalli, Conceptualization, Writing - review

and editing; Fernando Racimo, Conceptualization, Supervision, Funding acquisition, Methodology,

Writing - original draft, Writing - review and editing

Author ORCIDs

Graham Gower https://orcid.org/0000-0002-6197-3872
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Appendix 1

Appendix 1—table 1. Top ranking gene candidates corresponding to Neanderthal AI in Europeans.

We show genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals.

Adjacent intervals have been merged. The CNN was trained using only AI simulations with selected

mutation having allele frequency >5%, and subsequently calibrated with resampled neutral:sweep:AI

ratios of 1:0.1:0.02 .c

Chrom Start End Genes

1 39420001 39520000 RRAGC; MYCBP; GJA9; RHBDL2; AKIRIN1; NDUFS5; MACF1

2 159880001 160280000 TANC1; WDSUB1; BAZ2B

2 180060001 180160000 SESTD1

2 227800001 227900000 RHBDD1; COL4A4

2 238820001 238960000 LRRFIP1; RBM44; RAMP1; UBE2F; SCLY; ESPNL; KLHL30

3 114500001 114600000 ZBTB20

5 57960001 58060000 RAB3C

6 28160001 28380000 ZSCAN16-AS1; ZSCAN16; ZKSCAN8; ZSCAN9; ZKSCAN4; NKAPL; PGBD1;
ZSCAN31; ZKSCAN3; ZSCAN12; ZSCAN23; GPX6

8 17060001 17160000 MICU3; ZDHHC2; CNOT7; VPS37A; MTMR7

8 91840001 91940000 TMEM64; NECAB1; TMEM55A

9 16700001 16860000 BNC2

10 11800001 11900000 ECHDC3; PROSER2; UPF2

11 37740001 37840000

19 20260001 20360000 ZNF90; ZNF486

19 33580001 33700000 RHPN2; GPATCH1; WDR88; LRP3; SLC7A10

20 14340001 14440000 MACROD2; FLRT3

Appendix 1—table 2. Top ranking gene candidates corresponding to Denisovan AI in Melanesians.

We show genes which overlap, or are within 100 kbp of, the 30 highest ranked 100 kbp intervals.

Adjacent intervals have been merged. The CNN was trained using only AI simulations with selected

mutation having allele frequency >5%, and subsequently calibrated with resampled neutral:sweep:AI

ratios of 1:0.1:0.02.

Chrom Start End Genes

1 2880001 2980000 ACTRT2; LINC00982; PRDM16

1 220080001 220180000 SLC30A10; EPRS; BPNT1; IARS2

2 221040001 221140000

3 15400001 15500000 SH3BP5; METTL6; EAF1; COLQ

4 41960001 42100000 TMEM33; DCAF4L1; SLC30A9; BEND4

5 135440001 135540000 TGFBI; SMAD5-AS1; SMAD5; TRPC7

6 81980001 82120000 FAM46A

7 121160001 121260000

9 95500001 95600000 IPPK; BICD2; ZNF484

10 59660001 59760000

12 80780001 80880000 OTOGL; PTPRQ

Continued on next page
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Appendix 1—table 2 continued

Chrom Start End Genes

12 84620001 84740000

14 57620001 57760000 EXOC5; AP5M1; NAA30

17 29480001 29720000 NF1; OMG; EVI2B; EVI2A; RAB11FIP4

18 38180001 38320000

20 54340001 54440000
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Appendix 2

Appendix 2—table 1. Loss and accuracy for CNNs after training for three epochs, as reported by

Keras/Tensorflow, for the training and validation datasets.

Binary cross-entropy was used for the loss function.

Demographic model Hyperparameters Training Validation

Loss Accuracy Loss Accuracy

A1 AF>0.05 0.1592 0.9458 0.1618 0.9468

A1 AF>0.25 0.1224 0.9585 0.1265 0.9578

A1 AF>0.25; unphased 0.1347 0.9537 0.1368 0.9530

B AF>0.05; unphased 0.3415 0.8439 0.3441 0.8439

B AF>0.25; unphased 0.3546 0.8372 0.3583 0.8376
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Appendix 3

Appendix 3—table 1. Parameter values used for simulating Demographic Model A1.

A Demes-format YAML file for each demographic model is available from the genomatnn git

repository.

