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Abstract

One of network epidemiology’s central assumptions is that the contact structure over which infectious diseases propagate
can be represented as a static network. However, contacts are highly dynamic, changing at many time scales. In this paper,
we investigate conceptually simple methods to construct static graphs for network epidemiology from temporal contact
data. We evaluate these methods on empirical and synthetic model data. For almost all our cases, the network
representation that captures most relevant information is a so-called exponential-threshold network. In these, each contact
contributes with a weight decreasing exponentially with time, and there is an edge between a pair of vertices if the weight
between them exceeds a threshold. Networks of aggregated contacts over an optimally chosen time window perform
almost as good as the exponential-threshold networks. On the other hand, networks of accumulated contacts over the
entire sampling time, and networks of concurrent partnerships, perform worse. We discuss these observations in the
context of the temporal and topological structure of the data sets.
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Editor: Marcel Salathé, Pennsylvania State University, United States of America

Received February 3, 2013; Accepted June 2, 2013; Published July 18, 2013

Copyright: � 2013 Petter Holme. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the World Class University Program from NRF, Korea (R31–2008–10029), and the Swedish Research Council. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* E-mail: holme@skku.edu

Introduction

In the 1980’s and 90’s, mathematical epidemiology of infectious

diseases made great progress. During these years, researchers went

from models where every individual meets everyone else with

equal probability, to a framework of networks where people are

considered as connected if one can infect the other. This new body

of theories, network epidemiology [1–3], has altered our under-

standing of disease spreading profoundly. For example, it has

changed the concept of epidemic thresholds, outbreak diversity

and the role of social networks in intervening infectious disease

outbreaks. Furthermore, research in network epidemiology has

produced many new techniques to analyze contact data [3,4],

model disease spreading [3,5,6], discovering influential spreaders

[7–9], detecting outbreaks [10–12], etc.

Network epidemiology rests on coarse simplifications, perhaps

the biggest being that that one usually does not explicitly model

the dynamic aspects of contact patterns [13]. If we consider two

individuals, and assume one of them is infective (infected by a

pathogen and able to spread it further), the probability of

contagion between the two is in practice not constant in time.

The changes in the chance of contagion happens at different time

scales—from the order of decades, as people are born and die, to

the order of minutes, as they come in and out of range for

pathogen transmission. The situation becomes even more com-

plicated if we consider an emerging disease outbreak. First, if we

want to apply network epidemiology to control the spreading, we

have to predict the future contacts, not just map out the past [9].

Second, the mechanisms behind how and when people make

contacts may change from the fact that the people are aware of the

epidemics [14,15]. However, the theory and methods to handle

full contact patterns—including both temporal and topological

information—is not at all as developed as static network

epidemiology. There are for example works presenting mathe-

matical representations for temporal networks and computational

studies of the effects of temporal and topological structures (see the

survey papers Refs. [16–18] and references therein), but the

picture they present is far from as complete as the static network

epidemiology. For this reason is static networks still an important

mathematical modeling framework for epidemiology. To be able

to study contact patterns by static methods, one needs to eliminate

the temporal dimension. This can be done in many ways, and this

paper aims at finding the optimal way.

Consider a sequence of contacts—triples (i,j,t) carrying the

information about when (assuming a discrete time t) pairs of

individuals (i and j) have been in contact. A good static network

representation of such a contact sequence should give the same

predictions about the disease dynamics as the contact sequence

itself. The predictions we focus on in this paper are related to how

influential an individual is in the disease spreading. Assuming a

disease is introduced in a population by individual i, we compare

the expected outbreak size gi in a simulation on the contact

sequence with a static-network predictors of importance: i’s degree

ki. The better the performance of the static network predictors, the

better is the network representation. The reason we focus on

predicting the importance of individuals rather than e.g. the

epidemic threshold is that it is less dependent on the parameters of

the disease-spreading model. If, for a given set of parameter values,

one can predict the total outbreak size but not the important
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disease spreaders, that is more likely a coincidence than if one can

predict the important disease spreaders but not the outbreak size.

This is important since, as our main focus is to scan different types

of network representations, we will have to limit ourselves to a few

parameter values of the disease spreading simulations.

In this paper, we will use both empirical and artificially

generated temporal-network data sets. We investigate three classes

of network representations to find which one that can predict gi

from ki or ci the best. Furthermore, we investigate how the

performance depends on the temporal and topological structures

of the data.

