
© 2016 Bakshi and Morris. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/
terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the 

work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

Journal of Pain Research 2016:9 167–175

Journal of Pain Research Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
167

R e v i e w

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/JPR.S55571

The role of the arginine metabolome in pain: 
implications for sickle cell disease

Nitya Bakshi1–2

Claudia R Morris3–6

1Division of Pediatric Hematology-
Oncology, Department of Pediatrics, 
emory University School of Medicine, 
Atlanta, GA, USA; 2Aflac Cancer and 
Blood Disorders Center, Children’s 
Healthcare of Atlanta, Atlanta, GA, 
USA; 3Division of Pediatric emergency 
Medicine, Department of Pediatrics, 
emory University School of Medicine, 
Atlanta, GA, USA; 4Department 
of emergency Medicine, emory 
University School of Medicine, Atlanta, 
GA, USA; 5emory-Children’s Center 
for Cystic Fibrosis and Airways 
Disease Research, emory University 
School of Medicine, Atlanta, GA, 
USA; 6Pediatric emergency Medicine, 
Children’s Healthcare of Atlanta, 
Atlanta, GA, USA

Correspondence: Claudia R Morris 
Division of Pediatric emergency 
Medicine, Department of Pediatrics, 
emory University School of Medicine, 
1760 Haygood Drive Ne, w458, Atlanta, 
GA 30322, USA 
Tel +1 404 727 5500 
email claudia.r.morris@emory.edu; 
claudiamorris@comcast.net

Abstract: Sickle cell disease (SCD) is the most common hemoglobinopathy in the US, affecting 

approximately 100,000 individuals in the US and millions worldwide. Pain is the hallmark of 

SCD, and a subset of patients experience pain virtually all of the time. Of interest, the argin-

ine metabolome is associated with several pain mechanisms highlighted in this review. Since 

SCD is an arginine deficiency syndrome, the contribution of the arginine metabolome to acute 

and chronic pain in SCD is a topic in need of further attention. Normal arginine metabolism 

is impaired in SCD through various mechanisms that contribute to endothelial dysfunction, 

vaso-occlusion, pulmonary complications, risk of leg ulcers, and early mortality. Arginine is 

a semiessential amino acid that serves as a substrate for protein synthesis and is the precursor 

to nitric oxide (NO), polyamines, proline, glutamate, creatine, and agmatine. Since arginine is 

involved in multiple metabolic processes, a deficiency of this amino acid has the potential to 

disrupt many cellular and organ functions. NO is a potent vasodilator that is depleted in SCD 

and may contribute to vaso-occlusive pain. As the obligate substrate for NO production, arginine 

also plays a mechanistic role in SCD-related pain, although its contribution to pain pathways 

likely extends beyond NO. Low global arginine bioavailability is associated with pain severity 

in both adults and children with SCD as well as other non-SCD pain syndromes. Preliminary 

clinical studies of arginine therapy in SCD demonstrate efficacy in treating acute vaso-occlusive 

pain, as well as leg ulcers and pulmonary hypertension. Restoration of arginine bioavailability 

through exogenous supplementation of arginine is, therefore, a promising therapeutic target. 

Phase II clinical trials of arginine therapy for sickle-related pain are underway and a Phase III 

randomized controlled trial is anticipated in the near future.

Keywords: arginine, arginase, sickle cell disease, pain, global arginine bioavailability ratio, 

nitric oxide

Introduction
Sickle cell disease (SCD) is the most common hemoglobinopathy in the US. It is esti-

mated that approximately 100,000 individuals in the US have SCD1 although millions 

are affected worldwide. In hemoglobin S (HbS), glutamic acid is substituted by valine at 

the sixth position of the β-globin. SCD may be due to a homozygous HbS state (HbSS) 

or coinheritance of HbS with other hemoglobin mutations such as beta0 thalassemia 

(HbS-beta0 thal), HbC (HbSC), or beta+ thalassemia mutations (HbS-beta+thal). The 

sickle hemoglobin mutation results in intracellular polymerization of the deoxygen-

ated hemoglobin molecules under hypoxic conditions. Intracellular polymer increases 

erythrocyte rigidity and ultimately damages and distorts the erythrocyte membrane 

producing a rigid “sickled” red blood cell with altered rheological and adhesive 
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properties that becomes entrapped in the microcirculation 

and gives rise to the vaso-occlusive events characteristic of 

the disease.2,3

The clinical phenotype of SCD varies widely, depend-

ing on the genotype and even among patients with the 

same genotype. The clinical manifestations of SCD include 

anemia, episodes of severe vaso-occlusive pain, and other 

complications such as stroke, transient ischemic attacks, 

acute chest syndrome, splenic sequestration, and increased 

risk of bacterial sepsis. SCD can also result in end-organ 

damage in the central nervous system, lungs, and kidneys. 

