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Abstract: Ovarian cancer (OC) is one of the deadliest cancers among women contributing to high risk
of mortality, mainly owing to delayed detection. There is no specific biomarker for its detection in early
stages. However, recent findings show that over-expression of specificity protein 1 (Sp1) is involved in
many OC cases. The ubiquitous transcription of Sp1 apparently mediates the maintenance of normal
and cancerous biological processes such as cell growth, differentiation, angiogenesis, apoptosis,
cellular reprogramming and tumorigenesis. Sp1 exerts its effects on cellular genes containing putative
GC–rich Sp1–binding site in their promoters. A better understanding of the mechanisms underlying
Sp1 transcription factor (TF) regulation and functions in OC tumorigenesis could help identify novel
prognostic markers, to target cancer stem cells (CSCs) by following cellular reprogramming and
enable the development of novel therapies for future generations. In this review, we address the
structure, function, and biology of Sp1 in normal and cancer cells, underpinning the involvement
of Sp1 in OC tumorigenesis. In addition, we have highlighted the influence of Sp1 TF in cellular
reprogramming of iPSCs and how it plays a role in controlling CSCs. This review highlights the
drugs targeting Sp1 and their action on cancer cells. In conclusion, we predict that research in this
direction will be highly beneficial for OC treatment, and chemotherapeutic drugs targeting Sp1 will
emerge as a promising therapy for OC.

Keywords: ovarian cancer; therapeutics approach; cellular reprogramming; transcription factor; Sp1

1. Introduction

Ovarian cancer (OC) has been identified as the deadliest multidrug resistant cancer among
females, especially at their perimenopausal stage [1]. Reports suggest that OC is the second most
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common reproductive cancer among women in India [2]. Although OC is a single disease, its clinical
pathway is mostly intercalated by other tumor types having different prognosis stages, morphologies,
and molecular and epigenetic backgrounds [3]. Presently, there are no early-stage treatment options for
OC since the early symptoms cannot be comprehended. Due to high prevalence and the continuously
rising incidence, OC poses a major threat to personal health as well as the health care system [1].
Despite ongoing efforts to detect OC, specific diagnostic biomarkers are yet to be identified [4]. It
is evident that transcription factors (TFs) play a pivotal role in the regulation of cellular functions,
including cell activation, repression, and alteration of gene expression. Any dysfunctional activation or
inactivation of TFs may result in cellular induction of tumorigenesis [4]. Mutations in cancer is caused
due to changes in various proteins functions and transcriptions factors which are controlling the protein,
thus changing the phenotypes in human [5]. Bookmarking of mitosis constitutes a mechanism that
transmits transcriptional patterns by cell division. Bookmarking factors, comprising a subset of TFs,
and multiple histone modifications retained in mitotic chromatin facilitate reactivation of transcription
in the early G1 phase [6]. It is possible that Sp1 phosphorylation may change its interaction with other
transcription factors [7]. Specificity protein 1 (Sp1) is one such ubiquitous and multifunctional TF from
the Sp/Kruppel-like family (KLF) TFs, which are the major forms of zinc-finger DNA binding proteins
(also known as specificity protein 1 and TSFP1) belonging to a member of the KLF TFs [8]. The Sp1
gene was first cloned by Kadonaga and co-workers, and the various functional domains of Sp1 were
determined in a series of in vitro and whole cell assays. It was first identified by cell fractionation
procedures and shown to interact with GC and GT oligonucleotide sequences that are typically found
in diverse viral and cellular gene promoters [9]. Sp1 was the first constitutive eukaryotic transactivator
of both housekeeping and TATA genes and it has been observed to be high in epithelial ovarian
cancer [10]. Dynan and Tjian initially observed that Sp1 can selectively transactivate the early and late
simian virus 40 promoters without influencing many other promoters and regulate the expression
of thousands of genes involved in the control of a variety of cellular processes, such as cell growth,
differentiation, apoptosis, angiogenesis, and immune response. Furthermore, the authors observed
that the promoter of Sp1 activated the SV40 and increased transcription by 40-fold, while inhibition of
adenovirus delayed the promoter binding by 40% [11]. Similar studies identified that Sp1 binds to the
dhfr promoter resulting in gene expression for de novo synthesis of purines, thymidylate and glycine
and its role as promoter for SV40 [12].