Parameter Description Value Units Source

NAnc ancestral pop. size 18500 Kuhlwilm et al., 2016

NNea Neanderthal pop. size 3400 Kuhlwilm et al., 2016

NYRI YRI pop. size 27600 Kuhlwilm et al., 2016

NCEU0 CEU bottleneck pop. size 1080 Ragsdale and Gravel, 2019

NCEU1 CEU growth-start pop. size 1450 Ragsdale and Gravel, 2019

NCEU2 CEU current pop. size 13377

rCEU CEU growth rate 0.00202 Ragsdale and Gravel, 2019

TCEU2 CEU time at growth start 31.9 kya Ragsdale and Gravel, 2019

T0 Nea/other split time 550 kya Prüfer et al., 2017

T1 CEU/YRI split time 65.7 kya Ragsdale and Gravel, 2019

T2 time of Nea ! CEU gene flow 55 kya Prüfer et al., 2017

g generation time 29 years Prüfer et al., 2017

a Nea ! CEU admixture proportion 2.25 Prüfer et al., 2017

TAltai sampling time 115 kya Prüfer et al., 2017

TVindija sampling time 55 kya Prüfer et al., 2017

nNean sample size 2 diploid individuals

nAfr sample size 108 diploid individuals

nEur sample size 99 diploid individuals

s selection coefficient 10
Unifð�4;�1Þ

Tsel1 selection onset (sweep) Unif(1, T1) kya

Tmut1 mutation (sweep) Unif(Tsel1, T1) kya

Tsel2 selection onset (AI) Unif(1, T2) kya

Tmut2 mutation (AI) Unif(T2, T0) kya
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Appendix 4

Appendix 4—figure 1. Haplotype plot for the candidate region chr1:104500001–104600000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 2. Haplotype plot for the candidate region chr2:109360001–109460000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 4—figure 3. Haplotype plot for the candidate region chr2:160160001–160280000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 4. Haplotype plot for the candidate region chr3:114480001–114620000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 4—figure 5. Haplotype plot for the candidate region chr4:54240001–54340000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 6. Haplotype plot for the candidate region chr5:39220001–39320000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 4—figure 7. Haplotype plot for the candidate region chr6:28180001–28320000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 8. Haplotype plot for the candidate region chr8:143440001–143560000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 4—figure 9. Haplotype plot for the candidate region chr9:16700001–16820000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 10. Haplotype plot for the candidate region chr12:85780001–85880000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 4—figure 11. Haplotype plot for the candidate region chr19:20220001–20380000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 12. Haplotype plot for the candidate region chr19:33580001–33740000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 4—figure 13. Haplotype plot for the candidate region chr20:62100001–62280000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.

Appendix 4—figure 14. Haplotype plot for the candidate region chr21:25840001–25940000 in the

Neanderthal-into-European AI scan. Bright yellow indicates minor allele, dark blue indicates major

allele. Haplotypes within populations are sorted left-to-right by similarity to Neanderthals.
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Appendix 5

Appendix 5—figure 1. Genotype plot for the candidate region chr2:129960001–130060000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 2. Genotype plot for the candidate region chr3:3740001–3840000 in the Deni-

sovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 3. Genotype plot for the candidate region chr4:41980001–42080000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 4. Genotype plot for the candidate region chr5:420001–520000 in the Deniso-

van-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 5. Genotype plot for the candidate region chr6:74640001–74740000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 6. Genotype plot for the candidate region chr6:81960001–82060000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 7. Genotype plot for the candidate region chr6:137920001–138120000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 8. Genotype plot for the candidate region chr7:25100001–25200000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 9. Genotype plot for the candidate region chr7:38020001–38120000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 10. Genotype plot for the candidate region chr7:121160001–121260000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 11. Genotype plot for the candidate region chr8:3040001–3140000 in the Deni-

sovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 12. Genotype plot for the candidate region chr12:84640001–84740000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 13. Genotype plot for the candidate region chr12:108240001–108340000 in

the Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light

blue = heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted

left-to-right by similarity to the Denisovan.

Appendix 5—figure 14. Genotype plot for the candidate region chr12:114020001–114280000 in

the Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light

blue = heterozygote, yellow = homozygote minor allele. Genotypes within populations are sorted

left-to-right by similarity to the Denisovan.
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Appendix 5—figure 15. Genotype plot for the candidate region chr14:61860001–61960000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 16. Genotype plot for the candidate region chr14:63120001–63220000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 17. Genotype plot for the candidate region chr14:96700001–96820000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 18. Genotype plot for the candidate region chr15:55260001–55400000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 19. Genotype plot for the candidate region chr16:62600001–62700000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 20. Genotype plot for the candidate region chr16:78360001–78460000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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Appendix 5—figure 21. Genotype plot for the candidate region chr18:22060001–22160000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.

Appendix 5—figure 22. Genotype plot for the candidate region chr22:19040001–19140000 in the

Denisovan-into-Melanesian AI scan. Dark blue = homozygote major allele, light blue = heterozygote,

yellow = homozygote minor allele. Genotypes within populations are sorted left-to-right by similarity

to the Denisovan.
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