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Background: Development of pharmacological treatments to mitigate ischemic heart disease (IHD) has
encompassed disappointing results and expensive failures, which has discouraged investment in new ap-
proaches to prevention and control. New treatments aremost likely to be successful if they act on genetically val-
idated targets. We assessed whether existing pharmacological treatments for IHD reduction are acting on
genetically validated targets and whether all such targets for IHD are currently being exploited.
Methods:Genes associatedwith IHDwere obtained from the loci of single nucleotide polymorphisms reported in
either of two recent genome wide association studies supplemented by a gene-based analysis (accounting for
linkage disequilibrium) of CARDIoGRAMplusC4D 1000 Genomes, a large IHD case (n = 60,801)-control (n =
123,504) study. Treatments targeting the products of these IHD genes and genes with products targeted by cur-
rent IHD treatments were obtained from Kyoto Encyclopedia of Genes and Genomes and Drugbank. Cohen's
kappa was used to assess agreement.
Results:We identified173 autosomal genes associatedwith IHD and236 autosomal geneswith products targeted
by current IHD treatments, only 8 genes (PCSK9, EDNRA, PLG, LPL, CXCL12, LRP1, CETP and ADORA2A) overlapped,
i.e. were both associated with IHD and had products targeted by current IHD treatments. The Cohen's kappa was
0.03. Interventions related to another 29 IHD genes exist, including dietary factors, environmental exposures and
existing treatments for other indications.
Conclusions: Closer alignment of IHD treatments with genetically validated physiological targets may represent a
major opportunity for combating a leading cause of global morbidity andmortality through repurposing existing
interventions.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Great progress has been made in the prevention and control of car-
diovascular disease over the last 50 years (Ezzati et al., 2015). Neverthe-
less, cardiovascular disease remains the leading cause of global
morbidity andmortality. Cardiovascular disease has long been acknowl-
edged to be incompletely understood, with patterns of disease and
trends that cannot be explained by existing risk factors and treatments
(Ezzati et al., 2015; Marmot et al., 1975). Development of new cardio-
vascular disease treatments targeting risk factors, such as high density
lipoprotein-cholesterol and inflammatory markers, has encompassed
disappointing results and expensive late-stage failures (Jackson et al.,
2016; Lincoff et al., 2017; Ridker et al., 2017; O'Donoghue et al., 2016).
In some cases these failures have subsequently been explained by the
enome wide association study;
lopedia of Genes and Genomes.
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treatments not acting on genetically validated targets, for example for
varespladib and darapladib (Gregson et al., 2017; Talmud and Holmes,
2015). Investment in drug development for cardiovascular disease is
currently not commensurate with the burden of disease (Moses et al.,
2015).

Recently, genomewide association studies (GWAS) of single genetic
variants have enabled significant progress to be made in unraveling the
causes of ischemic heart disease (IHD) with as much as 21% of the her-
itability of IHDpotentially explicable (Nelson et al., 2017). This develop-
ment provides a new opportunity to provide an overall assessment of
the extent to which existing pharmacological treatments for IHD
prevention and control are exploiting genetically validated targets and
conversely to identify whether any other existing treatments are
targeting the products of genes strongly associated with IHD and so
could potentially be repurposed. Here, we examined three complimen-
tary questions; first whether genetically valid targets for IHD are being
exploited by current pharmacological IHD treatments, second whether
existing pharmacological treatments for IHD are acting on genetically
valid targets, and third whether any additional pharmacological
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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treatments or nutraceuticals exist likely exploiting the products of other
genes strongly associated with IHD.

2. Methods

Genes strongly associated with IHD were obtained in two ways.
First, genes were identified from the loci of single nucleotide polymor-
phisms (SNPs) associated with IHD at genome wide significance (SNP-
based GWAS) in either of two recent IHD GWAS (Nelson et al., 2017;
Howson et al., 2017), largely concerning people of European descent
and based on the CARDIoGRAMplusC4D consortia. Second, genes asso-
ciated with IHD at genome wide significance were identified from a
gene-based test applied to CARDIoGRAMplusC4D 1000 Genomes
(cases = 60,801, controls = 123,504) (Nikpay et al., 2015). A gene-
based test has the advantage of considering genetic variants in naturally
occurring functional units, i.e., genes, whose products potentially corre-
spond to targets of intervention, because treatments usually target spe-
cific gene products.