A subset of patients with SCD also experience pain virtually 

all of the time.4

Vaso-occlusive painful episodes (VOE) are the hallmark 

of SCD. These painful episodes are the most common reason 

for hospitalization and result in significant morbidity. Hospi-

talization rates are particularly high for children with SCD, 

with hospitalization rates .60% in one study.5 Hospitaliza-

tions for VOE are associated with high health-care costs, and 

sickle cell pain episodes contribute to costly readmissions.6 

Pharmacologic treatment of painful vaso-occlusive episodes 

in the hospital setting includes hydration, intravenous opioids, 

and/or nonsteroidal anti-inflammatory drugs. There is no 

effective therapy that targets the underlying mechanisms of 

sickle-related pain. Treatment is largely symptomatic and has 

not changed substantially for decades. Additional supportive 

therapies such as rest, heat, and massage are also used in the 

management of SCD.7 More recently, several targeted novel 

therapies are or have been studied for the management of 

acute vaso-occlusive pain, including rivipansel (GMI-1070),8 

intravenous magnesium,9,10 polaxamer-188,11 inhaled nitric 

oxide,12 lidocaine,13 low-molecular-weight heparin,14 and 

arginine.15 This review focuses on the role of arginine in pain 

pathways and its use for the treatment of SCD-associated 

pain. SCD is an arginine deficiency syndrome.16,17 Normal 

arginine metabolism is impaired through various mecha-

nisms (Figure 1) that contribute to endothelial dysfunction, 

vaso-occlusion, pulmonary complications, risk of leg ulcers, 

and early mortality.18,19 Since low global arginine bioavail-

ability is associated with a growing number of SCD-related 

complications,17,20 arginine therapy represents a promising 

option for SCD.18

Arginine is a semiessential cationic amino acid involved 

in multiple pathways in health and disease. It becomes 

essential, however, under conditions of stress and catabolic 

states when the capacity of endogenous arginine synthesis 

is exceeded, including trauma, sepsis, burns, and in condi-

tions such as SCD and thalassemia.17,19,21 Arginine serves as 

a substrate for protein synthesis and is the precursor to nitric 

oxide (NO), polyamines, proline, glutamate, creatine, and 

agmatine. Arginine is derived from dietary protein intake, 

body protein breakdown, or endogenous de novo arginine 

production in the kidneys. Since it is involved in multiple 

metabolic processes, an arginine deficiency has the potential 

to disrupt many cellular and organ functions.16 NO is a potent 

vasodilator found to be deficient in SCD22–29 and is produced 

in the endothelium from its obligate substrate l-arginine. 

The SCD-related NO deficiency is a phenomenon linked 

to the process of hemolysis where cell-free hemoglobin is 

released from the erythrocyte30 and rapidly reacts with and 

consumes NO, while erythrocyte arginase, an l-arginine-

metabolizing enzyme, rapidly consumes the obligate sub-

strate for NO production.17,31 Low NO in SCD likely plays a 

role in vasoconstriction, theoretically linking its depletion to 

vaso-occlusive pain. NO has been demonstrated as a signal-

ing molecule in the nervous system as well as in nociceptive 

processing though its effects are undoubtedly complex as 

NO has been described to have both pro- and antinocicep-

tive effects.32 In addition to its role in nociception, NO also 

has been implicated in opioid tolerance and dependence.33,34 

Paradoxically, however, low levels of NO22,35,36 and its sub-

strate l-arginine are found in adults and children with SCD 

during vaso-occlusive pain events,22,37 and correlate with 

pain severity.35 Further, arginine supplementation has been 

shown to decrease total opioid use and improve pain scores 

in children with SCD admitted to the hospital for inpatient 

treatment of pain.15 In sum, conflicting data on the role of 

the arginine–NO pathway in pain mechanisms, particularly 

in SCD, beg further study and elucidation.