Results

Preliminaries
We will compare three conceptually simple methods of

reducing a contact sequence to a static network (illustrated in

Fig. 1). In the first method, time-slice networks [19,20], an edge

means that two vertices have been in contact within an interval

[tstart,tstop]. The second representation, ongoing networks [21] (short

for ‘‘networks of ongoing contacts’’), adds edges between pairs of

vertices with contacts both before and after the interval

[tstart,tstop]. This is thus a network of edges, or relationships that

are concurrently active over the time window. This method

takes its name from literature of sexually transmitted infections

where it is believed that the level of concurrent partnerships is a

key-factor to understand how contact patterns influence

epidemics [22,23]. The third method is exponential-threshold

networks. In these, every contact contributes with a weight to

the pairs of vertices—decaying exponentially e2t/t with the time

t of the contact since the first contact of the data and t is a

parameter value setting the relative weight of newer and older

contacts. Then this network of weights is reduced to a simple

graph by including edges for all weighted edges above a certain

threshold V. All three methods have two control parameter

each—the first two methods having the endpoints of an interval

as parameters, the last one has a decay parameter t and a

threshold V. Note that other common network representations

are limit cases of one of these methods. E.g., a network of

accumulated contacts is the same as a time-slice network over

the entire sampling time. An aggregated threshold network

(where an edge represent all pairs of vertices with at least V
contacts) is the tR‘ limit of the exponential-threshold networks.

A more detailed description of the network representations can

be found in the Methods section.

As mentioned, we evaluate the network representations by

comparing the importance (gi) of individuals for the disease

spreading in a temporal network and the assessed importance (ki or

ci) from the derived static network. gi comes from a Susceptible–

Infective–Removed (SIR) simulation (for details, see the Methods

section). The stronger the correlation between gi, on one hand,

and ki or ci on the other, the better is the network representation.

As it turns out gi and ki, or ci, typically have strongly nonlinear

relationships, which makes the Pearson correlation coefficient less

related to the actual predictability of the data (see Supporting

Information, Fig. S1). For this reason, and that Kendall’s tau is

prohibitively slow to compute in our case, we focus on the

Spearman rank correlation. (We test the Pearson and Kendall

coefficient for some of the data and find that all three coefficients

rank the methods in the same order and are optimized for about

the same parameter values.)

Performance on empirical networks
As a start, we will analyze empirical contact sequences of the

type outlined above (lists of potentially contagious contacts—who

has been in contact with whom at what time). These empirical

data sets are more or less related to disease spreading; but they all

serve as examples of different temporal-network structures. The

data sets fall into three categories—online communication, face-

to-face and sexual encounters. The latter two categories are of

course more interesting for the spread of infectious diseases (while

the former perhaps could be interesting for the spread of e-mail

viruses). Of online communication data, we study two e-mail

networks—from Refs. [24] (E-mail 1) and [25] (E-mail 2). In these

data sets, a sent e-mail represents a contact. Even though an e-

mail is naturally directed, to analyze all the data in the same way,

we treat it as undirected. The two e-mail data sets are sampled

from a group of e-mail accounts. One difference between them is

that the data of Ref. [24] includes contacts to external e-mail

accounts while the data of Ref. [25] only records e-mails between

the sampled accounts. One method is probably not better than

the other. To avoid these boundary effects, one can study

communication within a closed community. We do this with data

from an Internet dating community first presented in Ref. [26]

(Dating). The face-to-face data sets are gathered by radio-

frequency identification sensors worn by the participants of a

conference [27] (Conference) and visitors of a gallery [28] (Gallery).

In these data sets, a contact is recorded, at 20 seconds intervals, if

two individuals are within range (1–1.5 m). Finally, we use a data

set of sexual encounters gathered from a web forum where sex-

buyers evaluate escorts [29] (Prostitution). We list some basic

statistics of the data sets in Table 1.

Turning to the main results of this section, we display the

performance of the network representations in Table 2. The most

discernable result is that the exponential-threshold networks have

the highest score for all data sets and importance measures except

one case (the Conference data). Indeed, the Spearman r-values are

all relatively high, meaning that important spreaders are highly

predictable from just the contact patterns (although not possible to

forecast, as this is a post hoc analysis). This suggests that the

exponential-threshold representation is a good general way of

constructing networks for network epidemiology (which we will

argue for more below).

Another observation is that the aggregate networks, the most

common static network representation of temporal network data,

perform very poorly (ranging from 51%–91% of the maximal

correlation value). The ongoing networks perform very differently

Author Summary

To understand how diseases spread in a population, it is
important to study the network of people in contact. Many
methods to model epidemic outbreaks make the assump-
tion that one can treat this network as static. In reality, we
know that contact patterns between people change in
time, and old contacts are soon irrelevant—it does not
matter that we know Marie Antoinette’s lovers to
understand the HIV epidemic. This paper investigates
methods for constructing networks of people that are as
relevant as possible for disease spreading. The most
promising method we call exponential-threshold network
works by letting contacts contribute less, the further from
the beginning of an outbreak they take place. We
investigate the methods both on artificial models of the
contact patterns and empirical data. Except searching for
the optimal network representation, we also investigate
how the structure of the original data set affects the
performance of the representations.

Epidemiologically Optimal Network Representations
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for different data sets—sometimes (E-mail 2) they are close to the

best, sometimes remarkably bad. We note that the ongoing network

representation is typically optimized for tstart = tstop (the special case

studied in Ref. [21]). I.e., longer concurrent partnerships (the set of

contacts between a pair of vertices) does not predict disease

spreaders better that the mere fact that they are concurrent.

