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Abstract

Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in
the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention
differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons’ tuning curves
are modulated similarly across different visual areas under both these modes of attention. Here, we explored the
mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical
neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific
microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional
grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with
similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A
crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant
feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation
selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial
attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed
widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and
inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the
psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically
suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of
neuronal responses and visual perception.
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Introduction

Visual attention is a function of the brain that boosts our

perception by selectively enhancing neuronal responses to

particular visual stimuli [1–7]. It enables the brain to attend to

the momentarily most important information [8], thereby

enhancing perception in a number of aspects [1,9–12]. Visual

attention functions in two distinct modes: the spatial and the

feature-based mode. Numerous studies have shown that directing

attention to the spatial location or the distinguishing features of a

visual target differentially enhances the related neural responses

and the discriminability of visual stimuli [13–16]. For instance,

neurons in visual cortices respond strongly to a bar presented in

their receptive fields and aligned with their preferred orientation

[3,17]. If the subject attends to the spatial location of the bar, the

gain of neuronal responses is boosted in an arbitrary orientation,

including the preferred one. In contrast, if the subject attends to a

specific feature of the visual stimulus (i.e., its orientation or

direction of motion), the sharpness of the cells’ tuning curve is

enhanced, implying that the cells’ response gain is increased

around its preferred feature but is decreased around the

orthogonal feature [13,14]. Network models have been proposed

to explain the attentional modulation of visual responses [3,18–

29]. However, the underlying mechanisms of the different

attentional modes are poorly understood.

Previously, we constructed a network model with a pair of

layered microcircuit models [30] to account for the classical

experimental results on visual attention reported by Reynolds

et al. [3]. Here, we extend the results of the previous models

primarily in two aspects. First, we explore the mechanisms of

different response modulations in the spatial and feature-based

modes of attention. We hypothesize that such differences emerge

from differential top-down influences on visual cortical networks,

rather than from the presence of different neural circuits

specialized for the two modes of attention. Second, we study the

effects of attention for orientation selectivity by constructing

networks of multi-layered cortical microcircuits of integrate-and-

fire neurons with a biologically plausible cortical laminar structure
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[31]. We modeled each microcircuit (e.g., the relative cell

populations and connection probabilities in its individual layers)

based on the anatomical and electrophysiological properties of

cortical microcircuits [32–34]. Some of these data were obtained

from the rodent neocortex, which does not have a clearly

distinguished columnar organization [35,36]. Therefore, each

microcircuit model describes a functional group of neurons with

similar characteristic responses, but does not necessarily describe a

spatially grouped neuron population such as a cortical column.

In the visual pathway the bottom-up input carrying sensory

information projects to cortical layers 4 and 6 (L4 and L6),

whereas the top-down input from higher visual areas carry

attentional information to L2/3 and L5, avoiding L4 [28,37–39].

Conversely, the output to higher cortical areas arises from the L2/

3, L5, and L6 of the lower areas, and neurons in L2/3 mediate the

synaptic interactions among functionally grouped microcircuits

within the visual cortex. Since the top-down influence of attention

has been suggested for neuronal responses in visual area V4 [40],

response modulations in the spatial and feature-based modes of

attention may arise from complex interactions between bottom-up

sensory and top-down attentional inputs within layered cortical

networks [14,28]. Our cortical microcircuit model allows us to

explore how these 2 inputs, which are distributed differently across

functional microcircuits, interact mutually through inter-laminar

and inter-microcircuit (inter-mc) synaptic connections. Due to a

limitation of simulation resources, our model is restricted to a

portion of the visual cortical space sharing a common receptive

field. Therefore, our model cannot deal with competition induced

by bottom-up attention and saliency map among spatially

distributed stimuli [41,42]. However, our model partly takes into

account the importance of bottom-up mechanisms of attention

because it integrates the effects of bottom-up visual input and top-

down attention in the cortical laminar structure. We demonstrate

that the resultant attentional modulations are consistent with those

observed experimentally. Furthermore, our model accounts for the

differential effects of the spatial and feature-based modes of

attention on visual discriminability [16].

Results

We previously constructed a model of the visual cortex by

connecting 8 identical layered microcircuits (Figure 1) [30,31].

Each layered microcircuit has L2/3, L4, L5, and L6, and each

layer includes an excitatory pool and an inhibitory pool

(Figure 1A). The 8 microcircuits have different preferred

orientations, share the receptive field, and interact with one

another through lateral inhibition and excitatory horizontal

connections between microcircuits with similar orientation selec-

tivity (Figure 1B) [35]. Our grouped microcircuit model is best

suited for describing the neural networks of the primary visual

cortex (V1) that are activated by oriented bars. A bottom-up

sensory input representing an oriented bar projects to neurons in

Figure 1. Model architecture of layered visual cortical micro-
circuits. A, Intra- and inter-laminar synaptic connections and external
inputs of a multi-layered microcircuit. Our model has 8 orientation-
selective unit microcircuits, each of which comprises 20,000 integrate-
and-fire neurons and constitutes L2/3, L4, L5, and L6. Triangles and
circles represent excitatory or inhibitory neurons, respectively. Thick
arrows represent strong synaptic connections with connection proba-
bility C.0.13, and narrow arrows represent synaptic connections with
C.0.065. Other weaker synaptic connections are not shown. Layer 2/3
mediates inter-mc connections among orientation-selective microcir-
cuits. Visual stimuli mimicking oriented bars project to both L4 and L6,
while top-down attention projects to L2/3 and L5. B, Inter-mc synaptic
connection of our model. Oriented bars on cylinders represent the
preferred orientation of the individual unit microcircuits. The microcir-
cuit model has two types of inter-mc connections mediated within L2/3:
one is the lateral inhibition among microcircuits mediated by
projections from excitatory neurons in 1 microcircuit to inhibitory
neurons in the others (Exc-Inh). The other type is excitatory-to-
excitatory connections between microcircuits with similar orientation
selectivity (Exc-Exc). We had set a higher connection probability for Exc-
Exc connections than for Exc-Inh connections.
doi:10.1371/journal.pone.0080788.g001

Figure 2. Visual stimuli and top-down input in our model. A,
Bottom-up visual inputs when a vertical bar is presented in the
common receptive field of functionally grouped microcircuits are
schematically illustrated. The thickness of each input represents its
strength. The bottom-up inputs project most strongly to the
microcircuits that prefer a vertical orientation and less strongly to the
others. B, The top-down input mediating spatial attention is directed to
the location of the model’s receptive field and hence activates
functionally grouped microcircuits. C, The top-down input mediating
feature-based attention only projects to the microcircuits that prefer
the attended orientation.
doi:10.1371/journal.pone.0080788.g002

Mode-Dependent Attention in a Microcircuit Model
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each microcircuit with different intensity depending on the

stimulus orientation and the preferred orientation of the neurons

(Figure 2A). Top-down input carrying spatial attention, i.e.,

attention to the location of the receptive field [13], is mediated by

homogeneous projections to all microcircuits irrespective of their

orientation selectivity (Figure 2B). In contrast, top-down input

carrying feature-based attention, i.e., attention to an oriented bar

in the location outside the cell’s receptive field [14], projects

selectively to the microcircuit that prefers the attended orientation

(Figure 2C). Further details of the model are explained in the

Materials and Methods section.