To identify the extent to which the genes associated with IHD are
exploited by current pharmacological IHD treatments, we used two cu-
rated gene to drug cross-references, Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa et al., 2014) and Drugbank (Wishart
et al., 2008), to identify whether the genes strongly associated with
IHD had products targeted by existing IHD treatments. To identify
whether existing pharmacological treatments for IHD are acting on ge-
netically validated targetswe used the same cross-references to identify
the genes with products targeted by pharmacological IHD treatments
and the gene-based test to assess their association with IHD. Finally,
we identified any other existing, but not investigational, pharmacologi-
cal treatments or nutraceuticals targeting products of genes strongly as-
sociated with IHD as candidate interventions for potentially
repurposing as new IHD treatments.

Existing IHD treatments were defined as approved therapies for pri-
mary or secondary prevention or treatment of IHD, considered as treat-
ments for the following conditions affecting the Cardiovascular System:
“Hyperlipidaemia”, “Hypertension”, “Diuresis”, “MI, LVD”, “Thrombo-
embolic disorders” and “Angina”, and the following categories for Dia-
betes: “Oral and parenteral hypoglycaemics” and “Insulins” given in
MIMS UK (http://www.mims.co.uk/conditions).We did not include de-
vices or tests. The complete list of drugs considered is given in Supple-
mentary Table 1. We included any treatment or nutraceutical reported
as relevant to a gene of interest from KEGG or Drugbank. Only autoso-
mal genes were considered because genetic associations with the X
and Y chromosomes are more complex to unravel, rarely investigated
and are not available in the CARDIoGRAMplusC4D consortia. Two peo-
ple conducted these searches independently in mid-January 2018.

2.1. Statistical Analysis

To obtain p-values for the association of each autosomal gene with
IHD,we used a gene-based association testwith an extended Simes pro-
cedure taking linkage disequilibrium into account (Li et al., 2012). To
conduct this test we used a Gene-based Association Test using Extended
Simes (GATES), which is a Simes test adjusted for the linkage disequilib-
rium of the p-values (Li et al., 2012). GATES has the advantage of not re-
quiring simulations and provides a validated approximation to other
methods (Bacanu, 2012). Linkage disequilibrium was obtained from
the 1000 Genomes catalog. We used a p-value cut-off of 1.96 × 10−6

for genome wide Bonferroni corrected significance of a gene (i.e., 0.05/
25463 genes). We also identified genes associated with IHD at a 5%
false discovery rate on the gene-based test. Cohen's kappa was used to
assess the agreement between the genes identified as associated with
IHD and the genes targeted by existing IHD treatments.

This analysis of publicly available data does not require ethical
approval.
2.2. Role of the Funding Source

This study was partly funded by PSC-CUNY Award # 68528-00 46.
The funders had no role in the design and conduct of the study, in the
collection, analysis, and interpretation of the data, and in the prepara-
tion, review, or approval of the manuscript.

3. Results

Table 1 shows that in total 173 autosomal genes were identified as
strongly associated with IHD. Supplementary Table 2 shows that 119
genes were identified from the 109 loci recently reported as associated
with IHD using SNP-based GWAS (Nelson et al., 2017; Howson et al.,
2017), and 54 additionally identified from the gene-based test, 40
genes were identified by both methods. Table 1 also shows that in
total 236 autosomal genes were identified as targets of existing IHD
treatments. However, the overlap between the genes associated with
IHD and the genes currently related to existing IHD treatments was
minimal, i.e., only 8 genes. The Cohen's kappa was very low (0.03) indi-
cating minimal agreement. If only the 119 genes associated with IHD
from SNP-based GWAS were considered as associated with IHD the
Cohen's kappa (0.03) was still minimal.