It is important to understand how a complex factor such as Sp1 is involved in basal transcriptional
regulation in various genes. The encoded protein is involved in many cellular processes, including cell
differentiation, cell growth, apoptosis, immune responses, response to DNA damage, and chromatin
remodeling. Post-translational modifications such as phosphorylation, acetylation, glycosylation,
and proteolytic processing significantly affect the activity of this protein, which can be an activator
or a repressor [13]. When SP1 is overexpressed and contributes to the malignant phenotype of a
variety of human cancers by upregulating genes that enhance proliferation, invasion, and metastasis as
well as stem-ness and chemoresistance [14]. Investigations have revealed that both upregulation and
downregulation of Sp1 can modulate several oncogenes, thus regulating the metastasis and tumor
growth in OC [15,16]. It is also found that Sp1 supports angiogenesis and opposes apoptosis in cancer
cells, thereby aggravating tumorigenesis. In a recent study, it was found that high Sp1 expression
leads to autophagic flux and increased tumorigenesis [17]. These lines of evidence support that a more
in-depth knowledge about Sp1 would increase the options for treating OC. This review synopsizes
the fundamental role of Sp1 in normal cells and its precise role as a regulator for OC tumorigenesis.
In conclusion, we suggest Sp1 as one of the best potent drug targets to treat OC.

2. Genetic Makeup and Structure of Sp1

The gene encoding Sp1 is located in the q arm of the 12th chromosome in humans [8]. According
to the AceView database, the sequence of the Sp1 gene is supported by 512 sequences from 447 cDNA
clones [18]. In humans, the Sp1 gene produces four transcripts generated by alternative splicing with
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a transcript length of 602 bps and a translational length of 162 residues. The Sp1 protein is almost
785 amino acids long with a molecular weight of 81 kDa. The earlier structured domain region of Sp1
was analyzed using standard homo-nuclear two-dimensional nuclear magnetic resonance imaging
techniques, revealing a classical Cys2-His2 type fold in the Sp1 domain [19,20]. Sp1 contains three highly
homologous C2H2 regions, which exhibit direct binding to DNA, thus enhancing gene transcription [21].
Sp1 has four unstructured domains A, B, C, and D. The defining feature of Sp1-like/KLF proteins is a
highly conserved DNA-binding domain (more than 65% sequence identity among family members)
at the carboxyl terminus that has three tandem Cys2His2 zinc-finger motifs [22]. The DNA-binding
domain (C-terminal domain) of the Sp1-like transcription factor family is highly conserved, whereas
the N-terminal regions of the proteins are more divergent. Interestingly, it is through this domain that
many of these transcription factors regulate transcription [23]. The two main transactivating domains
(TAD) of Sp1 are A and B, which are capable of direct interaction with the components of transcription
machinery such as TATA-binding protein (TBP) and TBP-associated factor 4 (TAF4) [24]. The C domain
is not indispensable, but it is highly charged and supports DNA binding and transactivation. The D
domain, also known as the C-terminal region of SP1 has multimeric domains and is responsible for the
binding of consensus sequences such as 50-(G/T) GGGCGG(G/A)(G/A)(G/T)-30 [25]. The N-terminal
region is a small inhibitory domain (IB), which mainly regulates functions of domains A and B, and is
linked with a serine-threonine-rich region [24]. The co-crystallized structure of Sp1 has been depicted
in Figure 1.
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Figure 1. The Co-crystallized Structure of specificity protein 1 (Sp1). The Sp1 protein is 785 amino
acids long with a molecular weight of 81 kDa. The figure depicts the co-crystallized structure of Sp1,
where the protein has three highly homologous C2H2 –type zinc finger motif-rich regions. This region
is responsible for the binding to GC-rich DNA motifs (such as 5′-G/T-GGGCGG-G/A-G/A-C/T-3′ or
5′-G/T-G/A-GGCG-G/T-G/A-G/A-C/T-3′) and for the regulation of gene transcription of a large number
of genes involved in various processes such as response to DNA damage, chromatin remodeling,
cell growth, apoptosis, differentiation, and immune responses. The transcriptional activity of Sp1
can be modulated by several post-translational modifications including phosphorylation, acetylation,
ubiquitylation, sumoylation, and glycosylation. The phosphorylation sites such as Ser59, Ser101, Ser131,
Thr278, Thr335, and Thr453, were indicated in the figure. (Figures have been created with BioRender.io
https://biorender.com/).