The occasional poor performance of the ongoing networks is a

bit surprising in the light of the reported importance of concurrent

partnerships for disease spreading in sexual networks [22,23]. An

explanation could be that these studies concern population

averages rather than the relative importance of individuals.

The time-slice networks are performing consistently well—in

one case better, and in the other cases close to the exponential-

threshold networks (on average r<0.09 lower). They have most

relevant information if the time interval begins early. Indeed, the

optimizing starting time is almost always the same as the beginning

of the epidemics. This means they are also in practice, like the

exponential-threshold networks, weighing the interactions with a

weight decreasing with time (only that this weight function is

discontinuous). The relative duration of the optimal time slice

varies considerably (from 10% to 77% of the entire sampling time).

Ref. [20] points out that time-slice networks of phone communi-

Table 1. Empirical data sets—Sizes and basic temporal
statistics.

E-mail 1 E-mail 2 Dating Gallery Conference Prostitution

N 57,189 3,188 28,972 159(8) 113 16,730

M 92,442 31,857 115,684 647(57) 2,196 39,044

L 444,160 115,684 529,890 6,027(350) 20,818 50,632

l 0.298 0.031 0.108 0.067 0.028 0.416

T 112.0d 81.6d 512.0d 7.3(1)h 2.5d 2,232d

B 0.416 0.383 0.652 0.40(6) 0.632 0.432

N, M and L are the number of individuals, edges in the accumulated network
(pairs with at least one contact) and contacts, respectively. l is the per-contact
transmission probability used in the disease-spreading simulations. T is the total
sampling time. B is the burstiness index of the entire set of interevent times
between pairs of at least two contacts. The values for the Gallery data are
averaged over all 69 days. The values in parentheses show the standard errors
of the number in the order of its last decimal. For details of the definitions of
parameters, see the Methods section.
doi:10.1371/journal.pcbi.1003142.t001

Figure 1. Illustration of the network representations. To the left in all panels is a temporal network where each horizontal line is the timeline
of a vertex. The vertical curves symbolize the contact between two vertices as one timestep. Panel A shows the construction of the time-slice
network. Two vertices are connected if they have at least one contact in the time interval [tstart,tstop]. In panel B, a vertex pair is connected if they have
contacts before tstart and after tstop. Finally, panel C illustrates how the contact sequence is reduced to a weighted graph that is converted to an
unweighted graph by requiring an edge to have a weight over a certain threshold V. The thickness of the lines in panel C is proportional to the
weight between the pair.
doi:10.1371/journal.pcbi.1003142.g001

Epidemiologically Optimal Network Representations
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cations are most complex for intermediate time windows; perhaps

our optimal time-slice networks coincide with this region.

Optimal parameter values
We now take a deeper look at the regions of optimal parameter

values for the three classes of network representations. If one wants

a quick analysis without the optimization procedure of this paper,

then how can one set the parameters? Are there rules of thumb?

We use the Prostitution data as an example in Fig. 2. The other data

sets behave qualitatively similar (with one exception, mentioned

below). The window of the optimal time-slice networks starts, with

few exceptions, at the same time as the first contact. In other

words, the initial contacts of the seed and its surroundings are so

important that the other early contacts (between vertices that are

out of reach of the infection at that stage, and thus with a

potentially negative contribution to the correlation coefficient) do

not matter. However, the end of the interval is harder to guess.

Presumably, this value should be of the order of the peak of the

outbreak. After the peak, the contacts should have less influence

on the disease evolution and thus on gi. Since simulated disease

should spread fast in dense data sets like E-mail 2 and Conference

(with about 36 and 184 contacts per individual on average,

respectively), it is natural that these data sets show low tstop-values

(relative both to the sampling time and the mean interevent time).

Nevertheless, we still do not know how to estimate this value

without running disease simulations. The good news is that the

network representation is rather insensitive to the choice of tstop.

The ongoing networks typically are maximized at tstart<tstop for

some intermediate value smaller than the duration. Also here, it is

hard to give an estimate of this parameter value, more than it

happens within the optimal time window of the time-slice data.

The last method, the exponential-threshold networks, is frequently

optimized along a curve t,eV/V9, where V9 is a constant. This is

because larger decay factors give larger weights and thus larger

thresholds. The Conference data, however, is optimized for values

close to the lower limit of decay exponent (which is linearly

increasing with the threshold value). Our conclusion is that no

matter which one of our three representations one use, one

typically needs to optimize one, but not two, of its parameters—

tstop for time-slice networks, tstart ( = tstop) for ongoing networks and

V9 for the exponential-threshold networks.

Network structure of the optimal networks
The fact that different methods works better for different data

set and that the important disease spreaders are harder to predict

in some data than others, of course, comes from differences in the

temporal network structure. In Table 1, we list values of some

structural measures. We see many similarities between the data

sets, perhaps because they are all social networks (in the sense that

the vertices represent individuals). All data sets have skewed and

broad degree distributions (not shown) and they all have bursty

contact patterns between along the edges. We will take these

observations as guidance when we test our network representations

on synthetic data below.