Further, we conducted some studies to understand the network

mechanisms of attentional modulations in the neuronal responses

observed in visual cortices [13,14]. These previous studies involved

complex visual stimuli that are difficult to replicate in a network

model with only a single cortical area; the experimental results

demonstrated similar effects of spatial and feature-based modes of

attention on the tuning properties of neurons in different visual

cortices. Therefore, in order to elucidate the underlying mecha-

nism, we carried out simulations in a very simple case in which a

variety of oriented bar stimuli were presented to subjects in this

study. In each trial, the expected location (spatial attention) or the

orientation of a stimulus (feature-based attention) was prompted

by a visual cue for directing the animal’s attention to the stimulus

shown in the receptive field. Below, we explain the responses of

model neurons in different scenarios.

Neuronal responses of the microcircuit model under
spatial attention

We first calculated the orientation tuning of neuronal responses

under spatial attention. To this end, we applied a bottom-up

sensory stimulus mimicking a vertical bar to L4 and L6 of

microcircuits with preferred directions close to the vertical

orientation. Top-down attentional input was applied with identical

strength to L2/3 and L5 of all microcircuits (see Materials and

Methods, Figure 1A and 2B). Figure 3 summarizes the mean

population firing rates in the neutral condition (i.e., without

attentional input) and under spatial attention (with attentional

input) from 50 simulation trials. The average responses of neurons

in microcircuits with different preferred orientations are plotted as

a function of orientation. Because of the model’s circular

symmetry, the population tuning curve was equivalent to the

tuning curve of single neurons responding to a bar stimulus

presented in various orientations. For excitatory neurons in L2/3

and L5 and all inhibitory neurons, tuning curves are well

approximated by Gaussian distributions.

Figure 3. Model responses to a vertical bar for both neutral
condition and spatial attention. The population rates of excitatory
(A) and inhibitory (B) neurons for each layer of the microcircuit model
are represented by solid and dashed lines, respectively. Oriented bars at
the bottom present the preferred orientation of each layered
microcircuit. Gray and black lines show the responses of the model
without attentional input (neutral condition) or during spatial attention,
respectively. The tuning curves of L2/3 and L5 excitatory neurons and
inhibitory neurons in all layers were fitted to Gaussian distributions.
Asterisks indicate that the differences in the population firing rates
between the 2 conditions for this oriented bar was statistical significant
(t-test: ** for p,0.01; * for p,0.05; – for p,0.1).
doi:10.1371/journal.pone.0080788.g003

Figure 4. Model responses to a vertical bar for both neutral
condition and feature-based attention. Population responses of
excitatory (A) and inhibitory (B) neurons in the model. All the
conventions are the same as those used in Figure 3. The model
received a bottom-up input mimicking a vertical bar. The neuronal
responses were compared between the 2 cases; i.e., in the neutral
condition and in feature-based attention, where the responses in the
neutral condition are identical to those shown in Figure 3. We used
Gaussian distributions for curve fittings.
doi:10.1371/journal.pone.0080788.g004

Mode-Dependent Attention in a Microcircuit Model
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Irrespective of orientation selectivity, spatial attention markedly

enhanced the population activities in L2/3 and L5 of both

excitatory and inhibitory neurons. This enhancement of the

population firing rates in the model is consistent with results of

several physiological experiments on spatial attention (cf. Figures 2,

4–7, and 10 in [13]). In the present model, excitatory neurons in

L4 and L6 showed a contrasting difference to L2/3 and L5

neurons in the tuning curves as well as in their attentional

modulations: top-down spatial attention significantly suppressed

the population firing rates of L4 and L6. This suppression of L4,

which was previously shown to be useful for a rapid shift of

attention, occurs primarily due to an enhanced excitatory drive of

L4 inhibitory neurons provided by L2/3 and L6 excitatory

neurons [30]. Although our knowledge of the precise connectivity

is limited, the connection probabilities of inter-laminar projections

determined based on electrophysiological and anatomical data

[32–34] predict that L4 and L6 of the visual cortex can exhibit

different modulation patterns from those in other layers, possibly

to accelerate the speed of analyzing visual objects with multiple

complex features. This point is further discussed below.

Neuronal responses of the microcircuit model under
feature-based attention

Next, we calculated the orientation tuning of neuronal responses

under feature-based attention. As in the simulations for spatial

attention, a sensory stimulus mimicking a vertical bar was applied

to the unit microcircuits with preferred directions close to the

vertical orientation. However, attentional input was selectively

applied to these microcircuits and not to others (see Materials and

Methods and Figure 2C).

Figure 5. Statistical analyses of the orientation tuning curves. A, B, C, The baselines, amplitudes, and widths of the Gaussian tuning curves
for the responses of excitatory neurons in L2/3 (upper) and L5 (lower) are shown. The values of the Gaussian fitting parameters were obtained from
50 simulation trials in the neutral condition (gray bars), spatial attention (empty bars), and feature-based attention (filled bars). Asterisks indicate that
the parameter values were significantly different from those in the neutral condition (t-test: ** for p,0.01; * for p,0.05; – for p,0.1). D, The
histograms of the absolute peak locations of the tuning curves in L2/3 and L5 are shown for a vertical bar stimulus. Triangles show the median values.
We calculated P values for Mann-Whitney test to compare the histograms between the neutral condition and the 2 attentional conditions. Feature-
based attention significantly improved the detection of the presented orientation.
doi:10.1371/journal.pone.0080788.g005

Mode-Dependent Attention in a Microcircuit Model
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Figure 4 shows the population firing rates of different cortical

layers under feature-based attention. The tuning curves shown for

the neutral condition (gray lines) are identical to those in Figure 3.

In L2/3 and L5, feature-based attention markedly enhanced the

activity of those excitatory neurons in the microcircuits that

received both the preferred visual stimulus and attentional input.

In contrast, the activity of the excitatory cells in these layers that

preferred horizontal orientations to vertical ones was significantly

suppressed by attention. These results imply that feature-based

attention increases both gain and selectivity of the tuning

properties, which is consistent with the results of recent

physiological experiments [14]. Again, we observed deviating

tuning curves and modulation patterns for the excitatory neurons

of L4 and L6.

Statistical analyses of mode-dependent attentional
modulations

For both spatial and feature-based modes of attention, the

responses of excitatory neurons in L2/3 and L5 to oriented bars

are well represented by Gaussian tuning curves. A Gaussian tuning

curve has 4 parameters: the mean, standard deviation (SD), peak

amplitude, and asymptote. The mean represents the preferred

orientation, SD gives a measure of the tuning width, and the

asymptote describes the baseline neuronal activity. In order to

quantify the mode-dependent attentional modulations of our

model, we statistically analyzed the 4 Gaussian parameters in

different simulation conditions (i.e., neutral, spatial, and feature-

based). To compare the results with those obtained in physiolog-

Figure 6. Distributions of attention indices (AIs) over excitatory and inhibitory neuronal populations in L2/3 and L5. A, The
distributions of attention indices are displayed for spatial attention. The distributions of excitatory neurons (gray bars, upper panels) and those of
inhibitory neurons (empty bars, lower panels) are depicted. In all panels, filled bars indicate the neurons showing statistically significant modulations
by attention (t-test, p,0.01). Triangles show the median values. B, Similar distributions of attention indices are shown for feature-based attention.
doi:10.1371/journal.pone.0080788.g006

Figure 7. Influences of additional external noise on neuronal responses in our model. We carried out simulations at 4 different noise
levels. We computed the discriminability index d’ for L2/3 (A) and L5 (B) of the model responding to a vertical or a horizontal bar. The dashed line
shows the magnitude of d’ in the neutral condition. Solid gray and black lines indicate the results of spatial and feature-based modes of attention,
respectively. L2/3 and L5 showed similar changes in discriminability with changes in the noise level. Only at a low noise level, spatial attention
increased d’ compared to d’ in the neutral condition, whereas feature-based attention increased it at any noise level tested in this study.
doi:10.1371/journal.pone.0080788.g007

Mode-Dependent Attention in a Microcircuit Model
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ical experiments, we used the same statistical analysis method as

used in ref. [13].