3.1. IHD Gene Products as Targets of Existing IHD Treatments

Of the total 173 genes associated with IHD the 8 genes related to
existing IHD treatments were PCSK9, LPL, PLG, EDNRA, CXCL12, LRP1,
CETP and ADORA2A. All of these 8 genes were identified from SNP-
based GWAS, PLG was also identified by the gene-based test. Four
genes (PCSK9, LPL, EDNRA and ADORA2A) were significantly associated
with IHD at a 5% false discovery rate on the gene-based test, LRP1 was
nominally significant and two genes (CXCL12 and CETP) were not even
nominally associated with IHD on the gene-based test.

None of these 8 genes (PCSK9, LPL, PLG, EDNRA, CXCL12, LRP1, CETP
and ADORA2A) are associated with widely used IHD treatments,
shown in Table 2. PCSK9 gene products are targeted by PCSK9 inhibitors.
LPL products are targets of rarely used lipid modulators, such as
Ibrolipim, elastase and Omega-3-acid ethyl esters, and anti-
thrombotics, such as dextran. PLG products are targeted by anti-
thrombotics for acute myocardial infarction. EDNRA products could be
targeted by aspirin, and are targeted by therapies for pulmonary hyper-
tension. CXCL12 products may be targeted by a heparin antithrombotic.
LPR1 and ADORA2A products are targets of specialized anti-thrombotics.
CETP products are currently targeted by Omega-3-acid ethyl esters. To
date three cholesterylester transfer protein (CETP)-inhibitors have
failed in major trials (Eyvazian and Frishman, 2017). One CETP-
inhibitor (anacetrapib) met its primary endpoint, but is not going to
be marketed (Merck Provides Update on Anacetrapib Development
Program, 2017).

Additionally, considering the 241 genes only associated with IHD at
a 5% false discovery rate on the gene-based-test yielded two additional
genes, CHRNB2 and VEGFA, related to IHD treatments. CHRNB2 is related
to atropine and VEGFA to anti-thrombotics, anti-hypertensives and sul-
fonylureas. For reference Supplementary Table 2 lists these 241 genes.

3.2. Existing IHD Treatments As Genetically Valid Targets

In total 236 autosomal genes were identified as related to existing
pharmacological IHD treatments, but only 8 of these genes were
strongly associated with IHD. Supplementary Table 3 shows all 242
genes (including 6 on the X chromosome) related to current IHD treat-
ments, the treatment class and the p-value for their gene-based associ-
ation with IHD. Genes related to widely used therapies that modulate
lipids and reduce cardiovascular disease, such as statins (HMGCR)
(Collins et al., 2016) and ezetimibe (NPC1L1) (Cannon et al., 2015),
were nominally significant using the gene-based test (p-values of

http://www.mims.co.uk/conditions


Table 1
Comparison between the number of genes strongly associated with IHD and the number
of genes related to IHD treatments.

Genes strongly associated with IHD at
genome-wide significance from
SNP-based GWAS or the gene-based test

Genes related to existing
IHD treatments

Yes No
Yes 8 228 236
No 165 25,062 25,227

173 25,290 25,463
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0.004 and 0.0045 respectively). Genes related to less successful lipid
modulators, such as niacin (HCAR2/3) (Landray et al., 2014), fibrates
(PPARA) (Warren et al., 2016), and CETP-inhibitors (CETP) (Eyvazian
and Frishman, 2017)were not significantly associatedwith IHD. Several
genes related to anti-thrombotics (FCGR1A, PROC, P2RY12, PDE5A,
TBXAS1, NFKB2, C1R, C1S, LRP1, VTN, CALR and PDE4A) were nominally
significant. Genes related to aspirin (PTGS1/2) were not, although
other genes potentially related to aspirin were, such as EDNRA and
NFKB2. Genes possibly related to anti-hypertensives, such as alpha
blockers (KCNH7), beta blockers (VEGFA), ACE inhibitors (LTA4H), cal-
cium channel blockers (PDE1A), prostaglandin I2 receptor antagonists
(P2RY12), vasodilators (NPR1), digitalis (ATP1B3) and reserpine
(SLC18A2), were nominally significant, but not genes targeted by other
anti-hypertensives. Finally, some genes potentially related to anti-
diabetes therapies were nominally associated with IHD (RAMP1,
IGFBP7, ABCA1, IGF1R, RAMP2 and VEGFA (also significant at 5% false dis-
covery rate)).