3. Regulation of Sp1

The uniqueness of the Sp1 TF is that it not only initiates transcription but also regulates the
activation or repression processes. Growing evidence suggests that the transcriptional activity and
stability of Sp1 is influenced by its post-translational modifications (PTMs). Sp1 undergoes acetylation,
sumoylation, ubiquitylation, and glycosylation after translational [26,27]. Acetylation of Sp1 takes
place in the DNA binding domain [28]. Glycosylation occurs at the at O-GlcNAc linkages at the Ser
and Thr residues in Sp1, which can either induce or suppress DNA binding and transcription [29].
Sumoylation, occurring in the Lys16 region, controls the transcription of Sp1 by instigating alterations
in the chromatin structure, making the DNA inaccessible for transcription [30]. The proteasomal
degradation of Sp1 is carried out by the ubiquitylation, where Sp1 is directly bonded with the binding
motif of the beta-TCRP ubiquitin ligase complex [31]. Thus, the impact and influence of PTMs on the

https://biorender.com/
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transcriptional activity of Sp1, and, in particular, the modulation of its affinity for DNA/proteins, have
helped clarify the mechanisms related to tumorigenesis.

4. Role of Sp1 in the Normal Cell Cycle and OC Tumorigenesis

Sp1 has a key role in regulating cyclins, CDKs, and CDKIs, which are critical components of
cell cycle machinery [32]. In the G1 phase of the cell cycle, the proteasome dependent degradation
mechanism is correlated directly with elevated levels of nuclear Sp1, which also augment the
proliferation of Sp1-responsive genes such as ODC and cyclin D1 [33]. Sp1 is a mitotic substrate of
CDK1/cyclin B1, which is phosphorylated at Thr739 of CDK1/cyclin B1 in the M-phase of the cell
cycle [26]. In vitro and in vivo studies reveal that the N-terminal region of the Sp1 protein undergoes
phosphorylation due to the formation of cyclin A–CDK complexes in the G2 phase of the cell cycle,
reducing DNA binding and facilitating chromatin condensation [34,35]. During the transition period
of the G1/S phase, Sp1 induces cyclin D/Cdk4, cyclin E/Cdk2, E2f–1, and c–myc genes [36]. The roles
played by Sp1 in cell cycle phases have been depicted in Figure 2. Thus, Sp1 has a putative job in cell
cycle regulation which may result into tumor development and progression upon disruption.
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Figure 2. Role of Sp1 in the cell cycle. Improper functioning of the cell cycle and its checkpoints
are generally a key factor for cancer cell growth. Some major interactions between the activity of
transcription factor Sp1 and different components of the cell cycle phases, and its coordinating regulators
have been depicted in this figure. In the G1 phase of the cell cycle, an elevated level of nuclear Sp1
augments the proliferation of Sp1-responsive genes such as ODC and cyclin D1. In M-phase of cell
cycle, Sp1 TF acts as a mitotic substrate of CDK1/cyclin B1. In G2 phase of cell cycle Sp1 undergoes
phosphorylation due to cyclin A-CDK complexes. In the transition periods from G1/S phase, Sp1
stimulates cyclin D/Cdk4, cyclin E/Cdk2, E2f–1, and c–myc genes. These interfaces often result into an
abnormal cell cycle progression and possibly into cancer cell growth and progression. (Figures have
been created with BioRender.io https://biorender.com/).