Figure 5 summarizes the results of the analysis for the neutral

condition, spatial attention, and feature-based attention. The

average magnitudes of the tuning baseline, amplitude, and width

calculated from 50 simulation trials are displayed in Figure 5A, B,

and C, respectively. Figure 5D presents the frequency histograms

of the absolute value of the peak location (taken at the mean as an

approximation) under the three simulation conditions. First, we

compared the tuning properties of the neutral condition to those of

spatial attention. For L2/3, the magnitude of the tuning amplitude

was greater for spatial attention than for the neutral condition (t-

test, p,0.01; Figure 5B). In contrast, there were no significant

differences in tuning width (Figure 5C) and baseline (Figure 5A)

between the neutral condition and spatial attention (t-test, p.0.1).

These results demonstrate the marked effects of spatial attention

on the gain of the population response in L2/3 combined with an

invariance of orientation selectivity. For L5, we found a significant

increase in tuning amplitude, as well as baseline (t-test, p,0.01),

but no appreciable change in the tuning width (p.0.1). Therefore,

it appears that spatial attention induces an overall enhancement of

the amplitude of orientation tuning in L2/3 and L5. Since these

layers are the output terminals of the visual cortical microcircuits,

the enhancement of population firing rates will exert a strong

impact on the activity of downstream visual cortices. We did not

find any significant change in the peak location between the

neutral and spatial attention (Figure 5D, Mann-Whitney test,

p = 0.66 for L2/3 and 0.89 for L5). The overall enhancement of

the tuning curve and the invariance of the tuning selectivity in

spatial attention are in line with experimental results (see reference

[13]; Figures 2B, 4, and 7).

As in spatial attention, feature-based attention significantly

enhanced the amplitude of the tuning curves for both the layers (t-

test, p,0.01; Figure 5B). In contrast to spatial attention, however,

the magnitudes of both baseline (Figure 5A) and width (Figure 5C)

of the tuning curves in L2/3 and L5 were smaller for feature-based

attention than for the neutral condition (t-test, p,0.01). These

results imply that selective top-down input to specific microcircuits

not only boosts the gain but also sharpens the tuning curves of

population responses in the output layers of the visual cortex. Such

attentional modulations of gain and selectivity of the orientation

tuning curves are commonly observed in electrophysiological

experiments [14]. In our model, feature-based attention signifi-

cantly shifted the peak locations in L2/3 and L5 towards the

orientation of the stimulus (Figure 5D, Mann-Whitney test,

p,0.01), indicating a significant improvement in the accuracy of

analysis of stimulus orientation.

The response modulation patterns in L2/3 and L5 of our model

showed good agreements with the biased competition observed in

higher visual areas [3,21]. Figure S1 summarized the mean firing

rates of excitatory and inhibitory neurons in each layer of the

microcircuit with a preference for vertical bars in various stimulus

conditions for the biased competition. These responses of cortical

layers are similar to those of our previous model [30]. Whether

similar attentional modulations occur in V1, for which our model

may best suit, remains unknown since small receptive fields of V1

neurons precluded such experiment [17].

Table 1. Connection probabilities within and between layers
(between excitatory neurons).

From

To L2/3e L4e L5e L6e

L2/3e 0.1960 0.1405 0.0534 0.0126

L4e 0.0127 0.0859 0.0111 0.0750

L5e 0.1684 0.0680 0.1255 0.0338

L6e 0.0258 0.0349 0.0947 0.0664

The entry in layers i (row) and j (column) represents the probability that a
neuron in layer j receives synapses from a neuron in layer i.
e, Excitatory; i, Inhibitory.
doi:10.1371/journal.pone.0080788.t001

Table 2. Connection probabilities within and between layers
(from excitatory to inhibitory neurons).

From

To L2/3e L4e L5e L6e

L2/3i 0.1669 0.0601 0.1250 0.0070

L4i 0.1144 0.1809 0.0055 0.1750

L5i 0.0722 0.0346 0.0937 0.0142

L6i 0.0603 0.0056 0.0459 0.1089

The entry in layers i (row) and j (column) represents the probability that a
neuron in layer j receives synapses from a neuron in layer i.
e, Excitatory; i, Inhibitory.
doi:10.1371/journal.pone.0080788.t002

Table 3. Connection probabilities within and between layers
(from inhibitory to excitatory neurons).

From

To L2/3i L4i L5i L6i

L2/3e 0.2570 0.1041 0.0 0.0

L4e 0.0098 0.2405 0.0005 0.0

L5e 0.1030 0.0094 0.6233 0.0

L6e 0.0109 0.0275 0.0326 0.3728

The entry in layers i (row) and j (column) represents the probability that a
neuron in layer j receives synapses from a neuron in layer i.
e, Excitatory; i, Inhibitory.
doi:10.1371/journal.pone.0080788.t003

Table 4. Connection probabilities within and between layers
(between inhibitory neurons).

From

To L2/3i L4i L5i L6i

L2/3i 0.2270 0.0853 0.0 0.0

L4i 0.0048 0.2644 0.0 0.0

L5i 0.0445 0.0036 0.5288 0.0

L6i 0.0017 0.0008 0.0132 0.2389

The entry in layers i (row) and j (column) represents the probability that a
neuron in layer j receives synapses from a neuron in layer i.
e, Excitatory; i, Inhibitory.
doi:10.1371/journal.pone.0080788.t004

Mode-Dependent Attention in a Microcircuit Model
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Role of the inter-mc connections in the two modes of
attention

Our model could reproduce the qualitative and quantitative

differences between spatial and feature-based modes of visual

attention in terms of the orientation tuning curves. The

distribution of top-down input over the 8 microcircuits was crucial

for the mode-dependent attentional modulations. Further, we

explored the role of inter-mc horizontal fibers in the two modes of

visual attention by numerical simulations of a model that lacks

inter-mc connections between L2/3 excitatory neurons. In these

simulations, inter-mc lateral inhibition remained intact (Fig-

ure S2).

In spatial attention, the modulations of the orientation tuning

curves in L2/3 and L5 were similar for the original as well as in

the modified model (Figure S3). In addition, the tuning curves of

these cortical layers exhibited a similar modulation under feature-

based attention (Figure S4). In both the attention modes,

excitatory neurons in L4 and L6 showed attentional modulation

contrasting that shown by L2/3 and L5 neurons in the modified as

well as the original model. Interestingly, in the modified model, the

orientation tuning properties for L4 and L6 were preserved, unlike

in the original model shown in Figure 3 and 4.