3.3. IHD Genes as Targets of Other Treatments, or Potential Interventions

Of the 173 genes associated with IHD, in addition to the 8 genes
(PCSK9, LPL, PLG, EDNRA, CXCL12, LPR1, CETP and ADORA2A) related to
existing IHD treatments, an additional 29 genes were related to other
existing treatments or nutraceuticals (Table 2). Of these 29 genes, 12
genes (IL6R, GGCX, GUCY1A3, LPA, HDAC9, NOS3, CYP17A1, NT5C2,
SH2B3,FURIN, APOE and LDLR) were identified by both SNP-based
GWAS and the gene-based test, 14 genes from SNP-based GWAS only
(ATP1B1, FN1, ITGB5, SLC22A4, SLC22A5, APOA1, PDGFD, SCARB1, FLT1,
OAZ2, MC4R, SNRPD2, TGFB1 and PROCR), and 3 genes from the gene-
based test only (MAT2A, AS3MT and IGF2R).

Seven of these 29 IHD genes are related to therapies for other cardio-
vascular conditions (ATP1B1, GGCX, FN1, GUCY1A3 and NOS3) and/or
bleeding disorders (LPA and APOE). Another 12 of these 29 IHD genes
are related to treatments for other conditions including arthritis
(IL6R), cancer (ITGB5, HDAC9, CYP17A1,PDGFD, SH2B3, FLT1 and LDLR),
psychosis, specifically valproic acid (HDAC9), growth failure (IGF2R), ad-
renocortical insufficiency (MC4R), and infections (NT5C2 and SNRPD2).
TGFB1 is related to hyaluronidase, which promotes the dispersion of
injected substances. PROCR is related to phosphatidylethanolamine,
which may play a cardiac role and is raised by testosterone (Angelova
et al., 2012). Finally the remaining 8 of these 29 IHD genes (MAT2A,
SLC22A4, SLC22A5, AS3MT, APOA1, SCARB1, FURIN and OAZ2) are related
to dietary factors or supplements.

Several of these 29 IHD genes are also related to commonmodifiable
interventions (Table 2). GGCX is related to vitamin K1, commonly found
in green leafy vegetables, and to L-glutamic acid, a common dietary
amino acid. MAT2A and AS3MT are related to the derivate of the amino
acid L-methionine, largely obtained from animal protein, i.e., s-
denosylmethionine which plays a role in arsenic metabolism (Loenen,
2006). SLC22A4 and SLC22A5 are related to L-carnitine, whose major
source is red meat. NOS3 is related to the amino-acids L-citrulline and
L-arginine. L-arginine is a common dietary amino acid often obtained
from animal protein. APOA1 and APOE are related to both zinc and cop-
per, as are PLG (copper) and FN1 (zinc). SCARB1 is related to phosphati-
dyl serine, which may improve memory. Finally, ADORA2A, as well as
being related to an existing IHD treatment, is also related to many po-
tential interventions including cocoa derivatives, such as theobromine.

4. Discussion

This study reveals a disconnect between genes strongly associated
with IHD, i.e., potentially with druggable genetic products, and genes
whose products are targeted by existing IHD treatments. Only 8 of the
173 genes associatedwith IHD are related to the products of the 236 au-
tosomal genes acted on by treatments for IHD and none of these treat-
ments are widely used. However, 29 other genes associated with IHD
are related to existing treatments or interventions that could perhaps
be repurposed or re-developed to combat IHD.

Previous studies have validated the genetic targets of some specific
IHD treatments, such as ezetimbe and PCSK9 inhibitors (Wang and
Hegele, 2017; Stitziel et al., 2014). However, to our knowledge, no pre-
vious studies have comprehensively compared the genes strongly asso-
ciated with IHDwith the genes whose products are targeted by existing
IHD treatments. Of course, not all genes associatedwith IHD are likely to
yield easilymodifiable effective targets of intervention for IHD, although
lack of even a nominal association of a gene with IHD might raise ques-
tions about whether such a gene is likely to have products that are tar-
gets of effective intervention for IHD. Some of the genes associated with
IHD are related to existing interventions which could perhaps be re-
purposed, although the direction of effect is not always obvious and
needs to be deduced from other information. For example,
aminocaprioc acid related to LPA, is usually used to prevent bleeding,
and so might not be helpful in IHD.

