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The common occurrence of age decline in mobility and cognition does cause a decrease

in the level of physical activity and an increased falls risk. Consequently, dual -task (DT)

assessment that simultaneously addresses both mobility skills and cognitive functions

are important because, continued difficulties and fall injuries will have a sizable impact

in this population. The first objective of the present study was to assess test-retest

reliability of a computerized DT treadmill walking protocol and concurrent outcome

measures of gait and visuospatial executive function in a group of healthy older adults.

Secondly, discriminative validity was evaluated by examining the effect of DT conditions

(single task vs. dual-task) on; (a) spatiotemporal gait measures (average and coefficient

of variation) and (b) visuomotor and visuospatial executive performance measures.

Twenty-five community-dwelling individuals median age 65 (range 61–67) were recruited

from a Fitness Facility. Participants performed a computerized visuomotor tracking

task and a visuospatial executive game task in standing and while treadmill walking.

Testing was conducted on two occasions, 1 week apart. Moderate to high test-retest

reliability (ICC values of 0.65–0.88) were observed for spatiotemporal gait variables.

No significant differences between the group means were observed between test

periods in any gait variable. Moderate test-retest reliability (ICC values of 0.6–0.65) was

observed for measures of visuomotor and visuospatial executive performance during

treadmill walking. Significant DT effects were observed for both spatiotemporal gait

variables and visuospatial executive performance measures. This study demonstrates

the reliability and reproducibility of the computer-based assessment tool for dual task

treadmill walking. The high to moderate ICC values and the lack of systematic errors

in the measures indicate that this tool has the ability to repeatedly record reliable data

from community-dwelling older adults. The present computerized dual-task protocols

broaden the types of standardized visuomotor and visuospatial executive activities for

use with DT treadmill walking that has previously been reported.

Keywords: treadmill walking, spatiotemporal gait variables, cognitive performance, Dual-task performance,

intra-class correlation coefficient
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INTRODUCTION

The frequent occurrence of mobility limitations and falls with
age can arise due to singular events (e.g., stroke, peripheral
vestibular dysfunction) or can have an insidious onset, with
the problem source found in multiple predisposing factors,
such as, the gradual decline of musculoskeletal and/or neural
fitness (sensory, cognitive, motor; Santos-Eggimann et al., 2008).
Walking problems and falls, in particular outdoors, become
evident when compensatory strategies have failed, or where
certain tasks and environmental conditions cannot be avoided
(Shumway-Cook et al., 2007; Santos-Eggimann et al., 2008).

For older adults, community ambulation is strongly associated
with the preservation of skills for independent living, community
participation, and healthy aging (Simonsick et al., 2005).
Safe, independent community walking outdoors requires both
mobility skills and cognitive flexibility to address threats
to balance while attending to a range of environmental
demands and concurrent executive tasks. Mobility limitations
and executive impairments common to aging often coexist and
are prognostic of adverse health events, including falls (Santos-
Eggimann et al., 2008; van Iersel et al., 2008; Herman et al., 2010;
Ijmker and Lamoth, 2012). Consequently, dual- task screening
and training programs that simultaneously address both mobility
and cognition are important to consider in the promotion
of healthy aging and in rehabilitation (Pichierri et al., 2011;
Diamond, 2015; Gregory et al., 2016).