To obtain a quantitative insight into the behavior of the

different models, we statistically compared the 4 parameters of the

Gaussian tuning curves for L2/3 and L5 excitatory neurons in the

neutral condition, spatial attention, and feature-based attention

(Figure S5). In particular, spatial attention slightly, but statistically

significantly, reduced the amplitude of the tuning curves for L2/3

in the modified model (Figure S5B, t-test, p,0.01). In addition,

there was no significant difference in the width between the

neutral condition and feature-based attention for both L2/3 and

L5 in the modified model (Figure S5C, t-test, p.0.1). Because

these modulation patterns seem to be inconsistent with the results

of psychophysical experiments [16], we may conclude that the

modified model is experimentally unacceptable.

Next, we carried out simulations of the modified model under

various stimulus conditions for biased competition [3,21].

Figure S6 showed the average firing rates of neurons in each

layer of the microcircuit with vertical orientation selectivity. The

modulation patterns for biased competition did not agree with

physiological findings [3,21]. In particular, the responses of

excitatory neurons in L2/3 were not sensitive to visual stimuli

and attention conditions. By contrast, a distractor horizontal bar

enhanced the activities of L5 excitatory neurons, which implies

that they were disinhibited (i.e., received a reduced inhibition) by a

certain network mechanism. These results suggest that the inter-

mc excitatory synaptic connections not only boost the population

responses of unit microcircuits responding preferably to the

presented stimulus, but also suppress the responses of microcircuits

with the opposite preference.

Response modulation of single neurons
We investigated the magnitudes of attentional modulation in

individual excitatory and inhibitory neurons in L2/3 and L5 of a

microcircuit with vertical preferred orientation. For the quantita-

tive analyses and statistical tests, we used the normalized attention

index (AI) defined as (A2U)/(A+U) for each neuron, where A and

U are the firing rates of neuronal responses to attended and

unattended stimuli [4,5]. In each trial, the firing rates were

averaged over the entire simulation period.

Figure 6A and 6B show the distributions of AIs for spatial

attention and feature-based attention, respectively. Filled bars

indicate the neurons that exhibit a statistically significant

modulation in firing rate (t-test, p,0.05). All distributions were

shifted toward the positive side by spatial, as well as feature-based

attention. The median of AIs increased by 0.132 for excitatory

neurons and by 0.202 for inhibitory neurons in spatial attention,

while it increased by 0.215 for excitatory neurons and 0.238 for

inhibitory neurons in feature-based attention. We note that, as in a

previously proposed model [21], the modulation ratio defined as

(1+AI)/(12AI) is consistent in excitatory neurons with those

obtained in electrophysiological recordings from MT [13].

Attentional modulation is also cell-type specific. In spatial

attention, about 62% (169/271) of the significantly modulated

excitatory neurons exhibited a significant attention-dependent

increase in firing rate. About 76% (51/67) of the significantly

modulated inhibitory neurons also showed such an increase. The

difference in the proportion of positive and negative modulation

between the two cell types is significant, according to a bootstrap

test (1000 resamplings, p,0.001). Therefore, top-down spatial

attention has a more consistent effect on the firing rates of

inhibitory neurons than of excitatory neurons in L2/3 and L5.

These differences in the attention-dependent response modulation

Table 5. Number of neurons in each layer of a single multi-
layered microcircuit.

Neuron types

Layer Excitatory neurons Inhibitory neurons

L2/3 5171 1459

L4 5479 1370

L5 1213 266

L6 3599 737

doi:10.1371/journal.pone.0080788.t005

Table 6. Projection probabilities of bottom-up sensory
inputs.

Sensory

To Excitatory neurons Inhibitory neurons

L2/3 0.0 0.0

L4 0.0983 0.0619

L5 0.0 0.0

L6 0.0512 0.0196

doi:10.1371/journal.pone.0080788.t006

Table 7. Projection probabilities of top-down attentional
inputs.

Attention

To Excitatory neurons Inhibitory neurons

L2/3 0.13 0.075

L4 0.0 0.0

L5 0.13 0.075

L6 0.0 0.0

doi:10.1371/journal.pone.0080788.t007
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between excitatory and inhibitory neurons are consistent with

electrophysiological findings [5].

In the case of feature-based attention, about 87% (289/331) of

the significantly modulated excitatory neurons showed a signifi-

cant increase in firing rate, and about 77% (61/79) of the

inhibitory neurons showed significantly increased firing rates.

Again, a bootstrap test confirmed that this difference in the

proportion of positive and negative modulation between excitatory

and inhibitory neurons was statistically significant (1000 resam-

plings, p,0.001). Thus, top-down feature-based attention has a

more consistent effect on the activity of excitatory neurons than of

inhibitory neurons. As no experimental data are available, this

constitutes a prediction of our model.

Differential effects of the two modes of attention in
visual perception

Biological systems are inevitably subjected to noise, and how a

system responds to noisy input often reveals important character-

istics of the system. Several studies have shown that additive

external noise interferes with neuronal responses to noiseless visual

stimuli and influences perception [16,44–47]. Therefore, we

explored how our microcircuit model responds to noisy visual

stimuli. To this end, we added external noise that was uncorrelated

with the orientation of the presented bar. A layered microcircuit

with 0-degree preferred orientation received a bottom-up input

mimicking a vertical bar. In addition to this input, other

microcircuits received additional bottom-up inputs mediating

external noise, which was given as a set of independent Poisson

spike trains with a mean rate of 2.5, 5.0, 10.0, or 15.0 Hz.

Britten et al. could account for the psychophysical performance

of monkeys by using neuronal responses in the visual area [44].

We assessed the performance of the model using the discrimina-

bility index (d’) for vertical and horizontal bars derived from the

signal detection theory [48]. The index for the coarse discrimi-

nation represents the ability of the model to distinguish the 2

orthogonal orientations and is defined as

d ’~
mp{muffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(s2
pzs2

u)
.

2

r ,

where mp and sp indicate the mean and SD of the population

firing rates in the 0-degree preferential microcircuit responding to

a vertical bar. Similarly, mu and su are the mean and SD of

neuronal responses in the same microcircuit to a horizontal bar.

We presented bottom-up visual signals mimicking either a vertical

or a horizontal bar with various levels of external noise and

investigated whether our model could discriminate the two

oriented bars. Figure S7 presents an example of the histograms

for population firing rates of the microcircuit that preferred a

vertical bar, as shown in the analysis of the physiological

experiment (cf. Figure 5 of [44]). We note that the responses of

this microcircuit to a non-preferred stimulus (horizontal bar) can

be inferred from the response to a vertical bar of the different

microcircuit that prefers a horizontal bar [44]. The discrimina-

bility indices computed for neuronal responses in L2/3 and L5 are

depicted in Figure 7A and 7B, respectively, as a function of the

noise level in the neutral condition and the two modes of visual

attention. Effects of attention on discriminability show a similar

tendency in L2/3 and L5. In all cases, the discriminability between

two orthogonal orientations decreases with an increasing level of

external noise.