Next, we turn to studying the network structure of the optimized

networks of the three types of network representations. The results

are shown in Tables 3–5. We include numbers for the

accumulated networks for comparison (Table 6). First, a little side

remark—we note that these accumulated networks differ much in

structure. The Gallery data have longer distances (which is natural

because the visitor at the gallery are connected to visitors around

the time, so it becomes stretched out in time). The Conference data,

we note, has a peculiarly high average degree. The average sizes of

the largest connected component are typically larger in the

empirical network than in the null models (again Gallery being an

exception). The average distances, d, in the networks are

sometimes smaller and sometimes larger than the null-model

networks. For networks embedded in space, like the Prostitution

data, one can expect the empirical network to have larger d-values

than in the null model. This is indeed the case as can be seen in

Tables 3–6. Compared to the network of accumulated contacts,

the time-slice and exponential-threshold networks have fewer

(non-zero degree) vertices and edges. However, the difference is

never larger than 50%. Furthermore, these networks have a size of

the largest connected component being close to unity. This is good

if we would like to use the derived networks for other types of

network epidemiological studies. If the networks would be

disconnected, an epidemic simulation could miss possible system-

wide outbreaks. Many of these conclusions do not hold for the

ongoing networks. These networks are often much smaller—e.g. in

the Dating data, the numbers of vertices and edges are 761 and 548

respectively, in contrast to the network of accumulated contacts

with 22,287 vertices and 78,608 edges. (At the same time, it is not

the case that more edges necessarily are better, as we know from

the performance of the accumulated networks.) This sheds a new

light on the poor performance of the ongoing network represen-

tation in the empirical data sets—there is a too low fraction of

agents with concurrent partnerships for these to be efficient.

However, for the E-mail 2 data, the performance is actually even

better in the ongoing than the time-slice networks. This is also the

data set with the largest fraction of concurrent relationships.

Table 2. Maximal performance values for the empirical data sets.

Time slice Ongoing Exponential threshold Acc.

rmax tstart tstop rmax tstart tstop rmax t V r

E-mail 1 0.735(5) 0 0.42(3) 0.497(5) 0.25(3) 0.25(3) 0.771(2) 0.40(1) 0.30(2) 0.456(4)

E-mail 2 0.907(4) 0 0.25(2) 0.914(1) 0.20(3) 0.20(3) 0.931(3) 1.0(1) 0.26(2) 0.883(3)

Dating 0.821(3) 0 0.65(3) 0.421(3) 0.25(2) 0.25(2) 0.861(2) 0.10(4) 0.16(2) 0.706(5)

Gallery 0.77(2) 0 0.72(5) 0.53(2) 0.39(2) 0.39(2) 0.87(1) 0.70(3) 0.71(2) 0.76(1)

Conference 0.787(2) 0 0.10(1) 0.743(2) 0.10(3) 0.11(2) 0.775(2) 0.04(1) 0.020(2) 0.532(8)

Prostitution 0.711(2) 0 0.77(2) 0.301(4) 0.60(2) 0.60(2) 0.721(3) 0.040(3) 0.20(1) 0.489(7)

The last column shows values for the network of accumulated contacts. For the Gallery data, the values are averaged over the 69 days. The values in parentheses
represent the standard error in the order of the last digit. The largest values for each data set are highlighted with boldface. The parameters of temporal dimensions—
tstart, tstop and t—are measured in units of the total sampling time T of the respective data set (see Table 1).
doi:10.1371/journal.pcbi.1003142.t002
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Therefore, in our case, even if concurrent partnerships increases

the importance in disease spreading, they are less significant than

accumulated serial contacts (as captured by the time-slice

networks). In sum, both the time-slice and exponential-threshold

models do not change the structure of the network (compared to

the networks of accumulated edges) in any systematic way, but the

ongoing networks do.

Performance on synthetic networks
Now we will explore effects of the temporal-network structure

and the stability of the above observations in a model network. It

would be quite impossible to scan all facets of temporal-network

structure. Rather, we will focus on the effect of overlapping

relationships on the performance of the representations. Can it be

the case that they are outperforming the time-slice and exponen-

tial-threshold networks for some temporal-networks with a high

degree of overlapping relationships? We set up the simulation so as

to mimic as much of the observed structure as possible, while

simultaneously controlling the average fraction of concurrent

partnerships. The latter is achieved through a parameter, m M (0,1],

where larger values mean more relationships that are concurrent.

An outline of the construction algorithm is shown in Fig. 3; for

more details about the simulation, see the Methods section.

In Fig. 4, we plot the performance (same as before—the

maximum of the Spearman rank correlations between gi in SIR

simulations and the degree of the respective static network) as a

function of m. As expected, the ongoing networks works better for

larger values of m, but they are never able to catch up with the

time-slice and exponential-threshold networks. The difference

between the latter two representations is—just like for the

empirical networks—small, but with an edge to the exponential-

threshold networks. For the largest value of m, the time-slice

networks perform slightly better (but the values are within one

standard deviation from one another).