The application of digital media and computer technologies
provides a number of promising approaches for dual task
(DT) assessments and training. For example, a Virtual reality
(VR) environments viewed during treadmill walking have been
used to provide a more ecological and task-oriented approach
to mobility training. Preliminary results suggest that mixed,
augmented VR environments that incorporate both treadmill
walking and executive tasks have the potential as a rehabilitation
tool. (Mirelman et al., 2013; Park et al., 2015) The application
of computer games has also received considerable interest from
researchers and clinicians as a method to challenge and train
many different aspects of executive functions (Anguera et al.,
2013; Wolinsky et al., 2013; Rebok et al., 2014; Strenziok
et al., 2014). These emerging rehabilitation technologies have the
potential to improve clinical outcomes by making therapies and
exercise more engaging more motivating and more effective. For
this purpose, an engaging, Game-Based Rehabilitation Platform
(GRP) for dual-task training with embedded assessment was
developed (Szturm et al., 2013a,b). The platform provides an
integrated approach to decline in balance, mobility, visuomotor
and gaze control, and visuospatial executive function. The
GRP consists of a standard treadmill instrumented with a
pressure mapping system to record center of foot pressure,
and an interactive computer game subsystem (Betker et al.,
2008; Szturm et al., 2015a). The treadmill is equipped with a
standard LED monitor, and thus, a broad range of visuomotor
and visual-spatial executive game activities can easily bemanaged
concurrently while treadmill walking. The GRP includes a
monitoring application which uses advanced data logging and
analysis method to record the client’s actions and choices while

playing designed rehabilitation assessment games. The game
activities involve visual attention, visual search and tracking of
moving visual targets, and the ability to select and interact with
relevant targets and ignore/avoid distracter objects. Visuospatial
processing is an important aspect of cognition to explore as a
factor involved in age decline in mobility and increased fall risk
(Santos-Eggimann et al., 2008; van Iersel et al., 2008; Nagamatsu
et al., 2009; Murray et al., 2010). With this method both gait
and visuospatial executive performance can be quantified during
steady state walking at a constant velocity and over durations
of 1–2 min or more, as tolerated (i.e., 40 to hundreds of
consecutive steps).

Many over ground walking studies examine how
information processing load affects gait rhythm or stability,
(i.e., spatiotemporal gait variables (Al-Yahya et al., 2011).
However, gait speed is a confounding variable, as spatiotemporal
gait variables are sensitive to changes in gait speed (Kang and
Dingwell, 2008; Stoquart et al., 2008; Szturm et al., 2013a;
Keene et al., 2016). Most of over ground walking studies use
an instrumented walkway, which records only 4–6 consecutive
steps. This method may reliably measure gait speed, but is
not sufficient for measures of gait variability or periodicity,
particularly during dual-task walking (Bruijn et al., 2009;
Hollman et al., 2010; Galna et al., 2013).

The purpose of this study is to establish the psychometric
properties of the test protocols and the dual-task outcome
measures of the GRP during treadmill walking. This is an
important initial step before it can be routinely used clinically
or in community centers for screening, fall risk assessment, and
rehabilitation, as well as for preventative measures. Although,
the test-retest reliability of mean values of spatiotemporal gait
parameters has been assessed for reliability while walking alone,
little is known about the test-retest reliability of gait variability
while performing concurrent executive tasks (Brach et al., 2008;
Paterson et al., 2008; Beauchet et al., 2011; Faude et al., 2012).

The first objective was to establish test-retest reliability of
outcome measures that represent gait performance, visuomotor
(VM) performance, and visuospatial executive function when
tested during dual-task conditions. The second objective was
to examine the discriminative validity of the computerized
outcome measures. Specifically to examine the influence that
information processing load has on gait function, and vice versa
to examine the influence that physical demands of walking
have on visuospatial cognition. A better understanding of
the interactions between physical demands of walking and
visuospatial cognition will be important for identifying high-risk
scenarios that people might encounter outside the lab, and for
designing effective, personalized exercise programs suitable for
community applications.

METHODS

Participants
Twenty-five adults participated, 19male and 6 female, themedian
age of 65 years (range 60–67) who attended a Medical Fitness
Facility. The participants were able to walk outside without any
walking aids and had no self-reported history of falling. Exclusion
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criteria included histories of neurological or musculoskeletal
disorders (e.g., stroke, hip/knee joint surgery). All participants
provided written consent. The study was approved by the
University of Manitoba research ethics committee. Prior to
testing, each participant completed a 6-min walk test on a 300-
m track, and the average walking speed was determined over a
25-m distance.

Tests and Instrumentation
Figure 1A presents the components of the treadmill platform.
Participants stood on a treadmill at a viewing distance of 100
cm from an 80 cm computer monitor. The following tasks were
performed while walking on a treadmill at 0.9m/s: for 1min:

a) Walk only (single task condition),
b) Walk while performing a Visuomotor (VM) task,
c) Walk while performing a Visuospatial Executive Game (VEG)

task.