Tumorigenesis can be defined as an uncontrolled cell cycle progression. Defects in the Sp1
transcriptional activities act as a cause for tumorigenesis in many types of cancers, such as ovarian, breast,
and gastric cancer. The transcription activity of Sp1 in cancer cells is enhanced by various oncogenes
like Ras, Src, and Raf, especially through the p42/p44 mitogen-activated protein kinase/extracellular
signal-regulated kinase (MAPK/ERK) pathway [37]. Sp1 expression levels are associated with poor
disease prognosis, especially in OC [38]. Many studies note that Sp1 predominantly regulates oncogenes
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Int. J. Mol. Sci. 2020, 21, 1153 5 of 17

such as XIP, Claudin 4 (CLDN4), cyclin E, KLF8, and vascular endothelial growth factor (VEGF),
which contribute to OC tumorigenesis [39–43]. Xu et al. observed that hepatitis B X–interacting
protein (HBXIP), a novel oncoprotein, when bound with Sp1 TF, was highly expressed in OC cells [37].
Furthermore, it was also found that S-phase kinase-associated protein 2 (Skp2), another oncoprotein,
promotes the migration of OC cells via Sp1 TF [37]. High levels of another OC oncogene, CLDN4 are
generally controlled by epigenetic alterations in the promoter region of Sp1 [39]. A case-control study
in Caucasians revealed that the MDM2 proto-oncogene showed a T309G polymorphism, enhancing its
binding affinity to Sp1, thereby elevating the chances of OC tumorigenesis (Figure 3) [44]. The activation
of various tumor signaling pathways exposes the cells to stressful environmental conditions such as
oxygen and nutrients deprivation. Sp1 and hypoxia–inducible factors (HIF2), a ubiquitously expressed
TF in ovarian clear cell carcinoma (CCC), it was observed that activation of long chain fatty acid (LCFA)
resulted into starvation and hypoxia type of micro-environment in ovarian CCC cases [45]. Thus, it is
suggested that knocking down or inhibiting the levels of Sp1 in OC cells can decrease tumor formation,
tumor growth, and metastasis.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 6 of 17 
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Figure 3. Sp1 mediated tumorigenesis in ovarian cancer (OC). Evasion in the Sp1 transcriptional
activities at various levels has been found as a cause for tumorigenesis in OC cells. In OC cells,
the transcription activity of Sp1 can be enhanced by various oncogenes like Ras, Src, and Raf especially
through MAP3K, PI3K/AKT, and JNK1 pathway. In addition, Sp1 affects the tumorigenesis by
activating the pro–oncogenes such as HBXIP, CLDN4, and MDM2, resulting in the migration of OC
cells. Furthermore, Sp1 is seen to up-regulate VEGF and survivin genes, leading to angiogenesis and
anti–apoptosis in the OC cells (Figures have been created with BioRender.io https://biorender.com/).
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In OC, the most frequently altered pathways include JNK1 (c–Jun N–terminal kinase 1) pathways,
MAPK signaling, and the PI3K/AKT pathway (Figure 3). Rhox5 homeobox protein, which is highly
expressed in the granulosa cells of ovaries, is upregulated by TFs such as ETS and Sp1 via various
pathways such as JNK, MAPK8, and RAS [46]. The metabolism in cancer cells is mainly controlled by
the PI3K/AKT pathway by Sp1-mediated transactivation of various oncogenes [47]. Milanini-Mongiat
et al. [48] found that JNK1 and JNK2 pathways control the activation as well as upregulation of Sp1 [48],
eventually leading to the activation of oncogenes and tumorigenesis. Further, it was also shown
that the p42/p44 MAPK pathway alone can phosphorylate Sp1 at the T453-739 region, enhancing the
Sp1–DNA (promoter) interactions, ultimately resulting in OC progression [48]. On similar grounds,
it was also reported that CD147, an important biomarker found in OC, stimulates Sp1 phosphorylation
at T453 and T739 sites, especially through the PI3K/AKT and MAPK/ERK signaling pathways [49].
Another interesting fact about the p42/p44 MAPK pathway is that it can activate stress factors such as
hypoxia and release Reactive Oxygen Species (ROS) and Nitric Oxide (NO) [50], which triggers Sp1
into activating various oncogenes [51]. Thus, the given literature suggests that major cancer-associated
signaling pathways trigger Sp1 to activate various oncogenes and support the development and
progression of OC.