When m= 1, in the limit of many contacts per edge, the ongoing

and time-sliced networks will be the same (simply equaling the

network of aggregated contacts). The difference, seen in Fig. 3, is

because we have on average just ten contacts per edge. To explore

the difference in topology a bit further, we plot the number of

vertices of degree larger than zero and average degree in Fig. 5A

and B. As expected, when m is large, these two quantities are quite

similar for all network representations. For a lower fraction of

concurrent partnerships, however, both the size and the average

degree are considerably smaller for the ongoing networks. Like the

empirical networks, it seems that the ongoing network represen-

tation is too restrictive in its edge definition. Another phenomenon

observed in the empirical data that is also reproduced by the

synthetic data, is that the networks have larger sizes of the largest

connected components than be expected from a randomized null-

model (see Fig. 5C and D). This means that the optimized

networks have a bias for being more connected. Probably, this

reflects that the performance measure relates the local network

structure to the outbreak size. I.e., by constructing network whose

local properties (degree) encode a global dynamic property

(outbreak size) of the original data, one also affects a global
Figure 2. The performance of the network representation r as a
function of parameter values for the Prostitution data. Panel A
shows data for the time-slice networks; B displays results for the
ongoing networks and C gives the picture for the exponential-threshold
representation. The dotted line illustrates the exponential form of the
region of optimality (the equation being t/T = 2eV/0.32). The quantities of
dimension time are, as indicated, rescaled by the total sampling time T
(2,232 days in this case).
doi:10.1371/journal.pcbi.1003142.g002

Table 3. Network properties of the optimized time-slice
networks of the empirical contact sequences.

E-mail 1 E-mail 2 Dating Gallery Conference Prostitution

N 25,995 2,752 23,941 132(7) 84 10,958

M 38,938 18,324 93,348 545(49) 531 22,095

S 0.982 0.997 0.975 0.87(2) 1 0.934

S0 0.676 0.934 0.847 0.984(2) 1.00 0.750

d 3.70 2.86 4.07 3.7(1) 1.94 5.95

d0 3.63 2.83 3.71 2.69(4) 2.05 4.36

S is the fraction of vertices in the largest connected component. d is the
average pathlength in the largest connected component. The quantities with
subscript 0 are values from a reference model with the same degree sequence
as the original network, but otherwise being random. These are averages over
104 randomizations and all the digits are significant to one standard deviation.
The values for the Gallery data are averaged over the 69 days of sampling. The
standard deviations of these mean values are indicated in the parentheses in
the same way as in Tables 1 and 2.
doi:10.1371/journal.pcbi.1003142.t003

Epidemiologically Optimal Network Representations
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topological property (size of the largest connected component) of

the constructed network.

The optimizing parameter values are presented in the

Supporting Information, Figs. S2, S3, S4.

Discussion

We have explored how to encode as much information from a

temporal network and a known start time of an infection into static

graphs so that a predictor of disease-spreading importance—

degree—is as accurate as possible. The main conclusions are that,

on one hand, exponential-threshold networks generally perform

best; on the other hand, time-slice networks often perform almost

as good. Our general recommendation is thus to use exponential-

threshold networks if possible. However, the simplicity in

constructing and optimizing a time-slice network makes it a

feasible alternative. To straightforwardly use a network of

accumulated contacts is not a good idea—for some data sets, the

performance is less than 60% of the maximum. In addition, the

ongoing networks—recording contacts that are active simulta-

neously—perform rather poor. The performance is better when

there are relatively many concurrent edges, or partnerships, (i.e.

when these networks are rather dense), but never as good as the

other two methods. It is well established that the overall level of

concurrent partnerships increases the frequency of population-

wide outbreaks [22,23], but it seems like, at least in our data sets,

the non-concurrent contacts are necessary for determining the

importance of individuals in the spreading process.

How much do our results generalize beyond our current

analysis? There are of course many other ways to evaluate the

performance of network representations. Instead of the perfor-

mance measure that we consider (the ability of a vertex’ degree to

predict its rank in a list of estimated sizes of outbreaks originating

at that particular vertex), one can imagine other measures.

Different types of centrality measures [30–32] are candidates for

such measures, but these are often global quantities. In practical

applications, it is hard to assess quantities other than local—cf. it is

easy to check one’s degree in an online social network as

Facebook, but much harder to know one’s value of a global

property. Moreover, in many empirical networks, centrality

measures (including degree) are strongly correlated in empirical

data [33], so we expect our conclusions to remain if we change the

static-network importance estimators. In the Supporting Informa-

tion Table S1, we show that our conclusions are the same if we use

a global predictor of importance—coreness [7]. Furthermore, the

importance measure for the dynamic simulation can be chosen

differently. It measures expected outbreak size if the outbreak starts

at the focal vertex. In general, another factor affecting the

importance is the chance to acquire the infection.