As presented in Figure 1 the treadmill is instrumented with a
pressure mat (Vista Medical, Canada) which was used to record

vertical foot contact forces and to compute spatiotemporal gait
variables (Betker et al., 2008). At a walking speed of 0.9 m/s,
and duration of 1 min, then data for 30 consecutive steps were
obtained. Before starting the tests participants walked for 5 min
to acclimate to treadmill walking. Test 2 was conducted 1 week
after test 1.

Visuospatial Executive Tasks
A custom computer application with the following two
assessment modules was used for this study: (a) a Visuomotor
(head tracking) module and (b) a Visuospatial Executive game
(VEG) module (Szturm et al., 2013a, 2015a). An inexpensive,
commercial motion sense mouse (Gyrations, SMK-Link, USA)
was used to control and interact with the visuospatial executive
games. The motion-sense mouse is small with inertial sensors
which are used to derive instantaneous angular position. The
motion sense mouse allows head angular rotation to be translated
and interpreted as a standard USB computer mouse. Velcro
secures the wireless motion mouse to a headband, and with this
simple method, the head rotation is used as the pointing device

FIGURE 1 | Panel (A) is an illustration of the treadmill platform and experimental set-up. Participant is walking on the instrumented treadmill while viewing a computer

monitor. Head rotation (via motion mouse) is used to interact with the visuospatial executive task. Panel (B) presents a snapshot of the recorded treadmill pressure

mat and the trace of center of foot pressure displacement for a complete gait cycle. Panel (C) presents AP and ML COP time-series data for 3 steps. Maxima and

minima of COP excursion for right and left steps are quantified, and use to compute swing and step times and step length.
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to control the position and motion of the computer game sprite.
Therefore, a hands-free computer/game controller to interact
with the game activities of the assessment software is introduced.
Head pointing movements are among the most natural and
can easily be performed with minimal instruction and by most
people.

Visuomotor (VM) Task
The goal is to align two moving objects. One object, a bright
circular object, is computer controlled and moved horizontally,
left and right (cyclic motion) on a computer display for 45 s.
Motion frequency was 0.5 Hz and amplitude was 70% of monitor
width. The second object, a square, was slaved to head rotation
using the head-mounted motion sense mouse (Szturm et al.,
2015a). The goal of the task is to maintain an overlap of the two
objects for 45 s. The computer application generates a logged
data file to record the coordinates of the circle (target) and
square (head rotation) at 100 Hz. The data file is processed
off-line to quantify visuomotor performance as described below.

Participants were tested in one direction, (a) horizontal motion
(left/right).

Visuospatial Executive Game (VEG) Task
The goal was to move a paddle (the game sprite) to interact with
moving game objects. Head rotation via the motion sense mouse
was used to move the game paddle and catch the target objects
while avoiding distractor objects. See Figure 2A for illustration
of the game function. The target object was a brightly colored
circle and the distractor object was an oval shaped object. The
target and distractor objects appear at random locations at the
top of the monitor and moves to the bottom in a time period of
1.5 s and then disappear. For each game event (target appearance)
the participant moves a game paddle along the bottom of the
display to catch the target object and avoid any distractor objects.
The game was played for 60 s or 45 game events. The software
indexes the “times” for the appearance and disappearance of
each target game object and logs the position coordinates of the
game objects and game paddle (participant’s head rotation) at a

FIGURE 2 | Illustration of the game objects and motions of the visuospatial executive game. Panel (A) Screenshot of the VEG game software. The target

appears at the top of the screen at a random location and the participant interacts with the target. Panel (B) presents the trajectory for one game movement response

from target appearance to target disappearance panel (C) presents overlay trajectories of all game movement responses (as shown in panel B) for one game session

of 60 s duration. Some game movements are upward and some downward (i.e., different movement directions), and some game movements are medium and some

large amplitudes. Panel (D), the game movement responses of panel (C) are sorted and grouped in bins, which in this case represent medium amplitude movement

responses for both directions; leftward game movements (upward trajectories), and rightward game movements (downward trajectories).
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FIGURE 3 | Presents Synchronous plots of the target cursor motion

and user movement trajectories (head rotation) for a typical VM

tracking task. Maxima are the left most position and minima the right most

position.

sampling rate of 100 Hz. The data file is processed off-line to
quantify visuospatial executive performance as described below.

