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Aims: This study sought to evaluate the diagnostic performance of change in computed

tomography-derived fractional flow reserve (CT-FFR) across the lesion (1CT-FFR) for

identifying ischemia lesions with FFR as the reference standard.

Methods: Patients who underwent coronary CT angiography (CCTA) and FFR

measurement within 1 week from December 2018 to December 2019 were

retrospectively enrolled. CT-FFR within 2 cm distal to the lesion, 1CT-FFR and plaque

characteristics were analyzed. The diagnostic accuracy of CCTA (coronary stenosis

≥ 50%), CT-FFR ≤ 0.80, and 1CT-FFR ≥ 0.15 (based on the largest Youden index)

were assessed with FFR as the reference standard. The relationship between plaque

characteristics and 1CT-FFR was analyzed.

Results: The specificity of 1CT-FFR and CT-FFR were 70.8 and 67.4%, respectively,

which were both higher than CCTA (39.3%) (both P < 0.001), while there were no

statistical significance in sensitivity among the three (84.5, 77.4, 88.1%, respectively;

P = 0.08). The area under the curves (AUCs) of 1CT-FFR and CT-FFR were 0.803 and

0.743, respectively, which were both higher than that of CCTA (0.637) (both P < 0.05),

and the AUC of 1CT-FFR was higher than that of CT-FFR (P < 0.001). Multivariable

analysis showed that low-attenuation plaque (LAP) volume (odds ratio [OR], 1.006) and

plaque length (OR, 1.021) were independently correlated with 1CT-FFR (both P < 0.05).

Conclusions: CT-FFR and 1CT-FFR and here especially the 1CT-FFR could improve

the diagnostic performance of ischemia compared with CCTA alone. LAP volume and

plaque length were the independent risk factors of 1CT-FFR.

Keywords: coronary artery disease, fractional flow reserve, coronary computed tomography angiography,

computed tomography-derived fractional flow reserve, machine-learning
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INTRODUCTION

Considering the limitations of coronary computed tomography
angiography (CCTA) in the diagnosis of ischemic lesions
and the importance of invasive fractional flow reserve (FFR)
physiological evaluation in guiding clinical treatment (1–3),
non-invasive computed tomography-derived FFR (CT-FFR)
has attracted more and more attention since its emergence.
CT-FFR is a non-invasive image post-processing technology.
Several studies have shown that CT-FFR has good diagnostic
performance, and it also has been proved to be highly
correlated with invasive FFR (4–6). Recently ACC/AHA
published guidelines for chest pain where CCTA was given
1A status for the evaluation of intermediate-risk patients
with acute chest pain and no known CAD, and CT-FFR to
a class 2a recommendation with a B-NR level of evidence
(7). At present, the calculation methods of CT-FFR mainly
include the computational fluid dynamics method and machine-
learning (ML) method, and both methods have good diagnostic
performance, but the ML method requires shorter calculation
time and computational power (8, 9). Several previous studies
have analyzed different measurement positions of CT-FFR,
suggesting that CT-FFR should be measured at the distal to the
lesion rather than to the vessel (10–12). Compared with CT-
FFR distal to the lesion, Takagi et al. (13) found the difference
between CT-FFR proximal and distal to the lesion (1CT-FFR)
had higher diagnostic performance (area under the curve [AUC]:
0.86 vs. 0.71, P < 0.01). However, the sample size of this study is
so small that its conclusion needs to be verified by larger sample
size. Previous studies have shown plaque characteristics predict
lesion-specific ischaemia (14, 15). However, there is no study
to analyze the relationship between plaque characteristics and
1CT-FFR of the lesion vessel. The purpose of this study was to
explore the diagnostic performance of 1CT-FFR and CT-FFR
distal to the lesion and analyze the relationship between plaque
characteristics and 1CT-FFR.

