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Abstract: Targeting anaplastic lymphoma kinase (ALK), a receptor tyrosine kinase receptor initially
identified as a potent oncogenic driver in anaplastic large-cell lymphoma (ALCL) in the form of
nucleophosmin (NPM)-ALK fusion protein, using tyrosine kinase inhibitors has shown to be a
promising therapeutic approach for ALK-expressing tumors. However, clinical resistance to ALK
inhibitors invariably occurs, and the molecular mechanisms are incompletely understood. Recent
studies have clearly shown that clinical resistance to ALK inhibitors is a multifactorial and complex
mechanism. While few of the mechanisms of clinical resistance to ALK inhibitors such as gene
mutation are well known, there are others that are not well covered. In this review, the molecular
mechanisms of cancer stem cells in mediating resistance to ALK inhibitors as well as the current
understanding of the molecular challenges in targeting ALK in ALK-expressing human cancers will
be discussed.

Keywords: anaplastic lymphoma kinase; ALK-expressing cancers; cancer stem cells; crizotinib;
clinical resistance; tyrosine kinases; tyrosine kinase inhibitors

1. Introduction

Tyrosine kinases, such as ALK, are a very attractive therapeutic target for cancer treatment,
especially on the basis of promising results from preclinical and early clinical studies [1]. Anaplastic
lymphoma kinase (ALK) is a receptor tyrosine kinase that was initially discovered and characterized
in a rare type of lymphoma called anaplastic large-cell lymphoma (ALCL) as an NPM-ALK fusion
protein [2]. Specifically, the catalytic domain of the ALK protein was fused with the amino terminus of
nucleophosmin (NPM), and it was found that the NPM-ALK fusion protein resulted in the constitutive
activation of the ALK tyrosine kinase, thereby leading to deregulation of multiple cell signaling
pathways and increased tumorigenicity (Figure 1) [3–5]. Subsequent studies of ALCL and other types
of human cancer have revealed additional fusion partners of ALK and various types of ALK gene
aberrations [6,7]. For example, the echinoderm microtubule-associated protein like 4 (EML4)-ALK
fusion was identified in ~5% of non-small cell lung cancers (NSCLC) [8,9]. Amplified ALK or mutated
ALK was identified in ~14% of neuroblastomas (NB), the most common and aggressive childhood
malignancy [10–13]. To date, several ALK inhibitors are at various stages of clinical testing and the US
Food and Drug Administration (FDA) [1]. Although most clinical results regarding ALK inhibitors are
from patients with ALK-positive non–small-cell lung carcinoma (NSCLC), it is clear from preclinical
studies that ALK inhibition is effective in all ALK-expressing cancers [14].
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The ALK protein interacts and activates many essential adaptors involved in multiple signaling pathways,
including PI3K, RAS/MEK/ERK,β-catenin, and JAK/STATs. Only four representative signaling pathways
are shown here. EML4-ALK: echinoderm microtubule-associated protein like 4-anaplastic lymphoma
kinase; NPM-ALK: Nucleophosmin-anaplastic lymphoma kinase; STAT: Signal transducer and activator
of transcription; PI3K: phosphatidylinositol 3 kinase; ERK: extracellular signal-related kinase; JAK3: Janus
kinase 3; Bcl2: B-cell lymphoma 2; Mcl1: Myeloid cell lymphoma 1; BAD: Bcl-2-associated death
promoter; mTOR: mammalian target of rapamycin; MEK: MAPK (Mitogen-activated protein kinase)/ERK
(extracellular signal-regulated kinase); Sox2: (sex determining region Y)-box 2.

The data collected from clinical studies, especially for crizotinib (the first ALK inhibitor used
in the clinic), were extremely promising [1]. In ALK+ NSCLC, for instance, comparing crizotinib
with standard chemotherapy in the second-line setting resulted in an improved overall response rate
(65% vs. 20%, respectively), a shorter response time (6.3 vs. 12.6 weeks), and an improved median
progression-free survival (7.7 vs. 3.0 months) with crizotinib [15]. In ALK+ ALCL patients, crizotinib
was administered to seven adults with resistant high-stage disease and resulted in a complete response
(CR) in three patients and a partial response in one patient [16]. This later study was expanded and
had a total of 11 patients (9 with ALCL) and a CR was observed in all 9 patients [17]. Furthermore,
the Children’s Oncology Group-sponsored Phase 1 clinical trial (NCT00939770) with crizotinib in
children with refractory ALK+ ALCL resulted in a CR in eight of the nine patients [18]. This Phase 1
clinical trial included 34 NB patients with recurrent or refractory cancer, and showed a wide range
sensitivity to ALK kinase inhibition [18]. Specifically, only 2 out of 34 (6%) patients showed complete
remission, 8 (23.5%) showed stable disease while 24 (71%) showed progressive disease [18].