The visuomotor and visuospatial executive game tasks were
performed in standing (baseline and during treadmill walking
(dual-task condition).Prior to testing, the participants were
allowed to play the tracking and game tasks while sitting for a
few minutes to become familiar with each task.

The treadmill walking tasks were difficult when performing
the concurrent game tasks. The treadmill was equipped with
safety side rails in easy reach, and participants were fitted with a
safety harness secured above to a support system. Also during all
test a Physical Therapist stood behind the participants to provide
assistance if required.

DATA ANALYSIS

Spatiotemporal Gait Variables
The average and coefficient of variation (COV) over 30
consecutive steps were determined for (a) right step time, (b)
right single support times, and (c) right step length. Step time
is defined as the time from a right foot off (beginning of left
single support) to left foot off. Note analysis was also performed
for left steps. Since the statistical analysis showed no significant
difference in means of right and left gait variables, only the right
gait variables will be presented.

Visuomotor Performance
Figure 3 presents synchronous plots of the target motion (circle)
and user head rotation (square) for a typical visuomotor task.
A sine-wave function of the reference target cursor waveform
was determined, Head rotation trajectories were fit to the sine-
wave function, and the coefficient of determination (COD) was
computed based on total and the average residual difference
between the position (pixel coordinates) of the target and head
cursor for all sampled data points. The first two cycles of the
tracking tasks were excluded to allow the participants’ time to

acquire the moving target and begin tracking. MATLAB (The
Math Works, Natick, MA, version 2010a) was used to compute
the COD.

Visuospatial Executive Performance
Measures
Figure 2B presents the trajectory of an individual game
movement response. Each game event was 1.5 s in duration from
target appearance to target disappearance. Figure 2C Presents
overlay trajectories of individual game movement responses in
one game session. Based on time indices of target appearance
and disappearance the software segments all game movement
traces for each direction and game movement amplitude. The
software then sorts these movement traces by direction and for
medium amplitude movements (Figure 2D). Thus, the software
produces multiple, standardized contextual movement events
(Players actions) for each direction. For a detailed description
of the game movement indexing and segmentation see (Lockery
et al., 2011; Szturm et al., 2015a). The following variables were
quantified; (a) success rate determined as the percentage of target
objects that were caught, (b) average Response Time: the time
from target appearance to the start of the game paddle movement
and (c) average Movement Time, the time from start of the
game paddle movement to the time it reaches its plateau at the
point the target disappears Response Time and Movement Time
were averaged over all game movement responses separately
for leftward and rightward directions. Statistical analysis (paired
t-test) revealed no significant difference in average response time
or average movement time between leftward and right game
movement responses, and therefore only averages for leftward
game movements are presented in the present study.

Statistical Analysis
Relative reliability was assessed using a fixed model intra-class
correlation coefficient (ICC) (Weir, 2005). The ICC scores
were interpreted as high when equal to or greater than 0.70, as
moderate between 0.5 and 0.69, and as low when less than 0.50
(Lexell and Downham, 2005). Absolute reliability was analyzed
using standard error of measurement (SEM). Systematic errors
between the test periods were evaluated using a paired t-test.
Normality of data was assessed using the Shapiro-Wilks test
(n < 50). This test revealed a normal distribution for all
variable (p > 0.1).

Discriminative validity was evaluated using a paired t-test
to examine the effect of dual-task conditions on; (a) gait
performance and (b) visuomotor and visuospatial executive
performance. For the VM and VEG performance measures,
the single task condition is when performed in standing on a
fixed surface and the DT condition is when performed during
treadmill walking.

