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Potential synergism between florfenicol (FF) and thiamphenicol (TAP) was investigated
for in vitro efficacy against Actinobacillus pleuropneumoniae and/or Pasteurella
multocida as well as in vivo efficacy in swine. Among isolates of A. pleuropneumoniae
(n = 58) and P. multocida (n = 79) from pigs in Taiwan that were tested, high
percentages showed resistance to FF (52 and 53%, respectively) and TAP (57 and 53%,
respectively). Checkerboard microdilution assay indicated that synergism [fractional
inhibitory concentration index (FICI)≤ 0.5] was detected in 17% of A. pleuropneumoniae
(all serovar 1) and 24% of P. multocida isolates. After reconfirming the strains
showing FICI ≤ 0.625 with time kill assay, the synergism increased to around 32%
against both bacteria and the number could further increase to 40% against resistant
A. pleuropneumoniae and 65% against susceptible P. multocida isolates. A challenge-
treatment trial in pigs with P. multocida showed that the FF + TAP dosage at ratios
correspondent to their MIC deduction was equally effective to the recommended
dosages. Further on the combination, the resistant mutation frequency is very low
when A. pleuropneumoniae is grown with FF + TAP and similar to the exposure to
sub-inhibitory concentration of FF or TAP alone. The degree of minimum inhibitory
concentration (MIC) reduction in FF could reach 75% (1/4 MIC) or more (up to 1/8
MIC for P. multocida, 1/16 for A. pleuropneumoniae) when combined with 1/4 MIC
of TAP (or 1/8 for A. pleuropneumoniae). The synergism or FICI ≤ 0.625 of FF with
oxytetracycline (47%), doxycycline (69%), and erythromycin (56%) was also evident,
and worth further investigation for FF as a central modulator facilitating synergistic
effects with these antimicrobials. Taken together, synergistic FF + TAP combination was
effective against swine pulmonary isolates of A. pleuropneumoniae and P. multocida
both in vitro and in vivo. Thus, this study may offer a potential alternative for the treatment
of A. pleuropneumoniae and P. multocida infections and has the potential to greatly
reduce drug residues and withdrawal time.
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INTRODUCTION

The continuing emergence of antimicrobial resistance coupled
with the slow development of new antimicrobial drugs
represents a growing worldwide challenge for both human
and animal healthcare (Cheng et al., 2016). In one of the
approaches to address this pressing problem, clinical research
has focused on the discovery of synergistic actions by novel
antimicrobial combinations (Singh and Yeh, 2017), which could
be implemented without need to modify existing drugs. Benefits
associated with the use of combined antimicrobial therapy
with synergistic activities include the potential for delayed
development of bacterial resistance, a broadening of antibacterial
spectrum to treat polymicrobial infections, a reduction in drug
toxicity and reduced cost or risk of harmful residues in food
products (Eliopoulos and Eliopoulos, 1988; Ahmed et al., 2014).
One of the best known models to measure the effects of
antimicrobial drug combination is the checkerboard assay in
which a two dimensional array of serial concentrations of test
compounds is used as the basis for calculation of fractional
inhibitory concentration index or FICI (White et al., 1996). The
“Time-kill” experiment is another method that offers dynamic
observation of the interaction of two antimicrobial agents
over time with confirmation of the synergistic activities by
checkerboard results (Grzybowska et al., 2004).

Florfenicol has been authorized for veterinary antimicrobial
use in swine in many countries including European Union,
United Kingdom, Japan, United States, Canada, and Taiwan
(European Medicines Agency [EMA], 1999; Veterinary
Medicines Directorate [VMD], 2013; The Japan Food Chemical
Research Foundation [JFCRF], 2015; Bureau of Animal and
Plant Health Inspection and Quarantine [BAPHIQ], 2019;
The United States Food and Drug Administration [US FDA],
2019; Veterinary Drugs Directorate [VDD], 2019), while
thiamphenicol is also approved in these regions except for the
North America. The wide range of applications and the use as
essential treatments against specific infections, in addition to
the lack of sufficient therapeutic alternatives, make amphenicols
[including florphenicol (FF) and thiamphenicol (TAP)] critically
important antimicrobial agents for veterinary use (VCIA)
according to the World Organization for Animal Health
(OIE) (OIE, 2015).

Synergy between two agents within the same class of
antibiotics is rarely observed in vitro, in vivo or in clinical
practice. In humans, the only example of reported synergism
between the same class of antibiotics is the use of dual ß
lactam antibiotics. For instance, cefotaxime plus amoxicillin and
ceftriaxone plus ampicillin increased activity against resistant
enterococci compared to either in isolation (Mainardi et al.,
1995; Pericas et al., 2018). In addition, unconventional use of
a double carbapenem combination (meropenem + ertapenem)
has revealed synergism against carbapenem-resistant Klebsiella
pneumonia (CR-Kp) both in vitro and in vivo as well as in
clinical settings (Ceccarelli et al., 2013; Oliva et al., 2015).
More recently, the 2015 Infectious Diseases Society of America
(IDSA) guidelines highlighted dual beta-lactam therapy as
a first-line treatment option for adult infective endocarditis