Compared with the neutral condition, under spatial attention,

our model exhibited a marked increase in d’ at low noise levels

(Figure 7), without showing an improvement in discriminability at

high noise levels. In contrast, under feature-based attention, the

model showed a consistent enhancement of d’ at both low and high

noise levels. These results suggest that spatial attention improves

perception of visual stimuli only at low levels of external noise,

whereas feature-based attention improves it at both high and low

noise levels. We also observed similar attention-mode dependent

modulation by external noise in the distribution of the peak

location (Figures S8 and S9). These differential effects of two kinds

of attention are consistent with psychophysical observations [16].

To examine the performance of our model in more detail, we

computed the values of d’ for fine discrimination between vertical

and 22.5-degree oriented bars as a function of the external noise

level (Figure S10). Effects of the two modes of attention on the

discriminability and the influences of the noise level are similar to

those observed in the discrimination of orthogonal orientations

shown in Figure 7. However, the magnitude of d’ is markedly

lower for similar orientations than for orthogonal orientations.

This tendency shows a good agreement with the characteristics of

human perception. Thus, our model can perform a fine

discrimination although it is harder than a coarse discrimination.

Discussion

To explore the circuit mechanism of attention for visual

perception, we constructed a visual cortical network model

consisting of 8 multi-layered functional microcircuits containing

about 20,000 integrate-and-fire neurons in each microcircuit

(about 160,000 neurons in total). Layers 4 and 6 of the individual

microcircuits receive bottom-up preferred stimuli representing

different oriented bars, and L2/3 and L5 receive a top-down input

mediating spatial or feature-based attention. In addition to these

inputs, the microcircuits interact with each other through the

excitatory horizontal connections and lateral inhibition imple-

mented within L2/3. This architecture produces inter-mc

competition for simultaneous presentation of two orthogonal

oriented bars (Figure S1, [3]). We have shown, by numerical

simulation, that neuronal activities in the L2/3 and L5 of our

model well account for the distinct response modulations in visual

cortices induced by spatial and feature-based modes of attention

[13,14]. Especially, the discriminability of noisy visual stimuli in

our model is consistent with experimental observations [16].

Mechanisms of attention-mode–dependent modulation
of neuronal responses

The essence of our model is the hypothesis that spatial and

feature-based modes of attention are differently implemented by

top-down input to cortical microcircuits (Figure 1B and 1C). The

top-down input mediating feature-based attention projected

preferentially to a specific microcircuit to enhance the model’s

responses to the attended feature. In contrast, spatial attention was

mediated by a homogeneous top-down input projecting to all the

functional microcircuits that share their spatial receptive fields.

Consequently, in feature-based attention, top-down input en-

hanced the population responses in L2/3 and L5 of the

microcircuits, which preferentially respond to the attended

oriented stimulus, while suppressing the responses of microcircuits

with other preferred orientations by inter-mc lateral inhibition

(Figure 4). This suppression across microcircuits was effectively

magnified by inter-mc excitatory connections (Figures S1 and S6).

In spatial attention, a homogeneous top-down input compensated

the suppressive effects of lateral inhibition and the response gain
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increased in all the local microcircuits. Recently, Cohen and

Maunsell [49] reported that feature-based attention coordinates

neuronal activation in V4 across hemispheres, whereas spatial

attention acts on local neural populations. These results seem to

support the different projection patterns of top-down input in the

two attention modes observed for our model.

Excitatory connections between microcircuits with similar

orientation preferences are necessary for shaping their tuning

properties in different modes of visual attention. It was hard to

quantitatively replicate the attention-type–specific modulations of

neuronal responses in microcircuit models without these horizon-

tal connections, although the qualitative modulation patterns of

population rates are similar for experimental findings [13,14].

However, such modified model replicated neither the modulation

of the amplitude of the orientation tuning curves in spatial

attention nor the modulation of the width in feature-based

attention (Figure S5). In addition, these models did not produce

competitive effects between orthogonal oriented bars presented

simultaneously in the receptive field (Figure S6). These modula-

tion patterns were inconsistent with the results of physiological

experiments [3,13,14]. The modified model lacks excitatory

connections between microcircuits with similar orientation pref-

erences, so that the external inputs such as bottom-up visual inputs

and top-down attention directly determine the responses of the

microcircuit in the L2/3 excitatory neurons. In our simulations,

the top-down input was much weaker than the preferred stimulus

(see Materials and Methods). Therefore, when the homogeneous

top-down input mediating spatial attention and the vertical bar

were applied to the modified model, the responses of the

microcircuit with a preference for vertical bar were mainly

determined by the strength of the bottom-up visual input. In

contrast, for the microcircuit with a preference for horizontal bar,

the top-down spatial attentional input seemed to be stronger than

the bottom-up input to this microcircuit (Figure 2A and 2B) and

had great effects on the modulation of their responses in L2/3

excitatory neurons. Furthermore, the activation of these neurons

might suppress the responses of the microcircuit with a preference

for vertical bar through the lateral inhibition. Consequently, as

shown in Figure S3A, the effects of spatial attention on L2/3

excitatory activity for the modified model were grater in

microcircuits with horizontal-bar preference than those with

vertical-bar preference. This indicated that, in the modified

model, spatial attention markedly enhanced the magnitude of the

baseline, whereas this mode of attention slightly increased the

magnitude of (baseline + amplitude). The modified model lackeds

excitatory connections between microcircuits with similar orien-

tation preferences (Figure S2), so that the total strength of external

inputs such as visual inputs and top-down attention might

determine the responses of the L2/3 excitatory neurons. In our

simulations, the top-down input was much weaker than the

preferred stimulus (see Materials and Methods). Therefore, when

the homogeneous top-down input mediating spatial attention and

the vertical bar were applied to the modified model, the responses

of the microcircuit with a preference for vertical bar were mainly

determined by the visual input. In contrast, for the microcircuit

with a preference for horizontal bar, the top-down attentional

input was more dominant than the bottom-up input to this

microcircuit (Figure 2A and 2B) and had profound effects on their

responses of L2/3 excitatory neurons. Furthermore, the activation

of these neurons might suppress the responses of the microcircuit

with a preference for vertical bar through the lateral inhibition.

Consequently, as shown in Figure S3A, the effects of spatial

attention on L2/3 excitatory activity were grater in microcircuits

with horizontal-bar preference than those with vertical-bar

preference. This indicates that, in the modified model, spatial

attention markedly enhanced the magnitude of the baseline,

whereas this mode of attention slightly increased the magnitude of

(baseline + amplitude).The possible explanations for these

unacceptable modulation patterns offor the modified model were

the convergence of excitatory signals in L2/3 inhibitory neurons

via external inputs such as visual attention and lateral inhibition.

The top-down signal mediating attention projected to not only

excitatory but also inhibitory neurons in L2/3 and L5 (Materials

and Methods). Furthermore, in the modified model, the effects of

spatial attention on L2/3 excitatory activity were the greatest in

microcircuits with horizontal-bar preference (Figure 3A), which

might strengthen the responses of L2/3 inhibitory neurons in

other microcircuits through inter-mc lateral inhibition (Figure 1B).

If these excitatory projections to L2/3 inhibitory neurons in the

microcircuit with vertical-bar preference were significantly effec-

tive, these neurons might prevent L2/3 excitatory neurons in the

same microcircuit with vertical-bar preference from being enough

activated.

The present model predicts that L2/3 and L5, to which top-

down input projects directly, exhibit similar orientation tuning

curves and similar attentional modulation patterns (suppression or

enhancement). In contrast, the tuning curves and their modulation

patterns are somewhat different in L4 and L6. Attentional

modulations in these layers seem to depend on the strength of

intra-mc synaptic connections and inter-laminar connections [30].