SPSS software for Windows, version 20.0 (SPSS Inc. Chicago)
was used for all statistical analysis procedures.

RESULTS

Nineteen females and six males participated. The median age
was 65, range 61–68 years. Group average gait speed was 1.1m/s
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and a standard deviation (SD) of 0.14, and the average distance
walked in 6 min was 532m and SD of 87. All participants walked
outdoors on a regular basis, and none had reported a fall in the
last year.

Table 1 presents the results of the test-retest reliability analyses
for the temporal and spatial gait variables. With a few exceptions,
high ICC values of 0.71–0.85 were observed for both averages
and COV. Moderate ICC values were observed for average step
length (0.65) during the visuomotor task, and for SL COV
(0.65) when performing the executive game task. The standard
error of measurement (SEM) as a percentage of the group
mean values ranged from 4 to 15% and was less than 10%
in the majority of cases. Based on a paired t-test analyses, no
systematic errors in the average or COV variables were observed
between the two test sessions for either the single or the two
DT walk conditions. As presented in Table 2, moderate ICC
values of 0.6–0.65 were observed for visuomotor and executive
game performance measures. The SEM as a percentage of the
group mean values for the visuomotor task was 15%, and for the
executive game performance measures, it ranged from 5 to 11%.
The results of the paired t-tests revealed no significant difference
in visuomotor or executive performance measures between the
two test periods.

Group means and 95% CI for average and COV of
spatiotemporal gait variables obtained during walk only and

TABLE 1 | Results of statistical analysis, ICC scores, standard error of

measurement (SEM), group means and 95% confidence interval (CI) for

the spatial and temporal gait parameters during the three walking

conditions.

Task conditions Test 1 Mean (95%CI) Test 2 Mean (95%CI) ICC SEM

WALK ALONE

Avg-SsT, ms 376 (359.6–392.4) 386 (369.3–402.7) 0.8 19.1

Avg-SwT, ms 457 (429.6–484.4) 478 (450.6–505.4) 0.7 40.7

Avg-SL, cm 40.4 (38.1–42.7) 41.6 (39.7–43.5) 0.8 2.9

COV-SsT 10.4 (9.48–11.3) 10.7 (9.9–11.5) 0.8 1.1

COV-SwT 12.1 (10.6–13.6) 11.5 (10–13) 0.9 0.5

COV-SL 14.7 (13.1–16.2) 15.3 (13.9–16.8) 0.8 1.6

DT-VM

Avg-SsT, ms 401 (379.6–422.4) 393 (376.2–409.4) 0.8 30.3

Avg-SwT, ms 437 (409.6–464.4) 421 (393.6–448.4) 0.8 36.1

Avg-SL, cm 32.5 (30.7–34.3) 31.8 (30.3–33.3) 0.7 2.6

COV-SsT 13.2 (12–14.4) 13.7 (12.2–15.2) 0.7 1.5

COV-SwT 12.7 (11.5–13.9) 11.5 (10.3–12.7) 0.7 1.7

COV-SL 16.2 (14.7–17.7) 16.3 (15.2–17.4) 0.9 1.2

DT-VEG

Avg-SsT, ms 445 (422.2–467.8) 436 (419.7–452.4) 0.7 35.1

Avg-SwT, ms 294 (281.2–306.8) 302 (288.1–315.9) 0.7 18.3

Avg-SL, cm 32.5 (30.7–34.3) 32.5 (30.8–34.2) 0.8 4.1

COV-SsT 16.2 (14.3–18.1) 19.4(17.3–21.5) 0.8 2.1

COV-SwT 19.8 (18.9–20.7) 20.0 (17.7–22.3) 0.7 1.3

COV-SL 23.9 (22.3–25.5) 23.1 (21–25.2) 0.8 2.1

SsT, single support time; SwT, swing time; SL, step length; Avg, Average; COV, coefficient

of variation (%).