Resistance to ALK inhibitors, including even second- or third-generation drugs used as a single
therapy, is a ubiquitous problem in ALK-expressing cell lines as well as treated patients (Table 1
and Figure 2) [1]. Resistance to crizotinib, for instance, was initially reported in NSCLC [15,19] and
inflammatory myofibroblastic tumors [20], followed by NB [18] and ALCL [17]. Previous reports have
generally suggested two categories of mechanisms of resistance: (1) resistance mediated by mutations in
the ALK kinase domain impairing binding of an inhibitor to an ALK protein, and/or (2) the activation
of compensatory alternative oncogenic drivers such as MET, epidermal growth factor receptor (EGFR),
KRAS, and c-KIT [1]. However, there is a lack of knowledge on the molecular basis of this resistance.
In other words, almost all of the previous studies have focused on acquired resistance (which is caused
by post-treatment changes such as alteration in drug targets and the activation of compensatory survival
signaling pathways), while knowledge on intrinsic resistance (which includes the factors that exist
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before treatment such as the presence of cancer stem cells) is almost lacking in ALK+ cancers. These two
mechanisms of resistance have been previously reviewed in [21,22]. In this review, the role of cancer
stem cells and how it impacts on the resistance to ALK inhibitors as well as the current understanding
of the molecular challenges in targeting ALK in ALK-expressing human cancers will be discussed.

Table 1. Summary of first and next generation ALK inhibitors.

ALK Inhibitor Other Names
FDA Approval
(Month/Year)

Resistance
Occurred

[Reference]

Ways to Overcome Resistance [Reference]

Other ALK
Inhibitors Re-Sensitizing the Inhibitor

Crizotinib PF-2341066
Xalkori® Yes (08/2011) Yes [15,23]

1. Ceritinib [24,25]
2. Alectinib [26]
3. Brigatinib [27]

1. Targeting PI3K/AKT/mTOR
pathway [28,29]

2. Targeting Src [30]
3. Targeting HSP90 [31]

4. Targeting β-catenin [32]

Ceritinib LDK-378
Zycadia® Yes (04/2014) Yes [33,34] Alectinib [33,34] Not performed

Alectinib
CH5424802
RO5424802
Alecensa®

Yes (12/2015) Yes [35,36] Ceritinib [35,37] Not performed

Brigatinib AP26113
Alunbrig™ Yes (04/2017) Yes [38] - Not performed

Lorlatinib PF-06463922 No Yes [39] Crizotinib [39] Not performed

ALK: Anaplastic lymphoma kinase; FDA: Food and Drug Administration; PI3K: Phosphoinositide 3-kinase;
mTOR: mammalian target of rapamycin; HSP90: heat shock protein 90.
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Figure 2. The current active approaches to overcome resistance to ALK inhibitors. The most common
approach mainly relies on second and third generation ALK inhibitors such as ceritinib, alectinib,
and brigatinib. The less common approach relies on re-sensitizing resistant cells to ALK inhibitors
by targeting other signaling pathways. X represents the inhibitory effect of the ALK inhibitor. Green
triangle represents the addition of another ALK inhibitor. PI3K: Phosphoinositide 3-kinase; HSP90:
heat shock protein 90.

2. Reported Mechanisms of Resistance

Resistance to targeted therapy has been reported to be mediated through multiple mechanisms [1].
Some of these mechanisms are known to exist among almost all tyrosine kinases, including ALK.
For example, gene amplification, gene mutation, and upregulation of alternative signaling pathways;
all of which have been shown to induce drug resistance [22,23,40]. Unlike ALK, there are several
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mechanisms of resistance that have been reported in EGFR-expressing lung cancer cells and BCR-ABL
(breakpoint cluster region-abelson)-expressing chronic myeloid leukemia (CML) cells. The existence of
cancer stem cells (CSCs) is one of these mechanisms. For instance, stem cell population in lung cancer
cells were shown to be relatively resistant to gefitinib, a tyrosine kinase inhibitor showing specificity
to the epidermal growth factor receptor (EGFR) [41]. One study showed that acquired resistance to
gefitinib was associated with a manifestation of stem cell–like properties in cancer cells [42]. Similarly,
resistance to imatinib, a tyrosine kinase inhibitor showing specificity to BCR-ABL, has been well
documented in leukemic stem cells.