(Bartash and Nori, 2017). In animals, synergism within the
amphenicol group was first reported recently, with FICI ≤ 0.625
detected in vitro against both methicillin-susceptible (3/9) and
methicillin-resistant isolates (5/11) of Staphylococcus aureus
derived from chickens, cattle and pigs as well as in vivo synergism
in mice at half of the recommended dose of FF (10 mg/kg)
plus an ineffective dose of TAP (10 mg/kg) (Wei et al., 2016a).
In addition, isolates with FICI value ≤ 0.625 was detected
in vitro for isolates of P. multocida (10/23) isolated from pigs,
ducks and geese, Streptococcus suis (2/13) and Staphylococcus
hyicus (1/6) isolated from pigs, as well as in vivo synergism
against P. multocida in chickens (Wei et al., 2016b). A recent
publication demonstrated in vitro FF and TAP with FICI ≤ 0.75
and in vivo efficacy at reduced dosage against Aeromonas
hydrophila in Nile tilapia (Assane et al., 2019). While these results
indicate preferential synergism by FF+TAP combination against
certain bacterial species from pigs and fish and P. multocida
from chickens, it remains unclear whether the synergistic
actions extend to P. multocida or other major respiratory
pathogens in pigs. Therefore, the purpose of the study was to
determine the efficacy of a synergistic FF + TAP combination
against important swine bacterial respiratory pathogens, namely
A. pleuropneumoniae and P. multocida both in vitro and in vivo.
Furthermore, the effectiveness of FF combinations with other
antimicrobial agents were evaluated with particular emphasis on
drugs that are available as injectable dosage forms.

MATERIALS AND METHODS

Antimicrobial Agents, Bacteria, and
Culture Conditions
The FF, TAP, oxytetracycline (OTC), doxycycline (DOX),
erythromycin (ERY), and tylosin (TYL) were purchased from
Sigma-Aldrich (St. Louis, MO, United States). All the drugs used
were analytical reference standards with a purity ≥95%. Clinical
isolates of A. pleuropneumoniae (58) and P. multocida (79) were
obtained from the Department of Veterinary Medicine, National
Chiayi University, Taiwan. All bacterial isolates were obtained
originally from the lung tissue of naturally infected pigs and
their species and serovars had been established beforehand using
biochemical tests, PCR analysis and Multilocus Sequence Typing
(MLST) (Yeh et al., 2017; Liao et al., 2019). For routine culture,
P. multocida was grown on chocolate agar (Creative Lifescience,
New Taipei city, Taiwan) and incubated at 37◦C for 16–18 h,
while A. pleuropneumoniae was also grown on chocolate agar at
37◦C with 5% CO2 for 20–24 h.

In vitro Susceptibility Testing
MIC determinations were performed according to the broth
microdilution method as described in the Clinical and Laboratory
Standard Institute guidelines (Clinical and Laboratory Standards
Institute [CLSI], 2018) for P. multocida, while a modified method
was used for A. pleuropneumoniae. The methods are briefly
outlined below. For P. multocida, serial two-fold dilutions of
FF, TAP, OTC, DOX, ERY and TYL were performed in cation-
adjusted Mueller-Hinton II broth (CAMHB) (Difco Laboratories,
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Detroit, Michigan, United States) in a 96-well U bottom
microplate. The inoculum was prepared in Brain-Heart-Infusion
(BHI) broth. Bacteria at a final concentration of 5 × 105 colony-
forming unit (CFU)/mL were inoculated into the wells and grown
at 37◦C for 16–18 h. For A. pleuropneumoniae, serial two-fold
dilutions of FF and TAP were performed in CAMHB with the
addition of 15 µg/mL nicotinamide adenine dinucleotide (NAD)
(Sigma-Aldrich, St. Louis, MO, United States). The inoculum was
prepared in BHI supplemented with 15 µg/mL NAD (Tremblay
et al., 2017; Xie et al., 2017; Ramírez-Castillo et al., 2018). Bacteria
also at a final concentration of 5 × 105 colony-forming unit
(CFU)/mL were inoculated into the wells and grown at 37oC
for 20–24 h with 5% CO2. The MIC was defined as the lowest
concentration with no visible growth. All MIC assays in this
study were at least repeated in duplicate. Four reference standard
strains of bacteria, namely Enterococcus faecalis (ATCC 29212),
S. aureus (ATCC 29213), Escherichia coli (ATCC 25922), and
A. pleuropneumoniae (ATCC 27090) purchased from American
Type Culture Collection (Manassas, VA, United States) were used
as reference bacteria to verify the accuracy of all antimicrobial
susceptibility tests according to the CLSI guideline (2018). For
drugs that CLSI does not have a reference bacteria and range,
published information was adapted and experiment conducted
the same way as their structural analogs (Dorey et al., 2017b;
Smith, 2017).

Checkerboard Assay
In vitro Synergism of FF + TAP Against
A. pleuropneumoniae and P. multocida
The synergistic interaction between FF and TAP was determined
by checkerboard assay technique (Hsieh et al., 1993). Prior to
the addition of bacteria, two-fold serial dilutions of FF and TAP
(range, 0.125 × MIC to 3 × MIC) were made to create different
concentration combinations in each well. In cases where the serial
dilutions exceeded the capacity of the 96 well-plate, a second plate
was used to complete the checkerboard analyses. The bacteria at
a final concentration of 5× 105 CFU/mL was added to each well.
The FICI was calculated as the sum of the MIC of each compound
used in combination, divided by the MIC of each compound used
alone as the following:

FIC(FF) = (MIC of FF in combination with TAP)/

(MIC of FF alone).