MATERIALS AND METHODS

Study Population
A retrospective collection of consecutive patients with suspected
or known CAD who underwent CCTA, ICA and invasive FFR
measurement within 1 week from December 2018 to December
2019 were enrolled in this study. The inclusion criteria were as
follows: (1) age ≥ 18 years; (2) there was at least one lesion
with stenosis degree between 30 and 90% on CCTA. Exclusion
criteria included: (1) previous history of myocardial infarction
and/or coronary revascularization; (2) the quality of CT image
was too poor to extract the coronary artery tree for CT-FFR.
Approval for the study was obtained from the Institutional
Review Board of our hospital (IRB approval number: NO.2018-
1076), and the patient consent was waived because the study has
retrospective nature.

CCTA Acquisition
All patients in this study underwent CCTA with dual source
CT scanner (Definition Flash, Siemens Healthcare, Forchheim,

Germany). Image acquisition was performed according to the
cardiovascular computed tomography protocol (16). All patients
were scanned by prospective electrocardiogram (ECG) gating
technology, and images were acquired at 35–75% of R-R interval.
The heart rate of all patients was controlled below 75 beats/min.
Patients would be given beta-blocker sublingually before the
examination if the heart rate is > 75 beats/min, and scan
again when the heart rate drops below 75 beats/min. The
scanning parameters were shown as follows: tube voltage, 100
or 120 kV, tube current, automatic tube current modulation;
rotation time, 0.28 s per rotation; Slice thickness, 0.75mm;
increment 0.70mm. The raw CT data were reconstructed by
use of iterative reconstruction with filtering, and the optimal
cardiac phase with the minimummotion artifact was determined
by radiologic technicians. Briefly, 60–70ml contrast medium
(Iohexol, Shuangbei 350; Beilu Pharmaceutical Co., Ltd., Beijing,
China) was injected into antecubital vein at 4.5–5.0 ml/s via a
dual-cylinder high-pressure syringe (Stellant; Medrad, Indianola,
Pennsylvania), followed by a 30–40ml saline flush at the
same rate.

Coronary Stenosis and Plaque Analysis
Coronary artery calcification was scored according to Agatston
et al. (17). The CT images were analyzed by two senior doctors
who did not know the patients’ condition, and the degree
of stenosis was graded according to the percentage diameter
stenosis (%DS) of the target lesion: mild stenosis (30–49%),
moderate stenosis (50–69%), severe stenosis (70–90%). For those
with different opinions, the final result will be obtained after
discussion. Coronary artery stenosis ≥ 50% was considered as
obstructive stenosis.

Coronary plaque was analyzed by using semi-automatic
post-processing software (QAngio CT Research Edition v3.0;
Medis medical imaging systems, Leiden, The Netherlands).
Plaques with area > 1 mm2 in coronary lumen with
diameter ≥ 2mm were analyzed. Plaque components include
three parts: low-attenuation plaque (LAP) (attenuation < 30
Hounsfield units [HU]), intermediate-attenuation plaque (IAP)
(attenuation between 30 and 130 HU) and calcification
component (attenuation > 130 HU). The quantification of each
plaque component is automatically generated according to the
specific attenuation threshold in the manually specified area.
Two doctors with more than 5 years of clinical experience
used the post-processing workstation to analyze the plaque at
the vascular level independently without knowing the specific
condition of the patients, and the average value was used for
analysis. Relevant parameters were recorded, including the total
plaque volume, the volume of each plaque component of each
lesion vessel, as well as the plaque length of the target lesion
plaque at the most severe vascular stenosis. At the same time,
four characteristics of high-risk plaques are analyzed, which are
effective predictors of poor prognosis (18, 19). The remodeling
index is the ratio of the maximum vessel diameter at the lesion
site to the vessel diameter at the proximal reference point,
and the remodeling index > 1.1 indicates positive remodeling
(PR) (14). LAP is defined as a plaque containing components
with a density lower than 30 HU (14). Spotty calcification (SC)
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is characterized by visible tiny calcified plaque (< 90◦ vessel
circumference, diameter < 3mm) (14). The napkin ring sign
(NRS) is defined as an area with a low attenuation in the center
and a higher attenuation around the edges (19). It can be defined
as a high-risk plaque when there are at least two or more of the
above-mentioned plaque characteristics.