Suggestive information about the value of some of these potential
interventions for IHD already exists. Vitamin K1 (GGCX) is an antagonist
of the blood thinner warfarin used to treat some cardiovascular dis-
eases. A Mendelian randomization study suggested vitamin K1 may
cause IHD (Schooling, 2016). Arsenic is thought to cause IHD (Moon
et al., 2012) and methionine (MAT2A and AS2MT) restriction may in-
crease lifespan (Ables and Johnson, 2017), consistent with the impor-
tance of removing arsenic pollution from the environment. In small
trials with intermediate end-points L-carnitine (SLC22A4, SLC22A5) has
shown some indications of beneficial effects (Serban et al., 2016;
Anand et al., 1998). Zinc (FN1, APOA1 and APOE) and copper (PLG,
APOA1 and APOE) have been thought to play a role in IHD for over
40 years (Klevay, 1975). Small scale trials suggest adverse effects of
low copper intake on cardiac arrhythmias (Milne and Nielsen, 1996;
Viestenz and Klevay, 1982), and that copper depletion may induce an-
eurysms (Jung et al., 2016). In vitro experiments also suggest some car-
diac benefits of copper (Zhou et al., 2009). Zinc also reduces copper
absorption (Van Campen and Scaife, 1967). L-arginine (NOS3) is a com-
mon dietary amino acid, often obtained from animal protein, which
likely causes IHD (Au Yeung et al., 2016). In randomized controlled trials
theobromine has beneficial effects on cardiovascular disease risk fac-
tors, such as blood pressure and lipids (Martinez-Pinilla et al., 2015),
and was formerly used as a treatment for angina. Theobromine may
also antagonize adenosine receptors, potentially relevant to the relation
of NT5C2 with IHD.

Despite taking an innovative approach to identify gaps and opportu-
nities for IHD mitigation by considering genes in naturally occurring
functional units, i.e., genes, this study has limitations. First, some of
the genes identified as associated with IHD might not be functional.
However, we specifically identified 29 genes that are related to poten-
tially available interventions. Second, some of the genes targeted by
existing treatments may represent valid physiological targets even
though the genes were not clearly associated with IHD from SNP level
GWAS or gene-based tests, meaning better methods of searching the
human genome are required. Alternatively, discovery of new ways of
treating IHD may be facilitated by use of explanatory models from
other disciplines (Schooling, 2017). Third, knowledge of the relation be-
tween drugs and gene products is not definitive, and is constantly



Table 2
Pharmaceutical treatments and nutraceuticals given in KEGG (Kanehisa et al., 2014) or Drugbank (Wishart et al., 2008) as related to any of the 173 autosomal genes identified as strongly
associated with IHD from SNP-based GWAS or the gene-based test.

Target Gene Chr Potential therapies

Medicinal Nutraceutical

Drug Indication

IHD PCSK9 1 PCSK9 inhibitor Hyperlipidemia
EDNRA 4 Endothelin receptor antagonist Pulmonary arterial hypertension

Aspirin Myocardial infarction, cardiovascular disease risk
PLG 6 Plasminogen activator Acute myocardial infarction, clotting Copper, citric acid
LPL 8 Dextran Coagulation/Thrombosis

Elastase ES Hyperlipidemia
Ibrolipim Hyperlipidemia
Omega-3-acid ethyl esters Hyperlipidemia

CXCL12 10 Heparin Thromboembolism or risk thereof
LRP1 12 Tissue plasminogen activator Myocardial infarction, clotting

Coagulation factors VIII and IX Hemophilia
CETP 16 Omega-3-acid ethyl esters Hyperlipidemia
ADORA2A 22 Defibrotide occlusive venous disease of the liver

Other diseases ATP1B1 1 Digitalis Antiarrhythmic
IL6R 1 Sarilumab/Tocilizumab Arthritis and ankylosing spondylitis
GGCX 2 Anisindione Prevention of thromboembolism in atrial fibrillation Menadione