Arginine in sickle cell disease
Approximately 2–7 g of l-arginine is ingested daily in a 

normal Western diet. Common dietary sources are meat, 

poultry, nuts, fish, and watermelon. It is also a safe nutritional 

supplement that has been studied in human and animal trials, 

including a growing number of trials in SCD.18

Adults with SCD are arginine deficient at steady state22,38,39; 

however, children have plasma levels that are similar to  normal 

controls.22 An arginine deficiency develops over time and is 

influenced by acute events.22 A state of a low global arginine 

bioavailability occurs in SCD that goes beyond the concen-

tration of arginine in plasma. To better assess arginine bio-

availability for intracellular function, the “global arginine 

bioavailability ratio” (GABR) was established, defined as ratio 

of arginine over ornithine plus citrulline.17 This ratio takes into 

account the impact of arginase activity metabolizing arginine 
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to ornithine, amino acid competition for intracellular transport 

by ornithine, and renal dysfunction reflected by accumulation 

of plasma citrulline.17 Low GABR is associated with pulmo-

nary hypertension risk in both SCD17,40 and thalassemia21 and 

increased mortality in SCD.17,20 Interestingly, GABR is also 

low in diabetes,41 and has been shown to be a strong predictor 

of cardiovascular disease and early mortality in general,42–44 

suggesting an important role for arginine bioavailability 

for survival that goes beyond SCD. Arginine also alters the 

effect of hydroxyurea,45,46 a disease-modifying US Food 

and Drug Administration-approved therapy in patients with 

SCD. Patients with SCD who receive hydroxyurea along with 

arginine show an acute increase in NO metabolite levels even 

at steady state,45,46 not seen with arginine alone.45,47 Arginine 

butyrate has also been shown to improve healing of refractory 

leg ulcers in a randomized, Phase II placebo-controlled trial 

of patients with SCD.48

There are several elements of arginine dysregulation in 

SCD that can impact its bioavailability. With low plasma 

arginine levels even at steady state often well below the affin-

ity constant (K
m
) for the cationic acid transporter responsible 

for intracellular arginine uptake, even modest fluctuations in 
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Figure 1 Mechanisms of vasculopathy in SCD.
Notes: Hemolysis, arginine dysregulation, oxidative stress, uncoupled NO synthases (NOS), and damage from redox-active heme are key mechanisms that contribute to 
the complex vascular pathophysiology of SCD. These events limit NO bioavailability through several paths that ultimately provoke increased consumption and decreased 
production of the potent vasodilator, NO. During hemolysis, cell-free hemoglobin and arginase are simultaneously released from the erythrocyte and profoundly contribute to 
low NO bioavailability. LDH is also released from the erythrocyte and represents a convenient biomarker of hemolysis that delineates the subphenotypes of SCD. Republished 
with permission of the American Society of Hematology, from Mechanisms of vasculopathy in sickle cell disease and thalassemia, Morris CR, Hematology Am Soc Hematol Educ 
Program. 2008;2008:177–185, Copyright © 2008; permission conveyed through Copyright Clearance Center, inc.19

Abbreviations: SCD, sickle cell disease; NO, nitric oxide; LDH, lactate dehydrogenase; Hb, hemoglobin; ADMA, elevated asymmetric dimethylarginine.
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extracellular arginine concentration may significantly impact 