CT-FFR Acquisition and Analysis
This research used ML-based software (cFFR 3.0, Siemens
Healthineers, Forchheim, Germany) to conduct CT-FFR. The
research software is not yet commercially available. Itu et al.
(20) have reported detailed information on the basic principles
of the CT-FFR calculation of this method previously. The value
of CT-FFR was measured within 2 cm proximal and distal to
the lesion plaque (CT-FFRproximal, CT-FFRdistal), respectively,
and CT-FFRdistal ≤ 0.80 was considered to be an ischemic
lesion. All measurement positions of CT-FFR were co-located
with invasive FFR. Then the difference between CT-FFRproximal

and CT-FFRdistal was calculated to obtain the change in CT-
FFR across the lesion (1CT-FFR), as shown below: 1CT-
FFR = CT-FFRproximal - CT-FFRdistal. In order to evaluate the
reproducibility between observers, two radiologists (with 5 and
8 years of work experience, respectively), completed the CT-FFR
measurements of 30 consecutive vessels without knowing the
patients’ condition, independently.

ICA and FFR Measurement
Invasive FFR measurement was completed during the ICA
inspection, and all operations were performed by senior

cardiovascular physicians with rich work experience. The
standard posture of each patient was taken for inspection, and
at least 2 different angles for each main vessel were selected for
observation. FFR measurement was performed according to the
method reported in the past literature (21): FFR was the ratio
of the pressure of the distal coronary artery (measured by the
pressure guide wire) divided by the aortic pressure (measured
by the guide catheter) during the maximum congestion period.
FFR was measured by using 0.014 inch pressure guide wire (St
Jude Medical Systems, Minneapolis, USA). Pressure guide wire
was placed at the end of the guide tube to calibrate itself. To
measure the FFR value, the pressure wire was located distally
to the lesion about 2 cm and maximal hyperaemia state was
induced by continuous intravenous infusion of adenosine (160
µg/kg/min). Subsequently, the pressure guide wire was pulled
back slowly from the distal part of the lesion vessel to the
proximal part during induced steady-state maximal hyperemia to
confirm the consistency of the two pressure values. Invasive FFR
≤ 0.8 was considered that vessel stenosis was hemodynamically
significant (1, 2).

Statistical Analysis
Continuous data were presented as mean ± standard deviation
(SD) in case of normal distribution, median (interquartile range)
in case of non-normal distribution, and categorical data were
expressed as numbers and percentages. To evaluate interobserver
reproducibility, Cohen’s Kappa statistic was used to analyze
the consistency of CCTA diagnosis results of the two doctors,
and intraclass correlation coefficients were used to evaluate

FIGURE 1 | Flowchart of patient selection. CCTA, coronary computed tomography angiography; ICA, invasive coronary angiography; FFR, fractional flow reserve; CT,

computed tomography.
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TABLE 1 | Patient characteristics.

Characteristic Value

Patient characteristic

Number of patients, n 152

Number of Lesion Vessels, n 173

Age, year 56.6 ± 9.1

Sex

Male, n (%) 115 (75.7)

Female, n (%) 37 (24.3)

BMI, kg/m2 26.14 ± 3.09

Cardiovascular risk factors

Hypertension, n (%) 91 (59.9)

Diabete, n (%) 52 (34.2)

Dyslipidemia, n (%) 128 (84.2)

Current/past smoker, n (%) 82 (53.9)

Family history of CAD, n (%) 20 (13.2)

Medications at baseline

Aspirin, n (%) 141 (92.8)

Beta-blocker, n (%) 14 (9.2)

Calcium-channel blocker, n (%) 71 (46.7)

Statins, n (%) 130 (85.5)