dual-task walk conditions are presented in Figures 4, 5

respectively. As presented in Table 3 all temporal and spatial gait
variables did demonstrate a significant change when performing
the visuospatial executive tasks (DT condition) as compared to
walk alone (single task condition). Average swing time (p < 0.01)
and average step length (p < 0.001) significantly decreased from
single to dual-task conditions, whereas average single support
time significantly increased (p < 0.001) from single to dual-task
conditions. Group means and 95% confidence intervals (CI) are
presented in Table 1. There was a significant increase in COV
for all gait variables when performing the visuospatial executive
game task as compared to walk alone (p < 0.01). As presented
in Table 3 the majority of gait variables did not demonstrate a
significant change when performing the visuomotor task. There
were two exceptions; a significant decrease in Average step length
(p< 0.001) and a significant increase in single support time COV
(p < 0.001) as compared to walk alone.

Figure 6 presents the group means and 95% CI for the
visuomotor performancemeasure obtained during walk only and
dual-task walk conditions. As presented in Table 4 there was
a significant decrease in visuomotor performance when tested
during treadmill walking as compared to standing; (p < 0.001).
Group means and 95% confidence intervals (CI) are presented in
Table 2. When tested in standing visuomotor performance was
0.78 and decreased to 0.65 during walking.

Figure 7 presents the group means and 95% CI for the
visuospatial cognitive performance measures obtained during
walk only and dual-task walk conditions. As presented in
Table 4 there was a significant decrease in visuospatial executive
performance when tested during treadmill walking as compared
to standing. There was a significant decrease in success rate (p <

0.04), but no significant change in Response time or Movement
Time when tested during treadmill walking as compared to
standing. Success rate, when tested in standing, was 94%, as
compared to 82% during walking.

DISCUSSION

High ICC values (greater than 0.8) have been reported for average
gait variables during overground and treadmill walking (Brach
et al., 2008; Paterson et al., 2008). In the present study comparable

TABLE 2 | Results of statistical analysis, ICC scores, standard error of

measurement (SEM), group means and 95% confidence interval (CI) for

visuomotor and Visuospatial Executive Game tasks during treadmill

walking.

Outcome Test 1 Mean Test 2 Mean ICC SEM

measures (95%CI) (95%CI)

VISUOMOTOR

COD 0.6 (0.6–0.7) 0.7 (0.6–0.7 0.7 0.1

VISUOSPATIAL EXECUTIVE GAME

Success Rate, % 82.5 (79.5–85.5) 84 (83.3–88.7) 0.7 3.6

Avg-Response Time, ms 502 (475.5–528.5) 493 (465.9–508.1) 0.6 41

Avg-Movement Time, ms 526 (505.7–552.3) 514 (482.5–535.5) 0.6 56

Frontiers in Human Neuroscience | www.frontiersin.org 6 March 2017 | Volume 11 | Article 105

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Szturm et al. Dual Task Assessment of Gait and Cognition

FIGURE 4 | Presented are group means and 95% confidence intervals

(CI) for the average spatiotemporal gait variables (SsT, SwT, SL)

obtained during walk only and dual-task walk conditions.

high to moderate ICC values were observed for all average gait
variables during walk alone trials. The present results extend
reliability analysis to include DT treadmill walking involving
computerized visuomotor and visuospatial executive tasks. A
number of studies have reported low ICC values (less than 0.4)
for measures of gait variation (Brach et al., 2008; Paterson et al.,
2008; Faude et al., 2012). Immediate test re-test reliability was
examined in older adults (mean age of 75.5 years) during an
over ground DT walking test consisting of counting backward
(Beauchet et al., 2011). Low ICC values of 0.28 for stride

FIGURE 5 | Presented are group means and 95% CI for COV of the

spatiotemporal gait variables (SsT, SwT, Sl) obtained during walk only

and dual-task walk conditions.

variability were observed. In contrast, the present results show
modest to high ICC values for COV of gait variables during DT
treadmill walking. There are a few important differences between
the present study and the studies using over ground walking.
In the present study participants viewed a computer monitor
and performed standardized visual-spatial executive tasks for a
duration of 60 s. The VEG tasks employed in the present study
were executively demanding, requiring timely responses (less
than 1 s) to identify amoving object as the target or a distractor, to
estimate its final position, and tomove the game sprite using head
rotation in order to intercept the moving target, i.e., accuracy
requirement. Secondly, walking speed was controlled and over
30 consecutive steps were recorded, as opposed to recordings of
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TABLE 3 | Effect of dual-tasking on spatiotemporal gait variables (Average

and COV).