Ideally, an importance measure should weigh together both

these aspects. In most types of data, we expect these aspects to be

strongly correlated and we settle for the mentioned expected

outbreak size. One can also think of other prediction tasks for the

comparison than finding influential spreaders—for example,

predicting epidemic threshold, peak-time of the epidemics,

prevalence as a function of time or the final outbreak size. Such

studies would require us to study a specific disease-spreading

model for the static network. This added complication is the main

reason that we avoid such a direction. However, we also believe (as

mentioned above), that predicting influential spreaders is a

comparatively easy task. If one cannot say who would be an

influential spreader, but still get the epidemic threshold right, the

latter seems rather like luck. (Investigating this hypothesis

rigorously would be an interesting future direction.)

How much do our conclusions depend on the disease simulation

model and its parameter values? The per-contact transmission

probability probably does not affect the ranking of the vertices

(even if the expected outbreak sizes can vary non-linearly). The

duration of the infective state, however, could change the ranking.

In Ref. [34], the authors find a threshold-like response to changing

d in the Prostitution data, albeit softer than in the other parameter—

the transmission probability. If the duration is longer, then we

anticipate contacts over a longer time-span to matter. The network

representations should of course be adapted to such a change, in

the sense that their optimal parameter values would change. It is

hard to see why this would change the ranking of the

representations, and a preliminary study (investigating the

Prostitution data for other d-values) shows it does not. Other studies

[9,35] also find that qualitative results, like the ranking of

Table 4. Network properties of the optimized ongoing
networks.

E-mail 1 E-mail 2 Dating Gallery Conference Prostitution

N 9,787 2,245 761 28(1) 78 867

M 12,494 10,558 548 51(5) 286 784

S 0.847 1 0.293 0.51(3) 1 1

S0 0.579 0.924 0.432 0.91(1) 0.99 0.99

d 5.25 2.99 4.98 1.9(1) 2.42 7.32

d0 4.10 2.94 2.77 2.7(1) 2.43 4.84

Notations correspond to those of Table 3.
doi:10.1371/journal.pcbi.1003142.t004

Table 5. Network properties of the optimized exponential-
threshold networks.

E-mail 1 E-mail 2 Dating Gallery Conference Prostitution

N 31,451 2,357 22,287 147(7) 110 10,566

M 47,949 12,856 78,608 455(43) 864 20,390

S 0.984 1 0.963 0.57(4) 1 0.924

S0 0.654 0.932 0.833 0.94(1) 1.00 0.736

d 3.77 2.93 4.29 3.7(2) 2.01 6.00

d0 3.69 2.86 3.81 3.21(8) 2.04 4.38

Notations correspond to those of Table 3.
doi:10.1371/journal.pcbi.1003142.t005

Table 6. Network properties of the network of accumulated
contacts.

E-mail 1 E-mail 2 Dating Gallery Conference Prostitution

N 57,189 3,188 28,972 159(8) 113 16,730

M 92,442 31,857 115,684 647(57) 2,196 39,044

S 0.999 1 0.977 0.81(3) 1 0.945

S0 0.989 0.997 0.880 0.980(2) 0.990 0.792

d 3.93 2.78 4.05 4.17(13) 1.66 5.78

d0 4.10 2.85 3.79 2.83(3) 1.70 4.36

Notations correspond to those of Table 3.
doi:10.1371/journal.pcbi.1003142.t006
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influential individuals, are robust to the choice of compartmental

model and parameter values.

Maybe the most serious reason to be cautious about general-

izing our results is that we have investigated only a limited set of

temporal-network structures. Indeed one can imagine numerous

types of correlations between temporal structure and network

position—correlations between edges connected to the same

vertex, between vertices connected by an edge, etc. A promising

sign, however, is that the empirical data sets span a rather large

range of static network structure (both in terms of the network of

accumulated contacts and the optimized networks). In the end, it is

probably impossible to scan all temporal-network structures.

Rather, we hope for higher quality empirical data. This would

also allow us to better tailor the network representations to specific

pathogens.

The rmax-values—between 0.68 (for the synthetic data) to 0.93

(for the E-mail 2 data)—are, on one hand, rather high (we could

predict important spreaders with a quite high confidence). On the

other hand, since many goals of network epidemiology (predicting

thresholds, etc., as listed above) are more dependent on the details

of the contact structure and thus more difficult, we can appreciate

the value of having the full, temporal contact patterns. The

conclusion from this is to, as long as possible, avoid reducing

contact data to static networks [6,9,35–40].

An interesting question for the future is why some data sets give

higher performance values. With the degree sequences of the

accumulated networks rmax is bounded above by about 0.95–0.98

(1 is unattainable because of the degeneracy of degrees). The

discrepancy comes from the network-construction methods being

too blunt to capture the relevant temporal-network structure. On

the other side, it may be too much to ask from the method to rank

the bulk of peripheral vertices accurately—the difference between

them will probably be smaller than the errors in the raw data set.