FIC(TAP) = (MIC of TAP in combination with FF)/

(MIC of TAP alone)

FICI = FIC(FF) + FIC(TAP) (1)

The results were interpreted using the following criteria:
synergism (FICI ≤ 0.5), no interaction (0.5 < FICI < 4) and
antagonism (FICI ≥ 4) (Odds, 2003).

In vitro Synergism of FF and Other Antimicrobial
Agents
P. multocida isolates in which the FF + TAP in combination
showed synergism were then exposed to the combinations of

FF and the other two classes of antimicrobial agents, namely
tetracyclines (OTC and DOX) and macrolides (ERY and TYL)
using checkerboard techniques as described above.

Time-Kill Assay
This study was conducted according to the standard protocol
(The National Committee for Clinical Laboratory Standards
[NCCLS], 1999) with some modifications. Cultures undergoing
exponential growth were diluted to 5 × 106 CFU/mL in
BHI (Difco laboratories, Detroit, MI, United States). All
A. pleuropneumoniae strains were diluted into BHI supplemented
with 5 µg/mL NAD. Tubes containing 5 mL cultures were
exposed to either drug alone (FF or TAP at a concentration equal
to 0.5 ×MIC) or an FF + TAP combination (at a concentration
of 0.5×MIC of either drug) and incubated at 37◦C with shaking.
For A. pleuropneumoniae, the environment contained 5% CO2.
Note that the concentration of each drug in the combination
was also tested at 1 × MIC as in the previous publications
(Wei et al., 2016a,b). A tube containing 5 mL of culture without
antimicrobial agents was used as control group. Aliquots of
20 µL obtained from each cultured tube were inoculated on
chocolate agar for colony counts after 10-fold serial dilution at
0, 2, 4, 8, 12, and 24 h post-inoculation. Synergy was defined as
a ≥2 log10 reduction in CFU/mL of the drugs in combination
compared to the most active single drug after 24 h (The National
Committee for Clinical Laboratory Standards [NCCLS], 1999;
EUCAST, 2000).

Multistep Resistance Studies
Multistep resistance studies were conducted with two clinical
isolates of A. pleuropneumoniae that exhibited synergistic MIC
values of FF 0.125 µg/mL + TAP 0.5 µg/mL (isolate No. 4
in Table 2) and FF 1 µg/mL + TAP 2 µg/mL (isolate No.
30 in Table 2), respectively. BHI solution supplemented with
5 µg/mL NAD was combined with FF or TAP or FF + TAP at
one eighth of the synergistic concentration for each respective
isolate. Mixtures were inoculated with cultures of each respective
isolate of A. pleuropneumoniae at exponential-phase at a final
concentration of∼1× 106 CFU/mL. The cultures were incubated
at 37oC for 24 h in a 5% CO2 environment and subcultured daily
in fresh medium with antibiotics daily for 12 days. The MIC
was evaluated after every third passage using the microdilution
method as described above. Any increase in MIC > 4 folds
relative to the initial value was defined as the acquisition of
resistance (Drago et al., 2005a,b).

Bacterial Challenge Study in Pigs
Experimental Design
Ten crossbred pigs (6 weeks old, 5 males and 5 females) were
purchased from a pig farm in Nantou Country which was
free from porcine reproductive and respiratory syndrome virus
(PRRSV), porcine circovirus type 2 (PCV2) and classic swine
fever virus (CSFV). P. multocida, serovar A (isolate No. 1 in
Table 3) was used for the challenge. The pigs were divided
randomly into five pairs (see below) and reared in separate
pens for 5 days to allow time for environmental acclimation.
All pigs were fed non-medicated feeds ad libitum and had
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TABLE 1 | Distribution of minimum inhibitory concentration (MIC) value for FF and TAP tested against A. pleuropneumoniae (n = 58) and P. multocida (n = 79)
isolated from swine.

Bacteria MIC distribution by the number of isolates (µg/mL) MIC50 MIC90 R∗ (%)

Antimicrobial agents 0.25 0.5 1 2 4 8 16 32 64 ≥ 64 128 256 512 1024 2048

A. pleuropneumoniae

--
--

--
--

-

FF 7 9 7 5 7 21 2 8 16 52%

TAP 16 5 4 10 18 5 8 16 57%

P. multocida

--
--

--
--

-

FF 2 20 9 6 2 37 3 32 64 53%

TAP 2 16 18 1 1 1 1 8 25 6 256 1024 53%

FF, florfenicol; TAP, thiamphenicol; MIC, minimum inhibitory concentration. ∗R (%), resistance percentage. Resistance breakpoint of FF against A. pleuropneumoniae and
P. multocida from swine (the dotted line) refers to Clinical and Laboratory Standards Institute [CLSI] (2018) Performance Standards for Antimicrobial Disk and Dilution
Susceptibility Tests for Bacteria Isolated from Animal (Vet 08). Resistance breakpoint of TAP against A. pleuropneumoniae and P. multocida from swine (the dotted line) is
derived from bimodal distribution data in this study and previous publications (Inamoto et al., 1994; Yoshimura et al., 2002; Morioka et al., 2008). MIC50 = antibacterial
drug concentration that inhibit 50% of the bacterial population. MIC90 = antibacterial drug concentration that inhibit 90% of the bacterial population.