Continuous variables were expressed asmean± standard deviation values, and categoric

variables were expressed as numbers (percentages) of patients or lesions. BMI, body

mass index; CAD, coronary artery disease.

the inter-observer variability of CT-FFR and 1CT-FFR. The
receiver operator characteristic curve (ROC) was created to
predict the area under the curve (AUC), P values, diagnostic
accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV), by using invasive FFR as the
gold standard. The AUCs of different methods were compared
as previously described by Delong et al. (22). The diagnostic
accuracy, sensitivity and specificity of different methods were
compared by Cochran’s Q test, then the post Dunn test and
Bonferroni correction were used for inter group comparison
(23), and chi-square was used to compare positive predictive
value (PPV) and negative predictive value (NPV). The best cut-
off value of 1CT-FFR was selected according to the largest
Youden index (defined as %sensitivity +%specificity - 1). All
vessels were divided into two groups by taking the cut-off
value of 1CT-FFR, and Student’s t-test and chi-square test were
performed to compare the data. The relationship between plaque
characteristics and 1CT-FFR was analyzed by binary logistic
regression. All statistical analyses were performed with SPSS 25.0
and Medcalc 19.0.4. All statistical tests were two-tailed. P < 0.05
indicated that the difference was statistically significant.

RESULTS

Patient Characteristics
There were 152 patients included in this study. The patient
selection process is shown in Figure 1. The baseline data of
patients are shown in Tables 1, 2. The mean age of the patients
was 56.6 ± 9.1 years. There were 115 (75.7%) males and 37

TABLE 2 | Lesion and CT characteristics.

Characteristic Value

Lesion characteristics

Vessel assessed

LAD, n (%) 121 (69.9)

LCX, n (%) 27 (15.6)

RCA, n (%) 25 (14.5)

Agatston score 69.0 (11.3–234.8)

< 400, n (%) 131/152 (86.2)

≥ 400, n (%) 21/152 (13.8)

Vessel with CCTA maximum stenosis

Mild stenosis, n (%) 45 (26.0)

Moderate stenosis, n (%) 60 (34.7)

Severe stenosis, n (%) 68 (39.3)

Invasive FFR 0.81 (0.70–0.87)

Vessels with FFR ≤ 0.80, n (%) 84 (48.6)

RCA with FFR ≤ 0.80, n (%) 7 (4.1)

LAD with FFR ≤ 0.80, n (%) 69 (39.9)

LCx with FFR ≤ 0.80, n (%) 8 (4.6)

Patients with multivessel disease, n (%) 21 (13.8)

CT characteristics

Heart rate, beats/min 66 (59–75)

DLP for CCTA, mGy·cm 489.0 (376.0–665.5)

Effective radiation dose for CCTA, mSv 6.9 (5.3–9.3)

High-risk plaque, n (%) 30 (17.3)

PR, n (%) 21 (12.1)

LAP, n (%) 24 (13.9)

SC, n (%) 54 (31.2)

NRS, n (%) 31 (17.9)

Continuous variables were expressed asmedian (interquartile range) values, and categoric

variables were expressed as numbers (percentages) of patients or lesions. Not all

percentages total 100% because of rounding.

LAD, left anterior descending coronary artery; LCX, left circumflex coronary artery; RCA,

right coronary artery; CCTA, coronary computed tomography angiography; FFR, fractional

flow reserve; DLP, dose-length product; PR, positive remodeling; SC, spotty calcification;

LAP, low-attenuation plaque; NRS, napkin ring sign.

(24.3%) females. 21 (13.8%) patients with calcification score ≥

400 and 21 (13.8%) patients had multiple lesion vessels. Among
the 173 vessels, left anterior descending coronary artery (LAD),
left circumflex coronary artery (LCX), and right coronary artery
(RCA) accounted for 121 (69.9%), 27 (15.6%), and 25 (14.5%)
of the total lesion vessels, respectively; there were 128 (74.0%)
vessels with obstructive stenosis (moderate and severe stenosis)
on CCTA and 84 (48.6%) vessels with invasive FFR ≤ 0.80.