For instance, neurons in L4 integrate bottom-up sensory inputs

and feedback excitatory signals from L2/3 that terminate on L4

inhibitory neurons (Figure 1A). Therefore, the balance between

these opposing inputs determines the tuning property of L4. Our

previous simulations suggested that the different pattern of

attentional modulation in L4 is advantageous for a rapid shift of

attention between visual objects [30]. Whether the different layers

exhibit different orientation tuning and attentional modulations

need to be examined by further experiments.

Attention-induced response modulation across neuron
types and layers

While visual attention increased the overall population

responses for L2/3 and L5 in our model, the individual neurons

showed a wide variety of modulations in firing rate (Figure 6). The

divergent behavior of L2/3 neurons is of significant interest,

because it can be examined by optical recordings in awake

animals. First, despite the fact that the top-down input projected

more densely to excitatory populations than to inhibitory ones in

spatial attention (see Materials and Methods), this attention

induced stronger enhancement in inhibitory cell activity

(Figure 6A). In recent experiment [5], the strongest attentional

modulation occurred among fast-spiking neurons that were

putative inhibitory neurons. Our results seem to be consistent

with these experimental findings because it is reasonable to regard

inhibitory neurons in our model as the most frequent interneuron

subtype, which is fast-spiking interneurons [50].

Why does attention induce different response modulations in

different classes of neurons? The wiring pattern of inter-mc

synaptic connections gives a possible explanation of such

differences. Spatial attention increases the average firing rate of

excitatory neurons in the L2/3 of all microcircuits irrespective of

their preferred orientations. The enhanced activity of L2/3

excitatory neurons in a unit microcircuit is distributed to L2/3

inhibitory neurons in itself and other unit microcircuits through

intra-laminar excitatory-to-inhibitory connections and inter-mc

lateral inhibition (Figure 1A and B). Consequently, an inhibitory

neuron in L2/3 receives convergent excitatory signals from all
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microcircuits in the model. In contrast, an excitatory neuron in

L2/3 only receives excitatory input from the microcircuit it

belongs to and its neighbors. This difference in the convergence

pattern of excitatory signals presumably results in the stronger

activation of inhibitory neurons and the weaker activation of

excitatory neurons during spatial attention. The response modu-

lation of the different neuron types has not been experimentally

studied for feature-based attention. For future experimental tests,

our model predicts the proportion of excitatory and inhibitory

neurons that are significantly modulated by feature-based atten-

tion (Figure 6B).

Spatial attention does not exert noticeable effects on L2/3

excitatory neurons in microcircuits with horizontal preference

(Figure 3A). Because of this, the effects of spatial attention look as if

they were multiplicative rather than additive in L2/3, but not in

L5. The differential effects on L2/3 and L5 may partly arise from

the differential activation patterns of inhibitory neurons in the

layers: the baseline activity of L2/3 inhibitory neurons is elevated

by spatial attention almost uniformly in all unit microcircuits,

whereas that of L5 inhibitory neurons is raised slightly stronger in

a microcircuit receiving visual input (a vertical bar) and its

neighbors. Therefore, in L5 excitatory effects of visual input may

be compensated by the non-homogenous activation of inhibitory

neurons, thus increasing the baseline activity uniformly across

microcircuit. However, in L2/3 the enhanced inhibition is not

compensated by visual input in microcircuits with horizontal

preference, hence producing non-uniform elevation of the baseline

level. We may interpret the layer-dependent effects of spatial

attention as the multiplicative gain modulation of the whole tuning

curve (baseline + stimulus-driven amplitude) suggested in other

models [18,21,54,55], because such a effect should be weak if the

neutral activity is low, which is indeed the case for L2/3 excitatory

neurons (neutral activity ,1.0 Hz: see Figure 3). However, the

laminar structure of our model is complicated and an explicit

relationship between the two mechanisms remains to be further

clarified.

Limitations of our microcircuit model
Our model, with its simplified input structure, is best suited for

describing those neural networks of the V1 that are activated by

oriented bars. However, there is little electrophysiological evidence

for the spatial and feature-based modes of attentional response

modulations in V1; therefore, we adopted experimental data

obtained for visual areas higher than V1, with more complex

stimuli such as random dots motion stimuli for the middle

temporal (MT) [16]. However, external noise is shown to interfere

with the perception of attended directed stimuli in motion

perception by the MT in similar manner as with orientation

perception by early visual areas [46,51–53]. Furthermore, Cohen

and Maunsell [49] recently showed similar attentional modula-

tions of firing rates in V4 neurons responding to oriented Gabor

patches. These findings encouraged us to hypothesize that spatial

and feature-based modes of attention share similar mechanisms

across different cortical areas and different realizations of oriented

stimuli.

Cohen and Maunsell [49] also reported that both modes of

attention decrease spike correlations between neuron pairs.

Attention is known to involve synchronized oscillations in visual

cortical neurons [56–58], and recent modeling studies with

somewhat more biologically detailed neurons suggest that atten-

tion involves the modulation of gamma-band oscillations in visual

cortical neurons [22,23,28,29,59]. The dynamic properties of

synchronization and oscillations depend significantly on the

biological details of model neurons, particularly, fast-spiking

interneurons [60–62]. Because our network model consists of

relatively simple neuronal models, further studies are needed to

clarify how spatial and feature-based modes of attention modulate

spike correlations and, hence, visual information processing.

Our microcircuit model did not distinguish between simple and

complex cells, because neurons were connected randomly,

according to the connection probabilities listed in Table 1–4.

The responses of simple cells generally depend on the spatial

location of stimulus presentation within the receptive field,

whereas those of complex cells do not significantly depend on

the stimulus location [63–65]. For the sake of simplicity of

simulation settings in large-scale network models, we did not

model the detailed spatial location of stimulus presentation in this

study. The network mechanism to generate complex cells from the

responses of simple cells has not yet been fully clarified, and the

implementation of such a mechanism remains open for future

studies.

Comparison with previous models of visual attention and
gain modulation

Several models have been proposed to account for the

differential effects of the two kinds of visual attention studied

here. Deco and his colleagues [66,67] proposed a model consisting

of 3 visual areas: V1, Posterior Parietal (PP), and Inferotemporal

(IT) areas. In their model, dorsal and ventral visual pathways

mediate the different types of attention. Boynton [18] developed a

normalization model of visual attention by using simple equations

and reproduced results of various electrophysiological experiments

on spatial and feature-based modes of attention. In the model,

attention multiplicatively modulated sensory neurons’ responses:

spatial attention was described by multiplying the contrast gain on

the normalization process whereas feature-based attention was

represented by the multiplication of a feature-similarity gain factor

after the normalization. Reynolds and Heeger [68] also proposed

a normalization model for visual attention, in which a gain

modulation occurs before normalization. These models describe

the functions of visual attention at the macroscopic level without

specifying the microscopic-level circuit structure. We studied the

mechanisms of the mode-specific attentional modulations in

cortical microcircuit models with a biologically suggested laminar

structure. In our model, the gain factors mediated by top-down

input and the normalization effects mediated by the inter-mc

inhibitory effects arise concomitantly to produce the overall

attentional modulations in spatial and feature-based attention

modes. The inter-mc inhibitory connections in our model

implement a function similar to a divisive normalization process

in Reynold’s model [68].