free access to water. The bacterial inoculum was prepared
from an overnight culture of P. multocida and reconstituted in
phosphate-buffered saline (PBS) to 5 × 108 CFU/mL (Oliveira
Filho et al., 2015). Each pig was inoculated via intratracheal
administration of P. multocida (1 mL) 30 min after drug
treatments. The experiment was carried out for 5 days with the
following treatments: Group 1 (negative control) intramuscular
(IM) injections of 25% 2-pyrrolidone (0.1 mL/kg in PBS) on
days 1, 3, and 5 (q 48 h). Group 2: daily IM injections with
FF 2 mg/kg + TAP 4 mg/kg (q 24 h). Group 3: IM injections
of FF 5 mg/kg + TAP 10 mg/kg on days 1, 3, and 5 (q 48 h).
Group 4 (positive control 1) and Group 5 (positive control 2)
were given recommended doses of FF at either 5 mg/kg, q 24 h
(Group 4) or 15 mg/kg, q 48 h on days 1, 3, and 5 (Group
5) (Liu et al., 2015). After the 5th day of treatment, all pigs
were sacrificed by electrocution and examined for any gross
pathology and histopathology as well as bacterial re-isolation.
The animal study was approved by the Institutional Animal Care
and Use Committee of National Chung Hsing University (IACUC
approval No. 105-079).

Clinical Evaluation
Clinical evaluations including body temperature, body weight,
appetite and clinical signs (behavior and respiratory signs)
were recorded once daily for each pig. A pig was considered
to have fever if its body temperature was higher or equal
to 39.5◦C. Respiratory signs including coughing, sneezing and
dyspnea (Stipkovits et al., 2001; Brockmeier et al., 2002) were
recorded. Each individual was scored using the following
criteria: 0 (no signs), 1 (moderate), or 2 (severe). For the
behavioral observations, individual’s scores were recorded as 0
(normal), 1 (less active), or 2 (depression). Rectal temperatures
and body weight were recorded daily before feeding and
cleaning the stys. Three days before challenge and 5 days
post-challenge, blood samples were collected into 0.5 mL
tubes containing potassium EDTA and hematological values
were determined using IDEXX ProCyte DxTM (IDEXX,
Westbrook, ME, United States). Samples for biochemical
analysis were collected in 1 mL serum collection tubes
containing heparin, and analyzed for total protein, albumin,

and globulin using a Roche Hitachi 717 Chemistry Analyzer
(Hitachi, United States).

Gross and Histopathological Examinations and
Bacterial Re-isolation
Complete necropsies were performed on all pigs. Macroscopic
lung lesions of each lobe was assigned a score following the
method used by Halbur et al. (1996) and the total percentage
of lung area with pneumonia was estimated blindly by three
veterinarians to get a mean score.

For histopathological examination, tissues from all lung
lobes, tracheal, hilar lymph node, tonsil, liver, kidney, and
inguinal lymph node were collected, processed and interpreted by
veterinary pathologist from the Animal Disease Diagnosis Center
(ADDC) at National Chung Hsing University (NCHU). Different
parts of lung tissue including apical and cardiac parts of cranial
lobes from both sides of the lung and hilar lymph nodes were
examined for the presence of pathogenic bacteria.

RESULTS

Resistance Profiles
The FF MIC for A. pleuropneumoniae reference strain using
BHI/NAD was 0.5 µg/mL and falls within the acceptable
range of 0.25–1 µg/mL (Clinical and Laboratory Standards
Institute [CLSI], 2018). Results of the in vitro susceptibilities
of A. pleuropneumoniae and P. multocida isolates to FF and
TAP are summarized in Table 1 with values presented as the
MIC distributions, MIC50, MIC90 and % resistance values.
In vitro susceptibility testing revealed that FF was more effective
than TAP overall against isolates of both A. pleuropneumoniae
and P. multocida.

Checkerboard Assay
In vitro Synergism by FF + TAP Combination
The FF + TAP combination showed synergy (FICI ≤ 0.5) on
17% of the A. pleuropneumoniae isolates and 24% of P. multocida
isolates (Tables 2, 3). The percentages increased to 33% (19/58)
against A. pleuropneumoniae isolates and 32% (25/79) against
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TABLE 2 | In vitro inhibitory activity of FF and TAP alone and in combination against A. pleuropneumoniae by checkerboard assay.

Isolates (serovars) MIC of each drug (µg/mL)
when used alone

MIC of each drug (µg/mL)
when used in combination

Fold MIC reduction FICI

FF TAP FF TAP FF TAP

Sensitive Strains (MIC of FF ≤ 2 µg/mL)