Diagnostic Performance of Different
Methods
The kappa value of CCTA was 0.813 (95% CI, 0.759–0.871),
P < 0.001. The intraclass correlation coefficients were shown as
follows: 1CT-FFR, 0.98 (95% CI, 0.94–0.99); CT-FFR, 0.97 (95%
CI, 0.93–0.99).

The AUCs of 1CT-FFR, CT-FFR, and CCTA were 0.803 (95%
CI, 0.736–0.859), 0.743 (95% CI, 0.672–0.807), 0.637 (95% CI,
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FIGURE 2 | Receiver operating characteristic (ROC) curves of CCTA, 1CT-FFR, CT-FFR in predicting ischemia (N = 173 vessels). (A) shows ROC curves for

predicting ischemia using CCTA, 1CT-FFR and CT-FFR. (B,C) show the ROC curves of models using CCTA with and without 1CT-FFR and CT-FFR, respectively.

Cut-off value of 0.15 corresponding to the maximum Youden index was used for the comparison between CCTA with and without 1CT-FFR. a Indicates there were

statistically significant difference between AUC for CCTA and CCTA with 1CT-FFR and CT-FFR, respectively (B,C) using DeLong test (24). CCTA, coronary computed

tomography angiography; CT-FFR, computed tomography-derived fractional flow reserve; AUC, area under curve.

TABLE 3 | Per-vessel diagnostic accuracy of 1CT-FFR, CT-FFR, and CCTA.

True

positivea

True

negativea

False

positivea

False

negativea

%

Accuracy

%

Sensitivity

%

Specificity

%

PPV

%

NPV

AUC

1CT-FFR 71 63 26 13 77.5

(70.6–83.1)

84.5

(75.0–91.5)

70.8

(60.2–80.0)

73.2

(66.1–0.79.3)

82.9

(74.3–89.1)

0.803

(0.736–0.859)

CT–FFR 65 60 29 19 72.3

(65.1–78.4)

77.4

(67.0–85.8)

67.4

(56.7–77.0)

69.2

(61.9–75.5)

76.0

(67.5–82.8)

0.743

(0.672–0.807)

CCTA 74 35 54 10 63.0

(55.6–70.0)

88.1

(79.2–94.1)

39.3

(29.1–50.3)

57.8

(53.3–62.2)

77.8

(64.9–86.9)

0.637

(0.561–0.709)

Except otherwise indicated, data are percentage with 95% confidence intervals.
aData are raw data.

CT-FFR, computed tomography-derived fractional flow reserve; CCTA, coronary computed tomography angiography; PPV, positive predictive value; NPV, negative predictive value;

AUC, area under curve; CI, confidence interval.

0.561–0.709), respectively (Figure 2). The best cut-off value of
1CT-FFR was 0.15 according to the largest Youden index.

The AUC of 1CT-FFR was higher than other methods:
difference in AUC for CT-FFR was 0.060 (95% CI, 0.037–
0.082, P < 0.001), and CCTA was 0.166 (95% CI, 0.083–0.248,
P < 0.001). The difference in AUC of CT-FFR was 0.106 (95%
CI, 0.020–0.193, P = 0.016) higher than CCTA. The diagnostic
characteristics of the three methods are shown in Table 3. The
accuracy of 1CT-FFR and CT-FFR were both higher than CCTA
(P < 0.001, P = 0.049, respectively), and specificity as well (both
P < 0.001), while there were no statistically significant difference
between the accuracy and specificity of 1CT-FFR and CT-FFR
(P = 0.534, P = 1.000, respectively). The PPV of 1CT-FFR
was higher than that of CCTA (P = 0.017), and there were no
statistically significant difference between1CT-FFR and CT-FFR
(P = 0.537); there were no statistically significant differences
in NPV and sensitivity among them (P = 0.555, P = 0.08).
Figure 3 shows a representative case of patients with moderate
stenosis (50–69%) without hemodynamically significant stenosis
(invasive FFR= 0.88).