Another open future direction is to design other network

representations, perhaps putting different weight depending on

burstiness [41] or other temporal traits. It could also be interesting

to generalize the study to general spreading phenomena in social

networks. This paper finds results also generalize to datasets not

directly relevant for infectious disease spreading (the e-mail data),

perhaps reflecting strong general patterns in human activity

[40,41].

Figure 3. A schematic illustration of how we generate synthetic
temporal networks. Steps 1–2 represent the configuration model
used to create a static network. Then, in Step 3, we assign active
intervals (time periods where contacts are allowed). In Step 4–6, we
assign contact times within the intervals from the same interevent time
distribution.
doi:10.1371/journal.pcbi.1003142.g003

Figure 4. Performance of the network representations on the
synthetic data sets. We display the maximum value of the Spearman
rank correlation as a function of the overlap parameter m (a model-
parameter controlling the fraction of concurrent relationships). Error
bars showing the standard error would be smaller than the symbol size
and are not plotted.
doi:10.1371/journal.pcbi.1003142.g004
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Methods

Notations
We consider a set C of L contacts among N vertices. T is the

total sampling time. We count time (usually denoted t) from the

data set’s first contact. E is the set of vertex pairs with at least one

contact. In the context of concurrency, we also call edges

‘‘partnerships’’ to conform to the terminology of the theory of

sexually transmitted infections. By construction of our data sets, all

the vertices will be part of at least one contact. We denote the

number of elements in E by M. When we discuss the constructed

networks, we use N and M to represent the number of vertices and

edges, respectively, in that particular network.

Disease spreading dynamics
We simulate disease spreading by a version of the SIR model

defined as follows. Start the simulation from a situation where all

vertices are susceptible. The outbreak is then initiated from a seed i

at the time of i’s first contact. Then, at every contact involving one

infective and one susceptible, we make the susceptible infective

with a probability l. An individual stays infective for a duration d,

whereupon it becomes removed. (This is different from the

differential equation formulations of the SIR model that assumes

that infective vertices become removed at a fixed rate—i.e. with an

exponentially distributed duration—which is neither realistic [42]

nor parsimonious in an individual-based simulation like ours.) We

go through the contacts in time order. If more than one contact

occurs at a time unit, we sample them in random order. For every

vertex as seed, we run the simulation between 1,000 and 10,000

times.

Ideally, we should scan the entire (l,d) parameter space, but this

would be computationally too demanding. Rather, we will try to

simulate the disease spreading where it is easy to separate the more

from the less important individuals. This happens at intermediate

l- and d-values. (For an infinite system, it would be around the

epidemic threshold, but for the finite systems that we consider,

thresholds are ill defined, so we avoid that terminology.) As a

simple principle, we chose d as one fifth of the sampling time and l
such that the average outbreak size becomes one fifth of the size

with l= 1 and d= T/5. The actual values that we use can be

found in Table 1.

Network representations
We limit ourselves to simple graphs (unweighted and undirected

graphs that have no multiple edges or self-edges) and require that

their construction should be conceptually simple. The simplest

type of such representations is the time-slice network—an edge in

these is any pair of vertices (i,j) that have one or more contacts (i,j,t)

with tstart#t#tstop [19,20]. If tstart and tstop are the beginning and

end of the data set, then we speak of an aggregated network (which

probably is the most common representation when running

disease simulations on empirical network data [3]). The second

network representation that we consider is ongoing networks. Here

an edge represents a pair of vertices (i,j) that have at least two

contacts (i,j,t) and (i,j,t9) where t,tstart#tstop,t9. Ref. [21] studied

these in the special case tstart = tstop.

The last type of network representation that we test is

exponential-threshold networks. In these, each pair of vertices is

assigned a weight

vij~
X

(i,j,t)[C

e{t=t ð1Þ

and if this weight exceeds a threshold V, then (i,j) is considered an

edge. The motivation for this type of network is that contacts that

are further from the introduction of the disease (which in our case

happens early in the sampling period) should be less important.

The time-slice networks can also include edges by a decaying

function of time, only that the function is discontinuous. The

exponential weight is a smoother way to account for this decrease

Figure 5. Topology of the optimized network representations for synthetic data. Panel A shows the number of (non-zero degree) vertices
in the network; B displays the average degree; C gives the relative size of the largest connected component; while D shows the corresponding figure
to C for null models of the same degree sequences as in C, but otherwise random. The error bars are displayed if they are about the same size as the
symbols and show the standard error.
doi:10.1371/journal.pcbi.1003142.g005
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of importance (so that many later contacts can equal a few recent

contacts).

Quantities to characterize the temporal-network
structure

In our tables discussing the structure of the data sets and derived

networks, we use a number of quantities that we will define here.

To quantify the tendency of contacts to be temporally separated

by broadly distributed intervals, we use the burstiness measure of

Ref. [41]. For all pairs of vertices i and j with two or more contacts,

we collect the times between contacts to one long series of

interevent times. Then the burstiness B of the data set is the

coefficient of variation of this series.