1 (1) 1 8 0.0625 1 1/16 1/8 0.1875

2 (1) 2 4 0.5 1 1/4 1/4 0.5

3 (1) 2 4 0.125 2 1/16 1/2 0.5625

4 (5) 1 1 0.125 0.5 1/8 1/2 0.625

5 (15) 0.5 1 0.0625 1 1/8 1/2 0.625

6 (5) 1 1 0.25 0.5 1/4 1/2 0.75

7 (5) 0.5 1 0.125 0.5 1/4 1/2 0.75

8 (5) 0.5 1 0.125 0.5 1/4 1/2 0.75

9 (5) 0.5 1 0.125 0.5 1/4 1/2 0.75

10 (2) 2 1 0.5 0.5 1/4 1/2 0.75

11 (1) 2 1 0.125 0.5 1/4 1/2 0.75

12(5) 1 1 0.25 0.5 1/4 1/2 0.75

13 (1) 2 2 0.5 1 1/4 1/2 0.75

14 (15) 0.5 1 0.125 0.5 1/4 1/2 0.75

15 (2) 0.5 1 0.125 0.5 1/4 1/2 0.75

16 (1) 1 8 2 4 1/2 1/2 1

17 (1) 1 4 2 2 1 1/2 1

18 (1) 2 1 1 0.5 1/2 1/2 1

19 (5) 1 1 0.5 1 1/2 1 1

20 (1) 2 2 1 1 1/2 1/2 1

21 (15) 0.5 1 0.25 0.5 1/2 1/2 1

22 (15) 1 16 1 2 1 1/8 1

23 (1) 1 1 1 1 1 1 2

Intermediate Strains (MIC of FF = 4 µg/mL)

24 (1) 4 1 0.5 0.5 1/8 1/2 0.625

25 (1) 4 4 0.5 2 1/8 1/2 0.625

26 (1) 4 2 1 1 1/4 1/2 0.75

27 (1) 4 2 1 1 1/4 1/2 0.75

28 (1) 4 2 1 1 1/4 1/2 0.75

Resistant Strains (MIC of FF ≥ 8 µg/mL)

29 (1) 16 16 1 2 1/16 1/8 0.1875

30 (1) 16 16 1 2 1/16 1/8 0.1875

31 (1) 16 16 2 2 1/8 1/8 0.25

32 (1) 16 16 2 2 1/8 1/8 0.25

33 (1) 8 8 1 2 1/8 1/4 0.375

34 (1) 16 16 4 4 1/4 1/4 0.5

35 (1) 16 16 4 4 1/4 1/4 0.5

36 (1) 8 16 2 4 1/4 1/4 0.5

37 (5) 32 ≥ 64 16 4 1/2 ≤ 1/16 ≤0.5625

38 (1) 32 ≥ 64 16 4 1/2 ≤ /16 ≤0.5625

39 (15) 16 ≥ 64 8 4 1/2 ≤ 1/16 ≤0.5625

40 (1) 16 8 2 2 1/8 1/2 0.625

41 (5) 8 ≥ 64 4 16 1/2 ≤ 1/4 ≤0.75

42 (5) 16 8 4 4 1/4 1/2 0.75

43 (1) 8 8 2 4 1/4 1/2 0.75

44 (1) 8 8 2 4 1/4 1/2 0.75

45 (5) 8 16 4 4 1/2 1/4 0.75

46 (5) 16 ≥ 64 8 32 1/2 ≤ 1/2 ≤1

(Continued)
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TABLE 2 | Continued

Isolates (serovars) MIC of each drug (µg/mL)
when used alone

MIC of each drug (µg/mL)
when used in combination

Fold MIC reduction FICI

FF TAP FF TAP FF TAP

Resistant Strains (MIC of FF ≥ 8 µg/mL)

47 (1) 16 16 8 8 1/2 1/2 1

48 (2) 16 8 8 8 1/2 1 1

49 (7) 8 16 4 8 1/2 1/2 1

50 (1) 16 16 8 8 1/2 1/2 1

51 (1) 16 16 8 8 1/2 1/2 1

52 (1) 16 16 8 8 1/2 1/2 1

53 (1) 16 16 8 8 1/2 1/2 1

54 (1) 16 16 4 8 1/4 1/2 1

55 (5) 16 8 8 4 1/2 1/2 1

56 (1) 16 16 8 8 1/2 1/2 1

57 (1) 16 16 8 8 1/2 1/2 1

58 (1) 16 8 8 4 1/2 1/2 1

P. multocida isolates if FICI ≤ 0.625 was considered. All isolates
of A. pleuropneumoniae in which FF + TAP exhibited synergism
belonged to serovar 1 (Table 2). Figures 1A,B provide heat
map plots for the percentage of inhibition of both pathogenic
bacterial species.

If isolates are classified as susceptible or resistant based upon
the MIC breakpoint for FF, 40% (12/30) of resistant isolates
of A. pleuropneumoniae showed synergism or FICI ≤ 0.625
whereas only 22% (5/23) of susceptible isolates exhibited
the same. By comparison, synergism and FICI ≤ 0.625
was observed in 65% (24/37) of susceptible P. multocida,
isolates as opposed to only 2.4% (1/42) of resistant isolates
(Figures 1C,D).

In vitro Synergism Between FF and Other
Antimicrobial Agents
The in vitro antibacterial efficacies of FF + OTC, FF + DOX,
FF + ERY, and FF + TYL combinations are summarized
in Table 4. The results reveal that synergistic interactions
(FICI ≤ 0.5) were observed in 40% (6/15) of the tested
isolates for FF + OTC, 15% (2/13) for FF + DOX, 31%
(5/16) for FF + ERY, and 13% (1/8) for FF + TYL.
Consideration of synergism plus FICI ≤ 0.625 produced
higher overall percentages for FF + OTC (7/15 or 47%),
FF + DOX (9/13 or 69%) and FF + ERY (9/16 or
56%) combinations.