Additive Values of CT-FFR
Compared with the model only using CCTA, both diagnostic
models using CCTA with 1CT-FFR or CT-FFR could obtain
a larger AUC (CCTA, 0.637, 95% CI, 0.561–0.709; CCTA
+ 1CT-FFR, 0.808, 95% CI, 0.741–0.864, P < 0.001;
CCTA + CT-FFR, 0.763, 95% CI, 0.693–0.825, P = 0.001)
(Figure 2).

Relationship Between Coronary Stenosis,
CT-FFR and 1CT-FFR
The relationship between anatomical stenosis determined by
CCTA, CT-FFR and 1CT-FFR was shown in Figure 4. Among
the 128 vessels with obstructive stenosis (≥ 50%), 1CT-FFR
≥ 0.15 accounted for 64.8% (83/128), while CT-FFR ≤ 0.80
accounted for 62.5% (80/128). Among 68 severe stenosis (70–
89%) lesions in CCTA, 47 (69.1%) were demonstrated with
hemodynamic significance (invasive FFR ≤ 0.8); while moderate
stenosis (50–69%) and mild stenosis (30–49%) accounted for
45.0% (27/60) and 22.0% (10/45), respectively. For severe stenosis
(70–89%) lesions, both 1CT-FFR and CT-FFRT could reclassify
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FIGURE 3 | Example of a 56-year-old man with chest pain. CCTA (A) and ICA

(B) as well as CT-FFR (C) showing an LAD with moderate stenosis (white

arrow). 1CT-FFR was the difference of values obtained by subtracting

CT-FFRdistal (red arrow) from CT-FFRproximal (green arrow), where CT-FFRproximal

and CT-FFRdistal were defined as the values proximal or distal within 2 cm to

the lesion plaque, respectively. CCTA, coronary computed tomography

angiography; ICA, invasive coronary angiography; CT-FFR, computed

tomography-derived fractional flow reserve; LAD, left anterior descending

coronary artery.

14.7% (10/68) lesions as non-ischemic (invasive FFR > 0.80);
for moderate stenosis (50–69%) lesions, 1CT-FFR or CT-FFR
could correctly reclassify 40.0% (24/60) and 35.0% (21/60)
lesions as non-ischemic (invasive FFR > 0.80), respectively;
for mild stenosis (30–49%) lesions, 1CT-FFR and CT-FFR
could both correctly reclassify 17.8% (8/45) lesions as ischemic
(invasive FFR ≤ 0.80). In this study, there were 34 CT-
FFR values of lesion vessels in the gray zone (0.75-0.80), of
which 10 (29.4%) vessels had invasive FFR > 0.80. And 1CT-
FFR can correctly classify 30% (3/10) lesions as non-ischemic
(invasive FFR > 0.80).

Relationship Between Plaque
Characteristics and 1CT-FFR
As shown in Table 4, 83 (85.6%) vessels with 1CT-FFR ≥ 0.15
and 45 (59.2%) vessels with 1CT-FFR < 0.15 had obstructive
stenosis (P < 0.001). The LAP volume and plaque length of
the patients of the 1CT-FFR ≥ 0.15 group were higher than
those of the 1CT-FFR < 0.15 group (P = 0.005, P = 0.003,
respectively). The results of logistic regression are shown in
Table 5. In Univariable analysis, LAP volume (OR, 1.008, 95%
CI, 1.002–1.014, P = 0.005) and plaque length (OR, 1.028,
95% CI, 1.007–1.050, P = 0.009) were related to 1CT-FFR.
In multivariable analysis, both LAP volume (OR, 1.006, 95%
CI, 1.001–1.012, P = 0.028) and plaque length (OR, 1.021,
95% CI, 1.000–1.043, P < 0.048) remains the correlation
with 1CT-FFR.