5. Effect of Sp1 TF in Angiogenesis and Anti-Apoptosis in OC

Angiogenesis is the process of formation of new blood vessels within the cells, and it is an
important prognostic factor for the pathophysiological conditions seen in OC cells. VEGF is one of
the genes normally linked with most of the angiogenic processes in cancer cells. A few studies have
proven that Sp1 promotes angiogenesis in OC via induction of VEGF expression by directly binding to
its promoter site [52–54]. It has also been suggested that Sp1 upregulates VEGF via the AKT pathway,
eventually initiating angiogenesis for the invasion of tumor cells [55,56]. Sue et al. found that the
upregulation of Sp1 in the SKOV3 cell line enhances the expression of VEGF, and initiates angiogenesis,
thus provoking the malignancy of OC [57] (Figure 3).

Another significant factor for OC tumorigenesis is the dysregulation of apoptosis, as it can activate
the invasion, prognosis, and resistance to chemotherapy in OC cells. Apoptosis is a type of programmed
cell death, where the pro- and anti-apoptotic proteins control the life and the death switch of the cell.
The survivin gene belongs to the inhibitor of apoptosis protein (IAP) family, which is a key agent for the
anti-apoptosis process. The promoter region of the surviving gene has GC–rich sites, which are known
to be the binding site for Sp1 (Figure 3) [58]. Overexpression of the Sp1 TF has been shown to lessen
the level of apoptosis in cancer cells [59]. Interestingly, it has been observed that the downregulation of
Sp1 induced by tolfenamic acid (TA) can promote the apoptosis in OC cells [60]. These observations
suggest that Sp1 has a major role in promoting angiogenesis and anti-apoptosis in OC cells. Further
research is necessary to understand the exact mechanism underlying OC.

6. Sp1 as a Therapeutic Target in OC

Ovarian cancer (OC) has a very poor prognosis because of delayed diagnosis in most of the patients
and resistance to some cytotoxic drugs. A major obstacle that jeopardizes OC chemotherapeutic
treatment is multidrug resistance (MDR) [1]. A remarkable number of studies have revealed the
importance of Sp1 in this regard, as it regulates potent drug targets as well as promoter genes that are
overexpressed in OC [40,61]. Targeting Sp1 TF directly with the help of Mir-128 and Mir-377 reduces
the rate of cell cycle, proliferation, and invasion of the cancer cells [62]. Thus, it is evident that Sp1
can be exploited as a suitable drug target to treat OC [63]. Until now, very few drug compounds or
natural extracts have been used to specifically target Sp1 for treating various cancer forms. The drugs
used so far are enlisted in Table 1 [64–83]. One of the popularly used compounds for treating OC
is mithramycin A (MTA), an aureolic acid antibiotic that is a natural polycyclic aromatic polyketide
made from diverse species of Streptomyces [84]. The interaction of MTA with the GC–rich regions of
the promoter results in the blocking of Sp1 binding sites in cancer cells [64,85]. Besides, MTA and
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its analogs can downregulate most of the Sp1-regulated genes in OC cell lines [86]. In a functional
study, it was found that two new analogs of MTA, namely MTMSDK and MTM–SK, hindered the
growth of OC cells in xenografts via inhibition of Sp1–based transcription [87]. Another efficient
analog of MTA is demycarosyl-3D-ß-D-digitoxosyl-mithramycin SK (DIG–MSK), as it can inhibit
Sp1-mediated transcription, mRNA expression, and various other genes regulated by Sp1 that have a
pivotal role in OC, like VEGFA, BCL2L1 (Bcl-2-like 1; Bcl-XL), human telomerase Reverse Transcriptase
(hTERT), BRCA2, and MYC [88]. Similar to this study, Vizcaino et al. also observed that DIG–MSK can
downregulate the binding of Sp1 to pro-oncogenes in OC cells [89]. Another commonly used drug for
treating OC is tolfenamic acid (TA) a non-steroidal anti-inflammatory drugs (NSAID), which generally
induces the degradation of Sp protein. An earlier study noted that TA has positive effects on OC tumor
growth in mice, including degradation of the Sp1 protein, leading to a decrease in cell proliferation,
while encouraging apoptosis and cell cycle arrest [60]. Betulinic acid (BA) is an anti-cancer drug
that can inhibit topoisomerase and has also been used for downregulation of Sp1 expression and its
regulated pro-oncogenes in various cancer cells [89,90]. Currently, the trending remedial route to
treat any form of cancer is by micro RNA-mediated targeting. Interestingly, it has been observed that
the introduction of miR–14 into OC cell lines downregulates Cdk6, Sp1, and P-glycoprotein (P-gp),
resulting in a more efficient penetration of drugs like paclitaxel into the targeted OC cells [91]. In a
recent study, the authors have confirmed that the direct target of miRNA while targeting OC cells is the
KLF12 which is an antagonist for Sp1 [92]. Similarly, in another recent study, the authors have found
a new signaling pathway named as miR-141/KLF12/Sp1/survivin which enables to improve anoikis
resistance and acts as potent therapy for OC patients [93].