cellular arginine uptake and bioavailability. In addition, 

ornithine and lysine use the same cationic acid transporter 

protein for intracellular transport. High concentrations of 

these amino acids will competitively inhibit intracellular 

arginine transport.18 Therefore, a low GABR impacts arginine 

bioavailability and uptake. In addition, there is increased 

catabolism of arginine in SCD. Arginase is a urea cycle 

enzyme that catalyzes the hydrolysis of l-arginine to urea 

and l-ornithine. Arginase competes with NO synthases for 

their common substrate l-arginine. Plasma arginase concen-

tration and activity are elevated in SCD as a consequence 

of inflammation, liver dysfunction, and, most significantly, 

by the release of erythrocyte arginase during intravascular 

hemolysis, which has been demonstrated by the strong 

correlation between plasma arginase levels and cell-free 

hemoglobin levels17 together with other markers of increased 

hemolytic rate including lactate dehydrogenase.17,40 Whether 

inflammatory or hemolytic in origin, arginase will redirect 

the metabolism of arginine away from NO to ornithine and 

the formation of polyamines and proline (Figure 2).17,19 

An arginine deficiency in SCD is associated with elevated 

arginase activity and a low arginine–ornithine ratio31 that 

correlates to markers of hemolysis.17,18,40 Low global arginine 

bioavailability may be exacerbated further by the presence 

of elevated asymmetric dimethylarginine (ADMA), which 

is a competitive inhibitor of arginine transport and all NOS 

isozymes. Circulating ADMA levels are elevated in several 

conditions of endothelial dysfunction, including SCD,49 and 

are also associated with increased mortality.50

Arginine in pain
Low levels of plasma l-arginine and low GABR have 

been reported in patients with complex regional pain syn-

drome (CRPS); patients were noted to have lower levels 

as compared to controls.51 However, this finding was not 

corroborated in another study carried out in CRPS patients 

by Wesseldijk et al,52 where arginine levels were increased 

in patients with CRPS as compared to controls. The role 

of arginine in influencing pain sensitivity is not clear, but 

it is emerging as a mechanism of interest. In an animal 

model, arginine was shown to increase pain sensitivity.53 

Clinical trials of arginine in painful human conditions have 

produced contradictory findings. In some studies, local 
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Figure 2 Altered arginine metabolism in hemolysis.
Notes: Dietary glutamine serves as a precursor for the de novo production of arginine through the citrulline–arginine pathway. Arginine is synthesized endogenously from 
citrulline primarily via the intestinal–renal axis. Arginase and NO synthases (NOS) compete for arginine, their common substrate. in SCD, bioavailability of arginine and NO 
is decreased by several mechanisms linked to hemolysis and oxidative stress. endothelial dysfunction resulting from NO depletion and increased levels of the downstream 
products of ornithine metabolism (polyamines and proline) likely contribute to the pathogenesis of lung injury, fibrosis, and pulmonary hypertension. This disease paradigm 
has implications for all hemolytic processes. “X” means kidney dysfunction, or a block in the conversion of citrulline to arginine in the kidney. Copyright © 2008 by the 
American Republished with permission of the American Society of Hematology, from Mechanisms of vasculopathy in sickle cell disease and thalassemia, Morris CR, 
Hematology Am Soc Hematol Educ Program. 2008;2008:177–185, Copyright © 2008; permission conveyed through Copyright Clearance Center, inc.19

Abbreviations: NO, nitric oxide; NOS, nitric oxide synthases; SCD, sickle cell disease; Hb, hemoglobin.
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arginine application in combination with calcium carbonate 