DISCUSSION

The main findings of this study were: (1) compared with
CCTA, 1CT-FFR and CT-FFR have higher diagnostic AUC and
accuracy, among which 1CT-FFR has the highest diagnostic

performance; (2) both 1CT-FFR and CT-FFR can reclassify
hemodynamic significant lesions effectively, and 1CT-FFR can
improve the recognition of gray zone lesions of CT-FFR; (3) LAP
volume and plaque length were the independent risk factors of
functional 1CT-FFR after adjusting for confounding factors.

A major challenge in the clinical application of CT-FFR is the
measurement method of CT-FFR. Unlike invasive FFR, CT-FFR
measured at the distal to the vessel tends to overestimate ischemic
lesions (24, 25). In order to standardize the clinical application
of CT-FFR, some experts recommended that the CT-FFR value
should be measured within 2 cm distal to the lesion rather than
at the nadir or distal (26, 27). However, previous studies (25)
have shown that regardless of whether there is stenosis, the
value of CT-FFR will gradually decrease along the long axis of
the lumen. There would be differences between CT-FFR and
invasive FFR measured at different locations. 1CT-FFR reflects
the change value of CT-FFR proximal and distal to the specific
lesion, and shows the change of hemodynamics of the lesion
directly. Studies have shown that 1CT-FFR could improve the
ability to recognize lesions that cause ACS (28), and have a better
diagnostic performance than CT-FFR distal to the lesion (13). In
this study, both 1CT-FFR and CT-FFR have higher AUC and
accuracy than CCTA, among which 1CT-FFR had the highest
AUC, and when the cut-off value is 0.15, 1CT-FFR has the
largest Youden index. The 1CT-FFR sensitivity (84%) of per-
vessel was consistent with the NXT test (6), but the specificity was
lower than that of the NXT test (86%), significantly. The reasons
might be related to the difference in the sample sizes of the two
studies and the CT-FFR analysis software. Nevertheless, in this
study, the specificity of 1CT-FFR (71%) was significantly higher
than that of CCTA (39%) while maintaining high NPV (83%,
78%, respectively). This study suggested that 1CT-FFR might
improve the treatment strategy of patients, which could reduce
unnecessary downstream examination and costs (29).

Similar to previous study (29), more than half of the vessels
with obstructive stenosis had 1CT-FFR≥ 0.15 or CT-FFR≤ 0.8.
The results of this study showed that both 1CT-FFR and CT-
FFR could reclassify vessels with moderate stenosis effectively.
1CT-FFR could classify nearly half of vessels with moderate
stenosis as non-ischemic vessels correctly; and both 1CT-FFR
and CT-FFR had partial reclassification ability in mild and severe
stenosis. Combining1CT-FFR or CT-FFR could help to improve
the correct diagnosis of ischemic lesions on the basis of the
anatomical information provided by CCTA. Besides, lesions in
gray zone always trouble the clinical diagnosis and treatment
of patients, and our study showed 1CT-FFR could improve the
recognition of gray zone lesions of CT-FFR, which might mean
that 1CT-FFR is more suitable for clinical application than CT-
FFR. However, a large sample study is still needed for verification.

Several previous studies have confirmed that there was
an association between coronary atherosclerotic plaque
characteristics and hemodynamically significant ischemia
(14, 15, 30). As a non-invasive alternative to invasive FFR, CT-
FFR should maintain the correlation with plaque characteristics.
Compared with patients with 1CT-FFR < 0.15, this study
found for the first time that, patients with 1CT-FFR ≥ 0.15
had higher LAP volume and plaque length, and both them

Frontiers in Cardiovascular Medicine | www.frontiersin.org 6 January 2022 | Volume 8 | Article 788703

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Yan et al. 1CT-FFR Improve the Diagnostic Performance

FIGURE 4 | Relationship between CT-FFR and stenosis on CCTA. (A,B) show distributions of 1CT-FFR (A), CT-FFR (B) in each group with 30–49, 50–69, and

70–90% diameter stenosis on CCTA. Medians, quartiles, and ranges of 1CT-FFR as well as CT-FFR are shown in the box plot. Cut-off values of 1CT-FFR as well as

CT-FFR are displayed as dashed lines. CT-FFR, computed tomography-derived fractional flow reserve.