Gait variables Walk alone vs. Walk + Walk alone vs. Walk +

visuospatial task visuomotor task

t-statistics, p-value t-statistics, p-value

Avg-SsT 4.5, 0.01 1.9, 0.07

Avg-SwT 10.1, 0.01 1.0, 0.3

Avg-SL 8.5, 0.01 6.8, 0.01

COV-SsT 5.4, 0.01 3.7, 0.01

COV-SwT 8.1, 0.01 0.6, 0.5

COV-SL 7.8, 0.01 1.4, 0.18

Degrees of Freedom (df) = 24.

FIGURE 6 | Presented are group means and 95% CI for the visuomotor

performance measure obtained during fixed surface standing and

dual-task walk conditions.

TABLE 4 | Effect of dual-tasking on Visuomotor and Visuospatial

executive game performance measures.

Outcome measures t-statistics, p-value

VISUOMOTOR TASK

Coefficient of Determination (COD) 4.5, 0.01

VISUOSPATIAL EXECUTIVE TASK

Success Rate, % 2.3, 0.04

Avg-Response Time, ms 0.1, 0.9

Avg-Movement Time, ms 0.9, 0.4

Degrees of Freedom (df) = 24.

a small number of consecutive steps on a short walkway (i.e., 3–
5 m). Many studies have demonstrated that spatiotemporal gait
variables are influenced by walking speed (Kang and Dingwell,
2008; Stoquart et al., 2008; Keene et al., 2016). Furthermore, it
has been shown that using a continuous walking protocol instead
of short intermittent walks, and collecting more than 30 steps

FIGURE 7 | Presented are group means and 95% CI for the visuospatial

executive performance measures obtained during fixed surface

standing and dual-task walk conditions.

improved reliability, in particular for measures of gait variability
(Galna et al., 2013). Low between day ICC values (less than 0.4)
for gait variation has been reported for active, healthy older adults
(mean age of 64 years) when tested on a treadmill (Faude et al.,
2012). It is not clear why this large difference (during walk alone
condition) is observed between the present study and the results
of (Faude et al., 2012). One difference is the walking speed of the
two studies; 1.3 vs. 0.9 m/s. A lower speed was used in the present
study because the addition of the visuospatial executive activities
did make the walking more difficult.

The present results show a small absolute variability; SEM
ranged from 4 to 15% of the mean scores and the majority were
less than 10%. Taken together the moderate to high ICC values

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2017 | Volume 11 | Article 105

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Szturm et al. Dual Task Assessment of Gait and Cognition

and the small measurement error indicate that this tool has the
ability to repeatedly record reliable data from active older adults,
and would serve as acceptable outcome measures to examine
effects of preventative measures and targeted interventions on
dual-task walking performance.

Ability to recover from a sudden loss of balance is only
part of the equation that governs the probability of falling;
also important is what causes the instability. Besides large
physical disturbances, performing a concurrent executive task
can lead to a sudden change in locomotor rhythm and even
falls. A number of studies have examined the interaction among
physical and information processing load as a function of
aging using a DT paradigm (Plummer-D’Amato et al., 2012;
Xiangde, 2014). In the present study where speed is held constant
all gait variables tested (average and COV) except one case
were significantly affected when performing the visuospatial
executive task as compared to walk alone. Average Single support
time did increase when the information processing load was
added. These findings for average gait variables would indicate
the main effect of visuospatial processing load on locomotor
rhythm. There was also a significant increase in COV for all
gait variables when the visuospatial load was increased. These
results are consistent with other studies which have examined
dual-task effects on gait variation during overground walking
in healthy young and older adults (Ijmker and Lamoth, 2012;
Montero-Odasso et al., 2012). Variation of gait variables has
often been used to index gait stability (Baltadjieva et al., 2006;
Herman et al., 2010; Lord et al., 2011). Herman et al. (2010)
reported swing time variability to be nearly 20% higher in fallers
compared to non-fallers. Unlike the dual-task visuospatial trials,
there was little change in gait performance during the dual-
task visuomotor trials. The VM task has very simple executive
demand, overlap two visible objects. This may explain why
the dual-task VM trials had little effect on spatiotemporal gait
variables.