Mechanistically, leukemic stem cells have been shown to be attributed to imatinib resistance through
three independent mechanisms. First, leukemic stem cells were found to express a relatively high
level of BCR-ABL [43,44]. Second, leukemic stem cells were found to be inefficient in maintaining
the intracellular accumulation of imatinib, mainly due to the relatively low expression of the organic
cation transporter-1 (OCT1), which is responsible for the cellular uptake of imatinib [45], as well as
the relatively high expression of ABCB1 (ATP Binding Cassette Subfamily B Member 1) that mediates
the efflux of imatinib [46]. Third, imatinib resistance was shown to be mediated by the activation of
alternative signaling pathways such as Mitogen-activated protein kinase (MAPK), Notch, and hedgehog
that maintain viability and growth despite continued suppression of BCR-ABL kinase activity [47–50].

The other mechanism of resistance that has been previously reported is histologic transformation
which includes epithelial mesenchymal transition (EMT) and small cell transformation [40,51].
For instance, many studies have reported that histologic transformation, mainly EMT, could induce
cancer cell resistance to EGFR-tyrosine kinase inhibitors (TKIs) [52–55]. Specifically, the transformation
to SCLC as acquired resistance mechanism is observed in 14% of TKI-treated EGFR mutant pulmonary
adenocarcinomas [56–58]. In ALKF1174L-driven NB cells, ALK inhibitor resistance was found to be
associated with the induction of EMT [59]. Importantly, co-targeting EGFR (in lung cancer) or ALK
(in NB) and the molecules that drive these pathways can reverse TKIs resistance [59–62]. A more recent
study has suggested that EMT is only associated with, but does not drive resistance to, ALK inhibitors
among EML4-ALK+ NSCLC [63].

Furthermore, it has been reported that due to a heterogeneous population of cancer cells, some
of the population are not fully dependent on the activity of tyrosine kinases for their survival, which
may be the reason behind the insensitivity of these cells to TKIs [64]. For instance, leukemia stem
cells have been shown to utilize signaling pathways independent of BCR-ABL kinase activity for
their maintenance and survival, and that these cells were insensitive to TKIs such as imatinib or
dasatinib [65,66].

3. Role of Intra-Tumoral Heterogeneity in Dictating Resistance to ALK Inhibitors in
ALK-Expressing Cancers

As mentioned previously, CSCs were shown to be a major contributing factor to disease relapses
upon TKIs treatment. Oh et al., (2015) showed that targeting stemness with rapamycin, an mTOR
inhibitor, synergized the crizotinib effect in EML4-ALK+ cells (lung cancer) in vitro and in vivo [67].
Additionally, they showed that the rapamycin treatment sensitized the crizotinib-resistant cell line
to ALK inhibition [67]. A more recent study showed the synergistic effect of ALK and mTOR
inhibitors in the treatment of NPM-ALK+ cells (ALCL) [68]. Using an mTOR inhibitor, namely
Torin2, which is a selective mTORC1 inhibitor, was also shown to restore sensitivity to crizotinib in
ALK-mutated (ALKF1174L) NB cells [28,69]. These studies have shed light into the importance of CSCs
in ALK-expressing cancer cells; however, they did not mechanistically study CSCs as none of these
studies purified and studied CSCs.

In our recent study, we found that CSCs derived from NB cells were significantly more resistant
to crizotinib (under review). Of note, NB CSCs were purified based on their responsiveness to a Sox2
reporter, a strategy that has been used previously for several different cancer models [70–75]. Importantly,
we concluded that the crizotinib resistant phenotype in CSCs can be attributed to their high β-catenin
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expression since siRNA knockdown of β-catenin sensitizes CSCs to the crizotinib treatment. Our data
suggested that combining β-catenin inhibitors and ALK inhibitors may be useful in treating NB patients.
To the best of our knowledge, this latter study is the only study, to date, that has investigated the role of
CSCs as a contributing factor to treatment failure and disease relapses to ALK inhibitors. Further studies
need to be performed to study the CSCs and their role in mediating ALK TKIs resistance.