TABLE 4 | Coronary stenosis severity and plaque characteristics according to

1CT-FFR (1CT-FFR ≥ 0.15).

1CT-FFR P

< 0.15

(n = 76)

≥ 0.15

(n = 97)

Stenosis ≥ 50%a, n (%) 45 (59.2) 83 (85.6) < 0.001

High-risk plaquea, n (%) 9 (11.8) 21 (21.6) 0.091

Total plaque volume, mm3 335.1 ± 16.9 359.9 ± 22.7 0.406

LAP volume, mm3 67.4 ± 53.1 99.0 ± 85.5 0.005

IAP volume, mm3 234.1 ± 108.4 218.1 ± 121.0 0.366

Calcification volume, mm3 26.2 ± 33.5 38.0 ± 81.1 0.195

Plaque length, mm 23.8 ± 12.4 31.8 ± 22.4 0.003

Agatston score of lesion vessel 19.4 ± 29.6 34.4 ± 80.5 0.093

Except otherwise indicated, data are mean ± SD.
aData are number (percentage).

CT-FFR, computed tomography-derived fractional flow reserve; LAP, low-attenuation

plaque; IAP, intermediate-attenuation plaque.

were the independent risk factor of 1CT-FFR, which were
in accordance with the relationship between invasive FFR
and plaque characteristics of previous results (15). LAP is
the surrogate of necrotic core (31). Studies have shown that
plaques with necrotic core would cause local inflammation and
oxidative stress, which would lead to local vascular endothelial
dysfunction and local “functional stenosis” (32), and it was the
main cause of myocardial infarction and sudden cardiovascular
death (33, 34). And at the mean time, we should pay attention to
those long-length lesions with non-obstructive stenosis, which
might could cause hemodynamically significant ischemia. The
high-risk plaques in this study showed no significant difference
between the two groups with 1CT-FFR = 0.15 as the cut-off
value, which might be because the small sample size of high-risk
plaques in this study (N = 30).

There are some limitations in this study. This study was
a retrospective, single-center study. This study included only

TABLE 5 | Univariable and multivariable analysis of plaque characteristics for

prediction of 1CT-FFR (1CT-FFR ≥ 0.15).

Univariable analysis Multivariable analysis

OR (95% CI) P OR (95% CI) P

High-risk plaque 0.486

(0.208–1.134)

0.095 - -

Total plaque

volume

1.001

(0.999–1.002)

0.408 - -

LAP volume 1.008

(1.002–1.014)

0.005 1.006

(1.001–1.012)

0.028

IAP volume 0.999

(0.996–1.001)

0.368 - -

Calcification

volume

1.003

(0.998–1.009)

0.253 - -

Plaque length 1.028

(1.007–1.050)

0.009 1.021

(1.000–1.043)

0.048

Agatston score of

lesion vessel

1.001

(1.000–1.003)

0.142 - -

OR, odds ratio; CI, confidence interval; LAP, low-attenuation plaque; IAP, intermediate-

attenuation plaque.

those patients with stable chest pain who had undergone ICA
and invasive FFR assessments in the cath lab and had not
undergone coronary revascularization surgery. Patients with
the acute coronary syndrome were excluded from the study,
which might lead to potential selection bias. Besides, this
study lacks clinical outcome data. Therefore, further clinical
outcome studies are still needed to analyze the effectiveness of
these methods.

CONCLUSIONS

CT-FFR and especially1CT-FFRwere additional tools to identify
patients with relevant stenosis and both tools and here especially
the 1CT-FFR could improve the diagnostic performance of
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ischemia compared with CCTA alone. Thus, the need for further
invasive treatment could be better applied to patients. LAP
volume and plaque length were the independent risk factors
of 1CT-FFR.
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