A significant decrease in the Success Rate of the visuospatial
tasks was observed during treadmill walking. However, Response
Time and Movement Time were not affected by the increased
processing demands of treadmill walking. Motor planning and
temporal parameters of precision movements would not be
the only factors that contribute to movement accuracy of the
visuospatial task. The estimation of the final target position
and control requirements of the head rotations would also
contribute to movement accuracy. This is an area that will
receive further investigation. The performance of the visuomotor
task also decreased during treadmill walking as compared to
standing. The VM task required continuous visual attention and
foveation to determine the relative positions (overlap error) of
2 moving objects, and this spatial feedback would be required
to maintain or restore their overlap. The significant decline in
VM performance is likely due to the increase in the amount of
passive head movement between standing vs. treadmill walking.
There is a considerable increase in the magnitude of passive
head velocity during walking, as much as 10 times of that seen
during standing (Szturm et al., 2015b). Passive head motion will
cause increased retinal image slip, and thus affects the ability to
stabilize gaze during continuous fixation tasks, such as, tracking

and interacting withmoving targets (Scherer et al., 2008; Lambert
et al., 2010).

Most commonly dual-task studies have utilized executive
tasks, like walking while talking, verbal fluency or number
subtraction that is typically only assessed qualitatively,
do not involve visuospatial processing, and are limited in
what individual brain areas are recruited (Al-Yahya et al.,
2011).Visual attention, tracking, choice responses and the
processing of object locations/trajectories and their spatial
relations with respect to other objects are key aspects to
consider in locomotor control and are important factors
in fall risk (Bagurdes et al., 2008; Nagamatsu et al., 2009;
Murray et al., 2010). The present computerized dual-task
protocols broaden the types of standardized executive activities
for use with treadmill walking that has previously been
reported.

Study Limitations
Treadmill walking does constrain gait, for example, by the
belt width, and does not reflect all aspects of over ground
walking behavior (Hollman et al., 2016). The present visuospatial
computer task involves both head rotation and information
processing, and at this point we cannot rule out any
intersegmental mechanical effect of the head rotation as a cause
of the gait changes observed between the walk alone and the DT
walk trials. Head rotations during the VEG task were relatively
small and slow i.e., the majority of the head rotations for game
responses were less than 20◦ and movement duration was in the
order of 500 ms. Therefore, every 2 s the participant produced
these small ramp head rotations. The head movements were
rotations so the mass center of the head segment would not
change relative to body center of mass. Duysens et al. examined
COP migration during an open-loop tracking tasks (up to 30◦

of visual target motion) while treadmill walking (Duysens et al.,
2008). Three tasks were performed; tracking with eye movements
only (head stationary), tracking by rotating the head in synchrony
with the moving visual target (open-loop tracking task), and
tracking while rotating the trunk in synchrony with the moving
visual target. The results demonstrated no significant deviation
of the COP migration when participants performed the tracking
task with eye or head rotation, whereas, trunk rotations led to a
doubling of ML-COP deviation. The mechanical effect of head
rotation on gait rhythm pacing and variation will receive further
investigation.

CONCLUSION

This study demonstrates the reliability and reproducibility of
the computer-based assessment tool for DT treadmill walking.
The high to Moderate ICC values, the small standard errors of
measurement and the lack of systematic errors in the measures
indicate that this tool has the ability to repeatedly record
reliable data from community-dwelling older adults Improved
and affordable methods of screening and fall risk assessment
in the community particularly are important because continued
difficulties and fall injuries will have a sizable impact in this
population.
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