Phylloquinone Bleeding L-Glutamic Acid
Coagulation factors VIIa and IX Hemophilia

MAT2A 2 S-Adenosylmethionine
FN1 2 Ocriplasmin/Lanoteplase Thrombosis Zinc
ITGB5 3 Cilengitide Angiogenesis inhibitor
GUCY1A3 4 Riociguat Pulmonary arterial hypertension
SLC22A4 5 L-Carnitine Carnitine deficiency

SLC22A5 5 L-Carnitine Carnitine deficiency

IGF2R 6 Insulin-like growth factor 1 Growth failure
Cerliponase alfa

LPA 6 Aminocaproic Acid Bleeding
HDAC9 7 Histone deacetylase inhibitor Cancer

Valproic Acid Seizure disorders, mania
NOS3 7 Apremilast Psoriasis L-Arginine

Miconazole Fungal infections L-Citrulline
Sapropterin Tetrahydrobiopterin deficiency
Tilarginine acetate Cardiogenic shock

AS3MT 10 S-Adenosylmethionine
CYP17A1 10 Abiraterone/Galeterone/Orteronel Prostate cancer Nicotinamide adenine dinucleotide + hydrogen

Mitotane Adrenal cortical carcinoma
Progesterone Progesterone deficiency, hormonal imbalance

NT5C2 10 Ribavirin/Taribavirin Hepatitis C, respiratory syncytial virus Adenosine triphosphate
APOA1 11 Zinc

Copper
PDGFD 11 Tandutinib Cancer

PDGFD blocker Kidney inflammation
SH2B3 12 Indazolylpyrimidine Kidney cancer and sarcoma

12
SCARB1 12 Phosphatidyl serine
FLT1 13 Multiple kinase inhibitor Various cancers
FURIN 15 Pirfenidone idiopathic pulmonary fibrosis Capric acid
OAZ2 15 Ornithine
MC4R 18 Adrenocorticotropic hormone Adrenocortical insufficiency
APOE 19 Human serum albumin Severe blood loss Zinc

Copper
LDLR 19 Hematoporphyrin derivative Esophageal cancer
SNRPD2 19 Artemisinins (Artenimol) Plasmodium falciparum infection
TGFB1 19 Hyaluronidase increase the absorption and dispersion of drugs
PROCR 20 Phosphatidylethanolamine phospholipid
ADORA2A 22 Caffeine Drowsiness

Theophylline Asthma, Chronic Obstructive Pulmonary Disease
Mefloquine Malaria
Adenosine Anti-arrhythmic
Pentoxifylline Chronic Obstructive Pulmonary Disease
Theobromine Angina (formerly)
Adenosine A(2A) antagonist Parkinson's disease

Chr: chromosome.
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evolving, so we used two comprehensive cross-references from gene to
treatment (Kanehisa et al., 2014; Wishart et al., 2008) and included
genes and treatments found in either source. However, inexactitude
and incompleteness of knowledge about gene products and how
treatments operate is unlikely to explain the magnitude of the differ-
ence between the genes strongly associated with IHD and genes related
to existing IHD treatments. Fourth, most genetic variation associated
with IHD has been obtained from prevalent case-control studies of

https://en.wikipedia.org/wiki/Phospholipid
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people of European descent. Replication in a different study or popula-
tion is unlikely to remove the disconnect between genetically valid
targets and existing IHD treatments, although it may reveal some addi-
tional targets. Fifth, this study is not designed to map out full genetic
functionality and etiology of IHD but instead to identify promising ge-
netically informed targets of intervention that can be actioned now, be-
cause genetic validation is increasingly a criterion for investigation of
potential interventions.

Overall, this study suggests that current IHD treatments may not be
optimally targeted and genetically informed targets for IHD may be
under-exploited. Closer alignment of IHD treatments with the products
of genes associated with IHD represents a major opportunity for com-
bating the leading cause of global morbidity and mortality by re-
purposing existing therapies identified here. Whether a similar situa-
tion exists for other major diseases might also be investigated.
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