Another important quantity is the relative size of the largest connected

component (i.e. a subgraph where every vertex is reachable by

following a sequence of adjacent edges). We measure it as a

fraction S of the total number of vertices in the graph. Note that

this, when applied to the optimized networks, is not necessarily the

same as the total number of individuals in the original data set.

Finally, we measure the distances in the largest connected component, d—

the number of edges in the shortest path between two vertices in

the largest connected component, averaged over all its pairs of

vertices.

We compare the static network measures by the corresponding

values from a randomized null model with the same set of degrees

but otherwise no structure. An instance of this model is generated

by: sequentially going through all edges (i,j), pick a random new

edge (i9,j9), replace these two edges by (i,j9) and (i9,j), or (with the

same probability) by (i,i9) and (j,j9). If the replacement step would

introduce a multiple or self-edge another edge, then a new (i9,j9) is

chosen randomly.

Predictor of importance
We estimate importance of a vertex i in the SIR simulation as

the average outbreak size gi over 1,000 (Gallery, Conference and

Prostitution) or 10,000 independent simulation runs if the disease is

introduced by the vertex at its first contact.

To estimate the importance of a vertex in the disease spreading

from the static networks, we degree ki—the number of neighbors of

a vertex. This is a useful quantity for its simplicity. It is local,

meaning that every individual should be able to estimate its own

value (in practice this could of course be difficult, depending of the

mode of transmission of the pathogen). Degree, as a measure of

influence, is also intuitive—meeting more individuals should

increase both the chance of getting a disease and the number of

others one can spread the infection to. In the Supporting

information, we also present results for another measure of

influence—the so-called coreness, roughly measuring how large

the well-connected neighborhood of a vertex is [7].

Generative models for contact sequences
The method to generate synthetic contact sequences is outlined

in Fig. 3. Here we describe the process in greater detail. We start

by constructing a (static) simple graph, N = 5,000, by the

configuration model [30]. This means that we assign one discrete

random number for every vertex i from some probability

distribution. These numbers represent ‘‘stubs’’ or ‘‘half-edges’’

desired to be a part of an edge. Then we choose stubs of random

pairs of vertices i and j and attach them to form an edge (i,j)

provided that no such edge already existed and i?j. This adding of

edges continues until there is no stub that is not a part of an edge.

One caveat, however, is that a complete matching may not be

possible (if, for example, one vertex has two stubs left and the

others all zero). To handle this, if the matching is unsuccessful for

104 consecutive times, we give up and delete the remaining stubs.

In this paper, we use a truncated power-law distribution to mimic

the skewed, broad degree distributions of the empirical networks.

To be specific, we draw the random numbers from a distribution

P(k)*
k{c if k[ kmin,kmax½ �

0 otherwise

�
ð2Þ

where, in our work, kmin = 1, kmax = N21 and c= 2.2. This gives,

on average, M = 10,595(5) (the last number being the standard

error in order of the last decimal).

After the network topology is generated, we proceed to assign

times of contacts to the edges. We assume a contact over an edge

can only take place during an activity interval of duration, mT. We

recognize that the activity intervals would more accurately be

modeled as skewedly distributed. However, if we choose the

intervals as broadly distributed as e.g. the degrees, then we cannot

control the overlap of contacts over such wide a range. m M (0,1] is

then a control parameter for the overlap with larger values

meaning a higher amount of overlap. (Note that m increases with

the average fraction concurrent relationships, but to avoid

confusion by the concurrency measure of Ref. [23], we do not

call m concurrency.) The starting times of the intervals are chosen

with uniform probability in the interval [0,(1 – m)T].

We proceed by generate a time series with, once again, a

truncated power-law shape. We use the equation

P(D)*
D{b if D[ Dmin,Dmax½ �

0 otherwise

(
ð3Þ

where Dmin = 1, Dmax = 104 and b= 2. We generate L = 10M such

contacts. This times series is then split over the active intervals.

When that is finished, the temporal network is done. Note that this

procedure does not induce any particular correlations between

topology and temporal structure. Ref. [43] uses a similar method

that differs in that it does not assign active intervals (and thus does

not have the control parameter m).

Supporting Information

Figure S1 Scatter plot of the degree in a time-slice network with

parameters tstart = 0 and tstart = T/4 as a function of the dynamic

importance gi. The data is from the Prostitution data set.

(TIF)

Figure S2 The model parameters for optimizing the time-slice

networks for the synthetic data sets as a function of the overlap

parameter.

(TIF)

Figure S3 The model parameters for optimizing the ongoing

networks for the synthetic data sets as a function of the overlap

parameter.

(TIF)

Figure S4 The model parameters for optimizing the exponen-

tial-threshold networks for the synthetic data sets as a function of

the overlap parameter. Panel A shows values for the decay

exponent t in units of the total sampling time and B shows the

tR‘ limit cutoff V.

(TIF)

Table S1 Maximal performance values for the empirical data

sets. This table is exactly corresponding to Table 2 but for
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coreness instead of degree as an estimate for importance in static

networks.

(PDF)
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