Buia and Tiesinga [19] constructed a simple circuit model

representing two parallel visual pathways, each of which comprises

1 excitatory and 2 inhibitory neurons. They modeled feature-

based attention by introducing top-down projections to specific

types of inhibitory neurons and spatial attention by modulating the

contrast gain of visual stimuli. Therefore, unlike in our model, in

their model, spatial attention is mediated via bottom-up visual

processing. Ardid et al., [21] developed a spiking neuron network

model consisting of MT and working memory areas. Their model

demonstrated the same types of attentional modulation as we

modeled. In their model, attentional signal was restricted to the

specific neuronal populations having a preference for the attended

feature. Therefore, unlike our model, their model does not assume

separate sources for spatial attention and feature-based attention.

While many models describe network mechanisms of visual

attention, single neurons can also perform the multiplicative gain

control characteristic to spatial attention. For instance, a power-
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law input-output function of a neuron was shown to generate a

multiplicative gain change [54,55]. Whether attentional modula-

tions and the characteristic gain change arise from a network-level

mechanism or a single-neuron mechanism remains open for future

studies.

Many models were also proposed for accounting for attentional

effects on human perception observed in psychophysical experi-

ments. Ling et al., [16] proposed that attention influences

perceptual threshold by changing the gain or the tuning of

population response in visual area MT. However, this model does

not explain how the two kinds of attention were expressed in visual

areas. Wagatsuma et al., [11,69] described abstract models to

explain how spatial and feature-based attention may change the

visual perception for the object without modeling the underlying

circuit mechanism. The present model explained the psychophys-

ical effects of noise on human visual perception based on a

microcircuit-level model of visual systems.

Conclusions

We have constructed a cortical neural network model of layered

microcircuits based on an integrated connectivity map derived

from anatomical and electrophysiological data to account for the

modulations of neuronal responses and the influences on visual

perception observed for spatial and feature-based attention. Our

model shows that the allocation of top-down input and inter-mc

synaptic connections are critical for determining the effects of the

two modes of visual attention in different cortical layers. Though

our model certainly oversimplifies many features of cortical

microcircuits, it allows us to investigate the electrophysiological

effects of visual attention, including neuron-type specific (i.e.,

excitatory vs. inhibitory) attentional modulations, and their

psychophysical implications in visual perception.

Materials and Methods

Microcircuit model of functionally grouped layered visual
cortical microcircuits.

Figure 1A displays the major neuronal and synaptic compo-

nents of our multi-layered cortical microcircuit model. The model

consists of 8 orientation-selective microcircuits, each representing

the basic functional unit of the visual cortex, sharing their

receptive fields and responding preferentially to 1 of the 8 stimuli

(0, +p=8, +p=4, +3p=4, and p=2 degrees). Each microcircuit

has L2/3, L4, L5, and L6, and each layer consists of an excitatory

neuron pool and an inhibitory neuron pool (see Table 5 for

details). Layer 1 was not modeled explicitly, as it primarily

contains the dendritic fibers of neurons in the other layers. Arrows

in Figure 1A represent the major neuronal connections of this

cortical microcircuit. Thick arrows show dense connections with a

connection probability .0.13, while thin arrows represent

connections with a connection probability ,0.13 but .0.065.

More sparse connections are not shown. The detailed connection

probabilities are listed in Tables 1–4. For the sake of simplicity, all

intra-mc connections have the same synaptic weight. The full

network consisting of 8 functional microcircuits comprises, in total,

about 160,000 integrate-and-fire model neurons, meaning that

each microcircuit contains about 20,000 neurons. See Tables S1–

S9 in File S1 for details of the neuronal models. The firing rate of

model neurons would depend on the size of each unit microcircuit

model since the total number of synaptic inputs to a neuron scales

with the total number of neurons in the unit microcircuit [31]. In

the present model, we adopted the architecture of our previous

model [30,31] after reducing the size of each unit microcircuit.

Therefore, we rescaled the strength of all intra-mc synaptic

connections by 1.6 times denser than the previous model in order

to compensate for the reduction in the size of each microcircuit.

The strength of external input was not modified. With these

modifications, the spontaneous firing rate of each layer fell within

a physiologically realistic range (L2/3: ,3.3 Hz, L4: ,2.4 Hz, L5:

,15 Hz, L6: ,0.6 Hz for pyramidal cells; L2/3: ,8 Hz, L4: ,6

Hz, L5: ,9 Hz, L6: ,8 Hz for inhibitory cells).

This estimation of intra-mc synaptic connections was based

primarily on anatomical and electrophysiological data for cat and

rat cortices [32–34]. It is known that the rodent visual cortex does

not have a columnar structure, which implies that neurons with

similar orientation selectivity may not be spatially localized in the

rodent brain [35,36,70]. However, the laminar structure, per se, is

generally found in a variety of mammals, including the rat. If each

layer of the visual cortex contains neurons playing similar

functional roles across species, we may speculate that these

neurons functionally have similar intra- and inter-laminar

connectivity structures to form similar functional microcircuits.

How we may obtain a consistent set of connection probabilities

from the above data sets was demonstrated in Potjans and

Diesmann [31] and Supplementary Materials.

Cortical L2/3 has rich local recurrent synaptic connections

within the layer [71]. In addition, we introduced lateral inhibition

among the L2/3 networks of the 8 layered microcircuits to induce

competition among them [72–76]. As in a previous model [30], we

introduced lateral inhibition by means of projections from L2/3

excitatory neurons of a microcircuit to L2/3 inhibitory neurons in

others (Figure 1B), since, typically, only excitatory neurons make

long-range connections, and cross-orientation suppression can be

blocked by application of the GABA antagonist bicuculline [77].

The connection probability of the lateral connection was set to

0.03, irrespective of the orientation selectivity of the microcircuits.

Excitatory horizontal connections are frequently found between

columns or neurons showing similar preferred orientations

[43,76,78–80]. Therefore, we introduced inter-mc excitatory

connections between L2/3 excitatory neurons belonging to

different microcircuits with similar orientation selectivity

(Figure 1B). Due to the symmetric nature of interactions between

neighboring microcircuits, the present model may be considered as

a layered version of the so-called ring model [21,22]. The strength

(connection probability) of these synaptic connections was set to

0.06.

Simulation experiments
When a visual stimulus mimicking an oriented bar is presented

in the receptive field, excitatory and inhibitory neurons in L4 and

L6 in the 8 layered microcircuits are excited with differential

intensities (Figure 2A). The unit microcircuits were more strongly

excited if their preferred orientations (0, +p=8, +p=4, +3p=4,

and p=2 degrees) are closer to the orientation of the bar.

Throughout this study, we regarded the orientation of a vertical

bar as 0 and that of a horizontal bar as p=2. A preferred input was

given as a set of independent Poisson spike trains of 20 Hz, and the

firing rate was decreased for other stimuli, depending on the

preference. Table 6 lists the probabilities that an L4 or an L6

neuron receives bottom-up sensory inputs. The population size of

the bottom-up visual stimuli projecting to a microcircuit is about

225 fibers [30,31].