Time-Kill Assay
Time kill assays were performed to verify evidence for synergism
or FICI ≤ 0.625 and one FICI ≤ 0.75 in the checkerboard assay.
The results for representative A. pleuropneumoniae isolates and
P. multocida isolates are shown in Figures 2, 3, respectively.
All three time kill assays with FF + TAP combinations at
reduced dosage confirmed the synergism against intermediate
and resistant A. pleuropneumoniae (Figures 2A–C), susceptible
P. multocida (Figures 3A–C) which produced more than 2 log10

CFU/mL reductions compared to the largest reductions by FF or
TAP alone at 24 h.

Assessment of Resistance Induction at
Sub-Inhibitory Concentrations
After 12 passages, there was no apparent development of
resistance with the only changes noted being a one-fold
increase in MIC for FF + TAP group in the susceptible
A. pleuropneumoniae strain and a one-fold MIC increase for
the TAP group in the resistant A. pleuropneumoniae strain after
the 9th passage. The FF + TAP combination did not show any
increased frequency for inducing A. pleuropneumoniae resistance
compared to either drug when used alone (Figure 4).

Bacterial Challenge Study in Pigs
Clinical Signs
After challenge, all pigs developed a low-grade fever on day 1.
The medicated treatment groups (Groups 3, 4, and 5) recovered
1–2 days faster than the negative control group (Group 1), which
developed a moderate to severe respiratory distress at day 2
post-inoculation that lasted until the time of euthanasia. Pigs in
Group 2 also had mild respiratory distress at day 2 but were fully
recovered by day 5, while the pigs in Groups 3, 4, and 5 did
not show any respiratory distress. Pigs in the negative control
group exhibited decreased spontaneous activity and food intake
while pigs in the other groups exhibited normal behaviors and
appetite. There was no significant difference in the body weight
gain (∼2 kg/5 days) among the five groups.

Gross and Histological Examination
Figure 5 depicts the gross and histological features of lung
tissues from each group. Most of the pigs showed no or only
mild lung lesions (>2% of the lung volume). However, pigs in
the negative control group showed severe bronchopneumonia
with moderate interstitial pneumonia (39.2% of the lung
volume); apical and cardiac regions of the left cranial lobe,
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TABLE 3 | In vitro inhibitory activity of FF and TAP alone and in combination against P. multocida by checkerboard assay.

Isolates (serovars) MIC of each drug (µg/mL)
when used alone

MIC of each drug (µg/mL)
when used in combination

Fold MIC reduction FICI

FF TAP FF TAP FF TAP

Sensitive Strains (MIC of FF ≤ 2 µg/mL)

1 (A) 0.5 1 0.0625 0.25 1/8 1/4 0.38

2 (D) 1 2 0.125 0.5 1/8 1/4 0.38

3 (A) 2 2 0.25 0.5 1/8 1/4 0.38

4 (A) 0.5 1 0.125 0.25 1/4 1/4 0.5

5 (A) 0.5 1 0.125 0.25 1/4 1/4 0.5

6 (A) 0.5 1 0.125 0.25 1/4 1/4 0.5

7 (D) 0.5 1 0.125 0.25 1/4 1/4 0.5

8 (D) 0.5 1 0.125 0.25 1/4 1/4 0.5

9 (D) 0.5 1 0.125 0.5 1/4 1/4 0.5

10 (A) 0.25 1 0.0625 0.5 1/4 1/4 0.5

11 (D) 0.5 2 0.125 0.5 1/4 1/4 0.5

12 (A) 0.5 2 0.125 0.5 1/4 1/4 0.5

13 (A) 1 2 0.25 0.5 1/4 1/4 0.5

14 (A) 1 2 0.25 0.5 1/4 1/4 0.5

15 (D) 1 2 0.25 0.5 1/4 1/4 0.5

16 (A) 2 4 0.5 1 1/4 1/4 0.5

17 (A) 0.5 2 0.125 0.5 1/4 1/4 0.5

18 (D) 2 2 0.5 0.5 1/4 1/4 0.5

19 (D) 1 2 0.0313 1 1/32 1/2 0.53

20 (A) 1 0.5 0.0313 1 1/32 1/2 0.53

21 (A) 0.5 1 0.0313 0.5 1/32 1/2 0.53

22 (A) 0.5 2 0.0313 1 1/16 1/2 0.56

23 (A) 2 2 0.125 1 1/16 1/2 0.56

24 (A) 2 2 0.25 1 1/8 1/2 0.63

25 (A) 0.5 1 0.125 0.5 1/4 1/2 0.75

26 (A) 0.5 1 0.125 0.5 1/4 1/2 0.75

27 (A) 0.5 0.5 0.125 0.25 1/4 1/2 0.75

28 (D) 0.5 1 0.125 0.5 1/4 1/2 0.75

29 (D) 0.5 1 0.125 0.5 1/4 1/2 0.75

30 (D) 0.5 1 0.125 0.5 1/4 1/2 0.75

31 (A) 0.5 1 0.125 0.5 1/4 1/2 0.75

32 (A) 2 2 1 0.5 1/2 1/4 0.75

33 (A) 0.25 2 0.0625 1 1/4 1/2 0.75

34 (A) 1 2 0.25 1 1/4 1/2 0.75

35 (D) 1 2 0.5 1 1/2 1/2 1

36 (A) 1 2 0.5 1 1/2 1/2 1

37 (A) 0.5 1 0.25 0.5 1/2 1/2 1

Resistant Strains (MIC of FF ≥ 8 µg/mL)