4. Role of ALK-Interacting Proteins in Mediating TKIs Resistance

Tyrosine kinases are known to bind to a large number of cellular proteins, thereby mediating their
oncogenic effect [4]. To date, there is little known about whether some of these binding proteins might
play a role in modulating resistance to TKIs. For instance, targeting β-catenin has been shown to cause
an abrogation of tyrosine kinase resistance in the BCR-ABL CML model [76]. In a lung cancer model,
inhibition of β-catenin was shown to enhance the anticancer effect of EGFR-TKI in EGFR-mutated
cells [77]. Of note, β-catenin is the central mediator of Wnt/β-catenin signaling, and it can be localized
either in the adherens junctions and is involved in cell–cell contacts, or in the nucleus where it is
implicated in transcriptional regulation and chromatin modification [78]. The mechanism of how
β-catenin mediates resistance to these TKIs.

Work from our laboratory using the NPM-ALK+ ALCL and ALK+ NB cells showed a physical
interaction between ALK and β-catenin [32,79]. Computational analysis could provide a starting
point for more in-depth mechanistic understanding and explanation for the reason behind ALK
TKIs resistance and predicting the proteins that could mediate the blockage of TKI-ALK binding.
To date, the fate of ALK—β-catenin interaction and other ALK-interacting proteins is still minimally
understood, and requires more mechanistic studies.

5. CETSA as a Tool That Can Be Used to Predict the Resistance to ALK Inhibitors

The current read-out used to measure the effect of ALK inhibitors focuses on phenotypic
assays where the response to an inhibitor is based on a functional readout such as changes in
the phosphorylation status of downstream targets, or the impact on cellular viability [80]. While
these functional readouts are very useful, they do not provide sufficient information regarding
the resistance. We have recently shown that CETSA (Cellular Thermal Shift Assay), a recently
described method that allows for the rapid and simple assessment of drug target engagement in
a cellular context [81–83], is useful in predicting crizotinib sensitivity in ALK-carrying cancer cells [32].
Previous studies have shown that CETSA is as an excellent tool to evaluate the physical binding of
an inhibitor to its target in intact cells [81–83]. A few studies have used the CETSA assay to evaluate
crizotinib treatment [32,84,85]. The first report assessed the photosensitivity side effect of many
kinase inhibitors, including crizotinib, on K562 (a BCR-ABL+ CML cell line) by combining the CETSA
method with multiplexed quantitative mass spectrometry (MS) [84]. In the second report, the authors
demonstrated a bond between the (S)-enantiomer crizotinib (which is not the clinically used ALK
inhibitor; (R)-enantiomer) and MTH1 (MutT Homolog 1) and thereby worked as a suppressor of
MTH1 activity [85]. In the third study, the authors identified a significant positive correlation between
crizotinib-ALK binding and the observed IC50, which provides a logical justification for the differential
responsiveness [32]. Additionally, it proved that the CETSA assay was a very useful tool to predict
crizotinib sensitivity in different ALK-carrying cancer types.

CETSA has increased in popularity as a tool to validate drug–target interaction [86,87].
For example, the proposed PARP-1 (Poly [ADP-ribose] polymerase-1) inhibitor iniparib reached
Phase III clinical trials where it showed no efficacy, and was subsequently shown to lack activity
against PARP-1 in living cells [86,87]. CETSA was used to compare the target engagement of PARP-1
for iniparib and olaparib [81], which is a well-established PARP-1 inhibitor in clinical development.
Recently, the CETSA assay was used to assess the binding of these two PARP-1 inhibitors and showed
that iniparib failed to induce a thermal shift, whereas olaparib binding induced a large thermal shift of
PARP-1 [81]. Apparently, the mechanism of action of iniparib is not via physical binding to PARP-1;
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instead, iniparib may kill cancer cells by unspecific modification of cysteine residues. All these reports
highlight the significance of implementing CETSA as a tool that can prove the TKI binding to its target
and thereby predict resistance in early stages of treatment.