has been shown to be beneficial in the treatment of dentine 

hypersensitivity,54–56 although the mechanism is related to 

physical sealing of dentin tubules with a plug that is resistant 

to pulpal pressures and acid challenge.57 Ibuprofen arginate, 

a salt of ibuprofen combined with arginine, has been used in 

the treatment of painful conditions such as primary dysmen-

orrhea,58 migraine,59 and periodontitis.60 In this context it is 

difficult, however, to determine the contribution of arginine 

per se in pain relief as it is combined with ibuprofen. In two 

randomized, placebo-controlled trials, ibuprofen arginate 

was found to be superior to ibuprofen in the time to achieve 

postoperative dental pain relief. This is attributed to the 

increased bioavailability and absorption of the ibuprofen 

arginate salt as opposed to conventional ibuprofen.61,62 The 

ibuprofen–arginine formulation is also thought to have a 

faster absorption profile. However, De Palma et al63 have 

described increase in bioactive NO with administration 

of ibuprofen arginate in an epithelial cell-culture model 

and decreased inflammation with ibuprofen–arginine after 

joint injury in a mouse model as compared to ibuprofen or 

arginine alone, suggesting synergy. In addition to enhancing 

the anti-inflammatory effect of ibuprofen, the authors also 

noted that anti-inflammatory effect was seen with arginine 

alone, thereby suggesting that NO generation contributed 

to the enhanced inflammatory effect.63 Interestingly, in a 

study measuring NO metabolites after ibuprofen–arginine 

administration in patients with chronic low back pain, the 

authors noted a decrease in NO metabolite levels following 

ibuprofen–arginine administration, and this was postulated 

to be secondary to ibuprofen.64 However, a paradoxical 

decrease in NO metabolites has also been described after a 

single dose of oral arginine supplementation in SCD, while 

NO metabolites increase when the same dose is given during 

an acute pain episode.47 This suggests differences in arginine 

metabolism that are dependent on the clinical state of the 

individual. Arginine supplementation has also demonstrated 

an anti-inflammatory and antioxidant effect on SCD in both 

animal models65–68 and human studies.69

It has been suggested in one study that administration of 

oral arginine decreases the frequency and intensity of chest 

pain attacks in esophageal spastic disorders.70 Other small 

studies with a very limited number of patients have also sug-

gested some benefit of l-arginine in pain. In a study with 12 

chronic pain patients of diverse etiologies, an intravenous 

infusion of l-arginine resulted in analgesia, with the effect 

lasting 6–24 hours.71,72 In another small study of patients with 

interstitial cystitis receiving l-arginine, a small improvement 

in pain intensity but not pain frequency was reported.73

Agmatine – an arginine metabolite with a 
role in pain
Interestingly, several small studies have utilized agmatine 

(decarboxylated arginine that is metabolized from l-arginine 

by the enzyme arginine decarboxylase in the mammalian 

brain) as a neuroprotective agent; one study showed improve-

ment in symptoms of lumbar radiculopathy and pain with 

supplementation with agmatine, although more than a 

third of the participants in this study were excluded from 

analysis for various reasons.74 In animal models, agmatine 

has been shown to decrease tactile and thermal allodynia as 

well as mechanical hyperalgesia in diabetic rats but not in 

healthy rats. A similar result was seen in an animal model of 

chronic constriction nerve injury where agmatine produced 

an anti-allodynic effect and in mouse models of chemical 

or mechanical injury where it decreased hyperalgesia.75,76 

Agmatine is thought to exert its effects via the imidazoline 

receptors, and has been shown in animal models to enhance 

morphine analgesia when given centrally.77,78 Agmatine may 

also attenuate opioid tolerance; however, efforts to increase 

endogenous agmatine by administration of l-arginine 

have been successful only when given centrally but not 

systemically.77,78

Asymmetric dimethyl arginine – an 
arginine analog with a role in pain
ADMA is a methylated arginine that competes for the argin-

ine binding site of NO synthase and functions as a competitive 

NO synthase inhibitor. Known for its role as a biomarker of 

cardiovascular disease,79 recent studies implicate it in pain 

mechanisms.80 In patients with osteoarthritis (OA) scheduled 

to undergo knee replacement, plasma arginine concentrations 

were lower in the OA patients than in controls, while plasma 

ADMA concentrations were similar. Accordingly, the argi-

nine/ADMA ratio was lower in the OA patients than in the 

control group, but the relationship of these biomarkers with 

pain is unclear.81 Elevated arginase levels have been reported 

in rheumatoid arthritis.82 More recently, increased ADMA 

levels have been reported in ankylosing spondylitis. While 

these have correlated with markers of disease activity, they 

have not been correlated specifically with pain scores.83,84 

Increased ADMA levels have also been reported in migraine, 

both during headache and the interictal period.85 Increased 

ADMA levels have also been associated with primary 

dysmenorrhea.86 Interestingly, in an animal model of renal 

failure, infusion of ADMA in healthy rats or in those with 

nephrectomy (inducing renal failure) resulted in increase of 

thermal pain threshold.87 ADMA levels are also increased in 

SCD49 and will impact arginine bioavailability. It is unknown 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Journal of Pain Research 2016:9submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

172

Bakshi and Morris

what role, if any, ADMA has on pain in SCD, but it will be 

evaluated in future studies.

Kyotorphin – an l-arginine/l-tyrosine 
dipeptide with a role in pain
Kyotorphin is an endogenous antinociceptive dipeptide synthe-

sized from l-arginine and l-tyrosine by kyotorphin synthase 

in an ATP-Mg(2+)-dependent manner.88 It was first isolated 

by Takagi et al89 in 1979 from the bovine brain. It has been 

isolated from the human central nervous system and Nishimura 

et al90 reported that lower levels of kyotorphin were reported 

in cerebrospinal fluid from patients with persistent pain. Kyo-

torphin exerts its antinociceptive effect via Met-enkephalin 

release.88,91 Interestingly, central (intracerebroventricular or 

intracisternal) injection of l-arginine produces antinocicep-

tion in mice.92,93 In a diabetic mouse model, antinociception 

produced by l-arginine was greater in diabetic mice than in 

nondiabetic mice.94 Kyotorphin does not cross the blood–brain 

barrier95 and therefore has not been exploited as an analgesic; 

however, derivatives of kyotorphin that can cross the blood–

brain barrier are now being studied as analgesics.96

Arginine in sickle cell vaso-occlusive 
pain episodes
Plasma arginine concentration decreases acutely in both 

adults and children during episodes of vaso-occlusive pain 

and is associated with low NO metabolite levels,22,37,47 

with both arginine and NO metabolite levels returning 

to baseline during recovery. Low plasma arginine levels 

predicted clinical need for admission in children with 

SCD and pain presenting for emergency care, while NO 

metabolite levels did not,22 suggesting a role for arginine 

bioavailability during pain events that goes beyond NO 

production. Other potential mechanisms that have already 

been discussed become interesting targets for further 

evaluation in order to better understand the role of arginine 

dysregulation in VOE.