Table 1. Sp1-targeting Drug Compounds.

# Compound Name Binding Site Reactions References

1 Mithramycin A Sp1 gene promoters Alters Sp1 and DNA interactions [64–67]

2 Daunorubicin Binds to DNA with
higher affinity

Inhibits Sp1-DNA interactions & gene
transcription [68–70]

3 WP631(bis-intercalating
anthracycline)

Binds to DNA with
higher affinity

Efficient inhibitor for transcription
initiation of Sp1 containing binding sites

& Sp1—activated transcription
[69,71]

4 Doxorubicin Activates promoter
of Cdc25B

Inhibits Sp1 binding & increases NF-Y
binding to promoter and keeps P53 alive [72]

5 Hedamycin Down—regulates
surviving expression

Abolishes Sp1 binding to putative
binding elements & modulates

viability of cancer cells
[73]

6 Elsamicin A
DNA—protein
interactions in

c–myc promoters

Affects Sp1 binding
in a dose—dependent manner [74]

7 Actinomycin D DNA—protein
interactions

Sp1 TFs induce TNF expressions on
angiogenic factors in cancer cells [75]

8 Tolfenamic acid Drug—DNA
interaction

Increases ubiquitination of Sp1 as well as
the proteasome–dependent degradation

(downregulates Sp1)
[76,77]

9 Aspirin
Cells that response

to sequestration
of zinc ions

It induces caspase–dependent cleavage of
Sp1 protein factors [78]

10 Arsenic trioxide
Human telomerase

reverse transcriptase
(hTERT) gene

Suppresses transcription of hTERT
gene through regulation Sp1 TF [79]

11 Curcumin
(diferuloylmethane) Not described Induces proteasome–dependent

down—regulation of Sp1 proteins [80,81]

12 Betulinic acid Not described Decreases expression of Sp1 TF
in cancer cells [82]

13 Resveratrol
(3,5,4′-trihydroxy-trans-stilbene) Not described Inhibits cell growth and Sp1 TF directly [83]

Sp1—Specificity Protein 1; TF—Transcription Factor; WP631—Bis-intercalating Anthracycline; Cdc25—Cell Division
Cycle 25B; NF-Y—Nuclear Factor Y; C–myc—Myc proto-oncogene; TNF—Tumor necrosis factor; hTERT—Human
telomerase reverse transcriptase.
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Drugs designed by applying the mechanism-based criteria, such as targeting important
pro-oncogenes, their associated pathways, and their initiators, are approved for clinical use fairly
easily. Various potential strategies are available for blocking or inhibition of Sp1. These include
activation of ROS, proteasome, caspases, the cannabinoid receptors, and targeting Sp1 binding GC–rich
regions. Recently, it has been reported that targeting Sp1 expression at the G2/M phase of cell cycle by
radiotherapy helps reduce tumor development [94]. Interaction between the long non-coding RNA
ZFAS1 and miR-150-5p suppresses the expression of Sp1 in epithelial OC cells [95]. An antipsychotic
drug, penfluridol, is currently used as an anti-cancer drug since it can downregulate the TFs like
Sp1, Sp3, and Sp4 [96]. It was found that penfluridol inhibits cancer cell growth by suppressing
expressions of α6- and β4-integrins, primarily regulated by the Sp1 along with orphan nuclear receptor
4A1 (NR4A1) [97]. In OC cells, the interaction between NR4A1 and Sp1 forms a negative feedback
loop, unbalancing the regulation of growth or survival genes such as survivin and EGFR through
their proximal GC–rich promoter elements [98]. Targeting NR4A1 by an antagonist leads to the
normal expression of Sp1 and redox genes for maintaining low levels of oxidative stress in the tumor
microenvironment [99,100]. According to a few studies, BA inhibits the growth of cancer cells by
stimulating proteasome-dependent downregulation of Sp1, Sp3, and Sp4 [89,90,101]. Most of the
xenograft models used to study the effect of drugs on targeting the functions of Sp1 in treating
OC are the OC cell lines such as SKOV3, ES2, OVCAR-3, A2780, and SKOV3 cells, the related
paclitaxel-resistant cell lines, A2780/PTX and SKOV3/PTX, a human breast cancer cell line (MCF-7),
the adriamycin-resistant cell line (MCF-7/ADM), and normal human ovarian epithelial cells (HOEC).
Thus, the discovery of such DNA–binding compounds and various drug-targeting mechanisms, which
specifically target Sp1 TF, could pave ways for better treatment options in OC cases.