6. Potential Significance of Precursor mRNA in Mediating Resistance to ALK TKIs

Cancer cells are generally known to develop multiple mechanisms to escape the signaling
inhibition caused by TKIs treatment. While the main mechanisms have been discussed earlier in
this review, we recently postulated an additional mechanism where an ALK-intron retained transcript
was detected in NB cell lines as well as patient samples (under review). This observation poses some
intriguing questions with regard to the properties of ALK as an oncogene. In our hypothetical model,
the ALK-intron 19 (ALK-I19) transcript was the final precursor to the fully spliced(FS)-ALK transcript,
whose high expression is fundamental for sustaining NB growth and proliferation. Perhaps due to
this inherent dependency on ALK, many NB cells may pre-synthesize the ALK-I19 transcript within
the nucleus as a short-term storage system to bolster FS-ALK expression when it is critically required.
This mechanism may be especially useful to the cancer cells to maintain homeostasis. In conditions
of cellular stress, such as in normal tumor physiology like hypoxia and upon growth inhibiting drug
treatments (i.e., chemotherapy), ALK-I19 may increase FS-ALK levels. A comparable stress-induced
mechanism was identified for the ApoE gene in central nervous system neurons [88]. Upon injury of
the neuronal cells, an intron retained transcript of ApoE pre-synthesized in the nucleus enhanced the
cytoplasmic level of fully spliced ApoE [88]. This mechanism leads to the immediate production of
proteins upon cellular stress. This phenomenon of a ‘buffer’ transcript could be relevant given the
vital importance of ALK activity in many cancer types.

What molecular factors are responsible for this phenomenon? Answering this important question
could aid the development of more effective therapeutics for ALK+ patients. For example, Intron
4-retaining CCDN1 (cyclinD1) expressed in prostate and esophageal cancers was found to translate into
a truncated cyclin D1 protein, which has oncogenic effects [89,90]. Indeed, RNA binding proteins, many
of which participate in specific splicing complexes, are deregulated in cancers [91]. This disruption can
lead to aberrant alternative splicing and boost tumorigenesis. Therefore, the examination of regulatory
protein-networks involved in ALK protein synthesis and its role in mediating resistance to ALK TKIs
is warranted.

7. Conclusions

This review presented data describing mechanisms of resistance to ALK TKI treatment and
clearly showed that it is a multifactorial and complex mechanism (Table 1). There are at least four
reasons supporting the notion that the mechanisms of resistance to ALK inhibitors are not exclusively
attributed to one or two factors (e.g., specific ALK mutation). First, studies performed on crizotinib
upon its discovery showed that a high concentration of crizotinib (defined as >300 nM) displayed
off-target effects [92]; and the IC50 for U937, a histiocytic lymphoma cell line used as a negative control
(as it expresses neither ALK nor c-Met) was 257 nM [93]. Second, NB cell lines carrying resistant
ALK mutations such as ALKF1174L, displayed drastically different IC50 to crizotinib (i.e., IC50, 400
to 2000 nM)) [28]. Third, while some reports documented that crizotinib differential sensitivity in
EML4-ALK-expressing cells was dependent on the EML4-ALK variant [94–96], other studies have
shown no link between EML4-ALK fusion variants and crizotinib responses [97,98]. Fourth, crizotinib
was shown to suppress the growth of ALK+ thyroid cancer cells; however, this potential therapeutic
benefit was produced from non-Met/ALK-targeting effects [99]. All these facts highlight the importance
of undertaking more research to understand the molecular basis of resistance to ALK TKIs.

The current active approach to overcome ALK-TKIs resistance mainly relies on second- and
third-generation TKIs, with over 11 inhibitors being developed [100,101]. With increased experience
in TKI resistance, the clinical response to the next-generation TKIs is commonly highly variable
and unpredictable [101]. For instance, third-generation EGFR TKIs are being developed as part of a
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strategy to overcome treatment resistance to first- and second-generation EGFR TKIs in lung cancer
patients [102]; however, resistance to third-generation EGFT TKIs such as AZD9291 and HM61713
are also being arise [103]. A pervading theme regarding resistance to TKI therapy is its mediation
by secondary mutations, which has not been resolved by introducing new generations of more
TKIs. For example, despite the clinical efficacy of the first-, second-, and third-generation BCR-ABL
inhibitors, resistance occurs invariably and more than 50 distinct point mutations encoding single
amino-acid substitutions in the kinase domain of the BCR-ABL1 gene have been detected in patients
with imatinib-resistant CML [64,104]. Adding more inhibitors does not work, as previously shown for
other tyrosine kinase inhibitors. Therefore, it is crucial to perform further research to understand TKI
resistance in ALK+ cancer patients.

Taken together, the evidence presented in this review depicts the importance of continuous
investigation towards a deeper understanding of clinical resistance. Although there are copious
and complex questions to be solved, the recent advances in both clinical and preclinical research,
facilitated by the impressive developments in experimental methods and techniques, has generated
much enthusiasm and hope for the future.

Conflicts of Interest: The authors declare no conflict of interest.
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