Top-down excitatory signals mediating visual attention arrive at

L2/3 and L5 of the microcircuits [30,31,39,81–84] (Figure 1A). In

our model, this top-down attentional pathway projects to both

excitatory and inhibitory neurons. This makes the neuronal

response of the present model multiplicative [85,86], which
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explains the experimental observations. The top-down input was a

set of low-frequency Poisson spike trains of 5 Hz. Thus, the top-

down input was much weaker than the preferred stimulus [66,67].

The number of spike trains in the top-down projection was 300 for

both L2/3 and L5, and the connection probabilities of the top-

down input are given in Table 7.

In order to represent spatial and feature-based attention, we

introduced 2 kinds of top-down input to our model. First, spatial

attention was directed to a location within the receptive field of our

model. In this case, we applied the same top-down input

homogeneously to functionally grouped microcircuits, irrespective

of their orientation selectivity (Figure 2B). In feature-based

attention, the animal pays attention to 1 of the 8 orientations.

Here, top-down input was delivered to the specific microcircuit

that preferred the attended orientation (Figure 2C).

All simulation results were produced with the NEST Simulation

Tool [87], using 8 cores (Intel XeonH 2.26 GHz) and MPI for

parallel computation.

Supporting Information

Figure S1 The neuronal responses of the microcircuit
model for the biased competitions [S13]. The population

firing rates of excitatory (filled bars) and inhibitory (empty bars)

neurons from 5 trials are shown for each layer of the vertical

preferential microcircuit for various combinations of visual

stimulus and feature-based attention. The preferred stimulus of

the vertical preferential microcircuit is bordered white. An

attended stimulus is circled. These modulation patterns in L2/3

and L5 are consistent with the experimental findings [S13]. Top-

down attention signals induced in L4 a response modulation

pattern opposite to that in L2/3 and L5. See our previous work

[S2] for the detailed mechanisms and the analyses of the layer-

dependence of the response modulations.

(TIF)

Figure S2 The modified model without excitatory-
excitatory connections among layered microcircuits. In

the case of this modified model, the interaction among

microcircuits is mediated only by projections from L2/3 excitatory

neurons in one microcircuit to L2/3 inhibitory neurons in the

others (Exc-Inh).

(TIF)

Figure S3 Responses of the modified model to a vertical
bar for both neutral condition and spatial attention. The

population rates of excitatory A and inhibitory B neurons are

presented in each layer of the modified microcircuit model by solid

and dashed lines, respectively. Oriented bars at the bottom present

the preferred orientation of each layered microcircuit. Gray and

black lines show the responses of the modified model without

attentional input (neutral condition) or during spatial attention,

respectively. The tuning curves of excitatory and inhibitory

neurons in all layers were fitted with Gaussian distributions.

Asterisks indicate that the differences in the population firing rates

between the two conditions is statistical significant (t-test: ** for

p,0.01; * for p,0.05; – for p,0.1).

(TIF)

Figure S4 The population responses of excitatory A and
inhibitory B neurons in the modified model for both
neutral condition and feature-based attention. All the

conventions are the same as those used in Figure S2. The modified

model received a bottom-up input mimicking a vertical bar. The

neuronal responses were compared between the two cases, i.e., in

the neutral condition and in feature-based attention, where the

responses in the neutral condition are identical to those sown in

Figure S2. We used Gaussian distributions for curve fittings.

(TIF)

Figure S5 Statistical analyses of the orientation tuning
curves for the modified model. A, B, C, The baselines,

amplitudes and widths of the Gaussian tuning curves are shown for

the responses of excitatory neurons in L2/3 (upper) and L5 (lower).

The values of the Gaussian fitting parameters were obtained from

50 simulation trials in the neutral condition (gray bars), spatial

attention (empty bars) and feature-based attention (filled bars).

Asterisks indicate that the parameter values are significantly

different from those in the neutral condition (t-test: ** for p,0.01;

* for p,0.05; – for p,0.1). D, The histograms of the peak

locations of the tuning curves in L2/3 and L5 are shown for a

vertical bar stimulus. Triangles are the medians. We calculated P

values for Mann-Whitney test to compare the histograms between

the neutral condition and the two attentional conditions.

(TIF)

Figure S6 The averaged neuronal responses of the
modified model for the biased competitions from 5
simulation trials. All the conventions are the same as those

used in Figure S1. The modulation patterns in L2/3 and L5 are

inconsistent with the results of physiological experiments [S13].

(TIF)

Figure S7 Frequency histograms of population firing
rates on the neutral condition obtained from L2/3 A and
L5 B at five different levels of external noise. The

horizontal axis shows the amplitude of the population rates, and

vertical axis indicates the number of trials. Each plot shows the

levels of external noise. White bars depict population responses

obtained from the preferred orientation, while black bars illustrate

population responses to the non-preferred orientation. Each

distribution is obtained from 50 simulation trials in the neutral

condition. With increasing level of external noise, these two

distributions were merged, which suggested the interferences of the

accurate detection of a presented stimulus under the high level of

noise.

(TIF)

Figure S8 The histogram of the peak location of the
tuning curves in L2/3 for the responses to the vertical
bar with a variety of levels of external noise. Triangles are

the medians. We calculated P values for Mann-Whitney test to

compare the histograms between the neutral condition and the

two attentional conditions. A, The frequency histogram of tuning

peaks of neutral condition. With increasing levels of external noise,

the frequency is widely distributed. B, The histogram of the peak

location of spatial attention with respect to the vertical bar with

various levels of external noise. C, The histogram of the peak

location of feature-based attention. Regardless of the level of

external noise, feature-based attention improves the detection of

the presented orientation compared to neutral condition.

(TIF)

Figure S9 The histograms of the peak locations of the
tuning curves in L5 obtained from same data sets shown
in Figure S6. All the conventions are the same as those used in

Figure S6. The results of statistical test (Mann-Whitney test) to

compare between the neutral condition and two kinds of visual

attention are identical to Figure S6. A, The frequency histogram

of tuning peaks of neutral condition. B, The distribution of the

peak locations for spatial attention. C, The histogram of the peak

locations of feature-based attention.

(TIF)
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Figure S10 The performance of our model using the
discriminability index (d’) for vertical and 22.5-degree
oriented bars (fine discriminability). We computed the d’

for L2/3 (A) and L5 (B). The dashed line shows the magnitude of

d’ in the neutral condition. Solid gray and black lines indicate the

results of spatial and feature-based modes of attention, respective-

ly. Effects of attention on discriminability show a similar tendency

in L2/3 and L5. The decrement of this discriminability with

increasing the levels of external noise was similar to the patterns of

the discriminability between 2 orthogonal orientations. However,

these magnitudes of d’ between 2 similar oriented bars were

markedly lower than that between orthogonal bars shown in

Figure 7.

(TIF)

File S1 This file contains Table S1-Table S9. Table S1,
Model description after [S4] (Model Summary). Table S2,
Model description after [S4] (Population). Table S3, Model

description after [S4] (Connectivity). Table S4, Model descrip-

tion after [S4] (Neuron and synapse model). Table S5, Model

description after [S4] (Input). Table S6, Model description after

[S4] (Measurements). Table S7, Spike rates of excitatory

background inputs. Table S8, Neuronal and synaptic model

parameters (Connectivity). Table S9, Neuronal and synaptic

model parameters (Neuron and Synaptic model).

(DOCX)

Text S1 Supporting Materials and Methods.

(DOCX)
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