7. Influence of Sp1 on Cellular Reprogramming

Stem cells and Cancer stem cells appear to have similar regulatory signals in their
microenvironments that contribute to their reprogramming and proliferative potential. But the
mechanisms involved in reprogramming continue to remain enigmatic. Recently, switch genes
have been identified, that convert glioblastomas from stem-like cells to differentiated forms. Sp1
transcription factors, were recognized as central regulators of the switch genes, displaying their
potential role in cellular reprogramming [102]. Sp1 is one of the most important transcription factors
that are associated with the major reprogramming factors Sox2, c-Myc, and Oct4, that are used for
IPSC induction (Figure 4) [103]. Similarly, when goats IPSCs were generated, it was observed that
the core genes previously mentioned had Sp1 binding sites in their core promoter. Making Sp1 an
accomplice in reprogramming [104]. Sp1 was also considered a vital component involved in the
conversion of fibroblasts into neurons, making it a target to increase the efficiency of reprogramming
protocols [105]. Similarly, MiR-590 a direct repressor of Sp1 has also been studied in conversion studies.
When miR-590-mediated repression of Sp1 was done on human cardiac cells, it was found that it
significantly upregulated the associated genes and promoted cardiac cellular reprogramming, showing
that Sp1 may be an intermediary in this step [106] The E-Ras/JNK signalling is a critical mechanism
to generate iPS cells by transduction of 4 factors. E-Ras was found to enhance binding of Sp1 on the
cyclins to promote cell proliferation and reprogramming. This is identified as a way to increase the
efficiency of IPSC derivation protocols [107]. Regeneration existing in the epicenter of reprogramming,
has been studied for decades. It was found that Sp1 could play a potential role in limb regeneration,
making it a focus worthy participant of reprogramming [108].
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Figure 4. Potential role of Sp1 transcription factor in cellular reprogramming. Sp1 is one of the most
important transcription factors that are associated with the major reprogramming factors Sox2, c-Myc,
and Oct4, that are used for iPSC induction. Sp1 TF is an analog for Klf4 TF, thus Sp1 do play a major
role in reprogramming process of cancer stem cells. Sp1 was also considered as a vital component
involved in the conversion of somatic cells into pluripotent cells making it a target to increase the
efficiency of reprogramming.