38 (A) 128 2048 32 512 1/4 1/4 0.5

39 (D) 64 2048 32 512 1/2 1/4 0.75

40 (A) 64 1024 16 512 1/4 1/2 0.75

41 (D) 64 2048 16 1024 1/4 1/2 0.75

42 (D) 128 1024 32 512 1/4 1/2 0.75

43 (D) 128 1024 64 256 1/2 1/4 0.75

44 (A) 64 2048 16 1024 1/4 1/2 0.75

45 (A) 64 512 32 256 1/2 1/2 1

46 (D) 64 1024 32 512 1/2 1/2 1

47 (D) 64 1024 32 512 1/2 1/2 1

(Continued)
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TABLE 3 | Continued

Isolates (serovars) MIC of each drug (µg/mL)
when used alone

MIC of each drug (µg/mL)
when used in combination

Fold MIC reduction FICI

FF TAP FF TAP FF TAP

Resistant Strains (MIC of FF ≥ 8 µg/mL)

48 (D) 64 1024 32 512 1/2 1/2 1

49 (D) 64 1024 32 512 1/2 1/2 1

50 (D) 64 1024 32 512 1/2 1/2 1

51 (D) 64 1024 32 512 1/2 1/2 1

52 (D) 64 1024 32 512 1/2 1/2 1

53 (D) 64 1024 32 512 1/2 1/2 1

54 (A) 64 1024 32 512 1/2 1/2 1

55 (A) 64 1024 32 512 1/2 1/2 1

56 (D) 32 1024 16 512 1/2 1/2 1

57 (D) 64 1024 32 512 1/2 1/2 1

58 (D) 64 1024 32 512 1/2 1/2 1

59 (D) 64 1024 32 512 1/2 1/2 1

60 (A) 64 512 32 256 1/2 1/2 1

61 (A) 64 1024 32 512 1/2 1/2 1

62 (D) 64 512 32 256 1/2 1/2 1

63 (D) 64 512 32 256 1/2 1/2 1

64 (D) 64 512 32 256 1/2 1/2 1

65 (A) 64 64 32 32 1/2 1/2 1

66 (D) 64 1024 32 512 1/2 1/2 1

67 (D) 64 512 32 512 1/2 1/2 1

68 (A) 64 256 32 256 1/2 1/2 1

69 (A) 64 512 32 512 1/2 1/2 1

70 (D) 64 512 32 256 1/2 1/2 1

71 (A) 64 1024 32 512 1/2 1/2 1

72 (D) 64 1024 32 512 1/2 1/2 1

73 (A) 64 128 32 64 1/2 1/2 1

74 (D) 64 1024 32 512 1/2 1/2 1

75 (D) 64 1024 32 512 1/2 1/2 1

76 (D) 64 1024 32 512 1/2 1/2 1

77 (D) 64 1024 32 512 1/2 1/2 1

78 (D) 32 2048 8 1024 1/2 1/2 1

79 (D) 64 2048 32 1024 1/2 1/2 1

and the right cranial lobes were firm and dark red suggesting
the pneumonia progressed from congestion phase to red
hepatization phase. Under higher powered magnification
(Supplementary Figure S2), inflammation was observed in
the bronchial submucosa of negative controls, including
the presence of lymphocytes and plasma cells. Alveoli were
infiltrated by neutrophils, lymphocytes, macrophages and
cellular debris. Besides, the alveoli of cardiac parts of the
left and right cranial lobes lost their normal structures. The
tonsils showed mild erosion and lymphoid depletion. Lung
tissues from pigs in the Groups 2–5 showed only minor
histopathological changes including multi-focal moderate
interstitial pneumonia in each lobe of the lung and mild
erosion of the tonsils.

Bacterial Re-isolation and Identification
P. multocida and S. suis were isolated from both sides of the
cranial lobes of the lung from one pig in the negative control

group. In contrast, no pathogenic bacteria were detected from
pigs in all other treatment groups.

Hematology and Plasma Biochemistry Analyses
Comparisons of hematological profiles (Supplementary
Table S2) and protein profiles (Supplementary Table S3)
revealed no statistical differences (P > 0.5) among the five
treatment groups with all values falling within or slightly above
the normal range. Five days after bacterial challenge, the total
white blood cell and neutrophil counts were mostly lower
compared to the negative control group, while the lymphocyte,
monocyte, eosinophil, and basophil counts were increased.

DISCUSSION

Porcine respiratory disease associated with A. pleuropneumoniae
or P. multocida infection has increasingly impacted the health
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FIGURE 1 | Heat plot showing synergy of FF and TAP. Checkerboard analyses showing the percentage inhibition on the combined effect of FF and TAP against
(A) A. pleuropneumoniae (B) P. multocida (C) A. pleuropneumoniae resistant to FF and (D) P. multocida susceptible to FF.

and industrial production of pigs (VanderWaal and Deen, 2018).
As an alternative effort that focus on the identification of new
antimicrobial agents for treating these disorders, the current
study was undertaken to investigate the efficacy of combination
treatment with existing antimicrobial agents FF+ TAP that have
previously shown evidence of efficacy against various pathogenic
bacteria, including P. multocida in pigs (Wei et al., 2016b).