Since an acute arginine deficiency and low NO bioavail-

ability develops during VOE, it is intuitive to explore the 

potential of arginine supplementation as a potential new 

treatment for sickle-related pain. Morris et al15 have reported 

the results of a single-center randomized, double-blinded, 

placebo-controlled trial of arginine therapy in children 

with SCD and pain requiring hospitalization. Thirty-eight 

children with SCD admitted for 56 episodes of VOE 

were randomized to receive oral or parenteral l-arginine 

(100 mg/kg three times per day) or placebo for 5 days or 

until discharge. A significant reduction in total parenteral 

opioid use by 54% (1.9±2.0 vs 4.1±4.1 mg/kg, P=0.02) and 

lower pain scores at discharge (1.9±2.4 vs 3.9±2.9, P=0.01) 

were observed in those receiving arginine compared with 

those receiving placebo (Figure 3). While there was a 

clinically relevant trend toward shorter duration of hospital 

stay among those receiving arginine, this did not achieve 

statistical significance (4.1±1.8 vs 4.8±2.5 days, P=0.34). 

Total opioid use correlated strongly to length of admission 

(r=0.86, P,0.0001, Figure 4). Delivering arginine therapy 

as early as possible in the emergency department or clinic 

may have a greater impact on time to pain crisis resolution, 

because many patients in the abovementioned arginine study 

received their first dose of study medication more than 

24 hours after presenting to the emergency department in 

pain.15 No drug-related adverse events were observed. No 

clinical deterioration or pediatric intensive care unit transfers 

occurred in the arginine arm.15
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Figure 3 impact of arginine therapy on total opioid use (mg/kg) and pain scores in 
children with SCD hospitalized for vaso-occlusive pain.
Notes: (A) Arginine supplementation (unfilled circles) led to a significant and 
clinically relevant reduction in total opioid use by 54% over the course of the hospital 
stay compared to total opioid use in the placebo group (filled circles). The difference 
remains significant even when the two outliers with the largest total opioid use in 
the placebo arm are excluded from the analysis (P=0.04). (B) 10-cm vAS pain scores 
were similar at the time of admission in both groups, but were significantly lower at 
discharge in the arginine group compared to placebo by 2 cm (P=0.01). Copyright 
© 2013 Ferrata Storti Foundation.  Reproduced with permission from Morris CR, 
Kuypers FA, Lavrisha L, et al. A randomized, placebo-controlled trial of arginine 
therapy for the treatment of children with sickle cell disease hospitalized with vaso-
occlusive pain episodes. Haematologica. 2013;98(9):1375–1382.15

Abbreviations: SCD, sickle cell disease; vAS, visual analog scale.
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Conclusion
A growing body of data implicates the arginine–NO pathway 

in pain, although mixed results have been reported on the role 

of a deficiency versus excess. Low arginine bioavailability 

is the more likely culprit in SCD19 and contributes to acute 

pain, endothelial dysfunction, pulmonary complications, 

risk of leg ulcers, and early mortality.18,19 An altered argin-

ine metabolome in some pain syndromes is intriguing and 

suggests the potential for shared mechanisms in SCD with 

other chronic pain conditions that are to date not well char-

acterized. An arginine deficiency can be overcome through 

arginine supplementation. Promising data from Phase II ran-

domized controlled trials for treatment of chronic refractory 

leg ulcers48 and vaso-occlusive pain in patients with SCD15 

support the need for further investigation. Since low global 

arginine bioavailability is associated with a growing number 

of SCD-related complications,17,20 arginine therapy represents 

a promising option for SCD.18 Clinical trials of arginine 

therapy targeting vaso-occlusive pain are underway. Further 

investigation into the role of global arginine bioavailability 

in pain syndromes beyond SCD is warranted.
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