Cellular reprogramming is a process where any dysfunctions in the cells can be retrieved by erasing
any kind of epigenetic alterations in the somatic cells using Induced Pluripotent Stem Cells (iPSCs).
This process of cell reprogramming or repairing was first anticipated by Dr. John Gurdon during an
experiment on the cloning process of somatic cells in the Xenopus laevis [109]. The effectiveness of
reprogramming is almost less than 1%. The reason for this is because the major change which occurs
during reprogramming process is the changes in the epigenetic status which includes DNA methylation,
histone and acetylation modifications. To overcome these issues, the most promising method is to use TF
induced reprogramming to iPSC because it makes the process very simpler and sturdy [110]. Recently
it has been reported that iPSC technology is been evolving as a promising therapy to treat various
diseases such as cancer, neurological disorders, cardiovascular diseases and so on [111]. Recently Saha
et al., has pointed out that the biology of reprogramming in the framework of replicative age of the
cells needs more appropriate stimulating agents such as a more reliable TF to reduce the epigenetic
stress caused during reprogramming process [112]. The durability of the cancer cells was strong due to
the presence of stem cell-like property in them which is known as CSCs [1]. Thus, recent functional
study has mentioned that targeting the CSCs in the cancer cells using either molecular medicine or
TFs-induced reprogramming of iPSCs would provide a positive effect in blocking the progression and
invasion of the cancer cells [113]. During cellular reprogramming, the nucleosome is occupied with
the binding of Oct4 and Sox2 in the embryonic stem cells (ESCs). Moreover, the Sp1 TF which is an
analog for Klf4, interacts with the DNA in the nucleosome during cellular reprogramming [114]. It has
also been suggested that, during reprogramming to iPSCs, the DNA interaction via Sp1 TF does not
undergo any epigenetic alterations such as DNA methylation [115]. Thus, these studies give us a brief
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idea that Sp1 can work as an important TF for modulating cellular reprogramming and can be used for
future OC treatment.

8. Future Perspective

Till now the only valid and trust-worthy tool to detect cancer is the cytogenetic assay, where the
chromosomal aberrations in the peripheral lymphocytes of the patients [116,117]. Despite the thorough
characterization of the regulatory mechanisms of various therapeutic actions in OC, several factors
associated with the poor prognosis and survival rates have yet to be elucidated. Currently, advanced
chemotherapy is commonly used to treat OC. However, it is often ineffective due to the occurrence of
multi-drug resistance. Over the past few decades, the elucidation of the role of Sp1 in OC has altered
the scope of cancer research. The increasing recognition and better understanding of Sp1’s pivotal role
in regulating the housekeeping genes and basic biological functions suggests that it could be a novel
therapeutic target in OC. The Sp1 transcription factor has been increasingly evaluated over the past
few years and has emerged as an intensive unit of study in cancer cells owing to its ubiquitous nature,
its major role as a basal transcriptional regulator, and as a promoter of tumor progression. In the
near future, development of therapies based on specific DNA binding interactions can be designed to
prevent disease progression and to step up the survival rates in OC.

9. Conclusions

In conclusion, we suggest that novel medicinal plant-based compounds must be developed for
suppressing the oncogenic functions of Sp1 by targeting its specific sites in OC. A higher number of
clinical or phase trials must be carried out to ascertain the effect of OC therapy routines on Sp1 signaling
and to develop strategies for modifying the Sp1–targeted survival response. Finally, the biggest
challenge is to deliver adequately dosed interventions, taking into account the many sources of
interference for a specific, tissue-targeted or cell-targeted effect in OC.
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Abbreviations

OC Ovarian cancer
Sp1 Specificity protein 1
KLF Kruppel-like family
TF(s) Transcription factors
VEGF Vascular endothelial growth factor
CCC Ovarian clear cell carcinoma
JNK1 Jun N—terminal kinase 1
MAPK/ERK mitogen-activated protein kinase//extracellular signal-regulated kinase
MDR Multidrug resistance
IAP Inhibitor of apoptosis protein
MTA Mithramycin A
BCL2L1 Bcl-2-like 1
hTERT Human telomerase Reverse Transcriptase
CLDN4 Claudin 4
HIFs Hypoxia—Inducible Factors
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LCFA Long Chain Fatty Acid
HBXIP Hepatitis B X—interacting protein
Skp2 S—phase kinase—associated protein 2
ROS Reactive Oxygen Species
NO Nitric Oxide
Raf Rapidly Accelerated Fibrosarcoma
Sox2 SRY-Box Transcription Factor 2
Oct4 Octamer-binding transcription factor 4
Klf4 Kruppel-like factor 4
JNK1 c-Jun N-terminal kinases
HBXIP Hepatitis B X-interacting protein
CLDN Claudin
VEGF Vascular endothelial growth factor
ODC Ornithine decarboxylase
CDK Cyclin-dependent protein kinases
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