In the present study, results from in vitro antimicrobial
susceptibility testing serve to expand and provide greater
evidence for the efficacy of FF and TAP against porcine
A. pleuropneumoniae and P. multocida in Taiwan. The resistant
breakpoint of FF MIC against A. pleuropneumoniae and
P. multocida were both at 8 µg/mL (Clinical and Laboratory
Standards Institute [CLSI], 2018). Although the MIC breakpoint
for TAP against these two pathogens in swine has not
been established by the CLSI, it is defined as 8 µg/mL
on the basis of bimodal distribution data in our study
(Supplementary Figure S1) and previous publications (Inamoto
et al., 1994; Yoshimura et al., 2002; Morioka et al., 2008).
Consequently, 52% of the A. pleuropneumoniae isolates and
53% of the P. multocida isolates tested demonstrated FF

resistance while 57 and 53% of respective bacteria were
resistant to TAP. In comparison, studies from the United States
and 11 European countries during year 2000–2006 showed
almost 100% susceptibility to FF for both A. pleuropneumoniae
and P. multocida (Priebe and Schwarz, 2003; Dayao et al.,
2014; Jong et al., 2014; Sweeney et al., 2017), while 34% of
A. pleuropneumoniae isolates were resistant to FF in Korea
(Yoo et al., 2014). These data indicate that both respiratory
pathogens in swine have developed stronger resistance to
amphenicols in Taiwan, which highlights the need for more
effective therapeutic alternatives or alternative strategies such as
improved precision diagnosis, better and wider use of vaccines,
probiotics and improved biosecurity (McEwen and Fedorka-
Cray, 2002; Boehme et al., 2015).

Combination of antimicrobial agents is often presented
as one of the few remaining effective strategies for the
treatment of clinical diseases for which standard treatments have
become ineffective. When 2 or more drugs are combined, the
combinational effect can be defined as synergism (FICI ≤ 0.5),
no interaction (0.5 < FICI < 4), or antagonism (FICI > 4)
(Odds, 2003) based on microdilution checkerboard assay. Some
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TABLE 4 | In vitro inhibitory activity of FF with other antibiotic combinations against P. multocida by checkerboard assay.

Bacterial isolates FF + TAP FF + OTC FF + DOX FF + ERY FF + TYL

FICI Activity FICI Activity FICI Activity FICI Activity FICI Activity

2 0.38 S 0.75 N 0.63 N 0.50 S 1 N

3 0.38 S 0.75 N 0.63 N 0.50 S - -

4 0.50 S 0.50 S 0.63 N 0.63 N 0.75 N

5 0.50 S 0.50 S 0.75 N 0.75 N 0.50 S

6 0.50 S 0.75 N – – 1.50 N 1 N

7 0.50 S 0.75 N 0.75 N 1 N 1 N

8 0.50 S 0.75 N 0.63 N 0.75 N – –

9 0.50 S – – 0.75 N 0.75 N – –

10 0.50 S 0.56 N 0.38 S 0.50 S – –

11 0.50 S 0.38 S 0.75 N 0.75 N – –

12 0.50 S 0.50 S 0.50 S 0.50 S – –

13 0.50 S 0.75 N 0.56 N 0.63 N – –

15 0.50 S 0.50 S – – 0.63 N – –

16 0.50 S 1 N 0.63 N 0.50 S 1 N

17 0.50 S 1 N – – 0.75 N 1 N

18 0.50 S 0.50 S 0.63 N 0.63 N 0.75 N

FICI, fractional inhibitory concentration index; S, synergism; N, no interaction; A, antagonism; FF, florfenicol; TAP, thiamphenicol; OTC, oxytetracycline; DOX, doxycycline;
ERY, erythromycin; TYL, tylosin.

researchers have further defined various levels of no interaction
to be partial synergism (0.5 < FICI < 1), additivity (FICI = 1)
and indifference (1 < FICI < 4) (Moody, 2004; Leu et al., 2014;
Lee et al., 2017). While the reproducibility of checkerboard assay
remains a concern for having distinct multiple fine levels of
classification between synergism and antagonism, we chose to
use the 3 levels as defined by Odds (2003). Nevertheless, due to
the same reproducibility concern, it is also well practiced that
for strains with FICI values slightly above 0.5, their synergism
are further confirmed with more reliable methods such as time-
kill assay (Bayer and Morrison, 1984; White et al., 1996). The
combination of FF + TAP has been proven effective against
A. hydrophila, P. multocida, S. aureus, S. hyicus, and S. suis
in vitro, as well as in animal models against A. hydrophila,
S. aureus, and P. multocida in fish, mouse and chicken,
respectively (Wei et al., 2016a,b; Assane et al., 2019). The
FF + TAP combination was also demonstrated effective against
strains that were originally resistant (Wei et al., 2016a,b). In
the current research, the study was extended to the synergistic
combination against A. pleuropneumoniae and P. multocida in
swine. The checkerboard assay initially showed synergism of
the antibiotic combination against less than 25% of bacterial
isolates; however, while this may seem low for a promising
combination, it is possible that the two-fold dilutions used in
the current design yielded a higher percentage of FICI index
of 0.625, as suggested previously (Wei et al., 2016a,b). The
isolates that were formerly designated as showing FICI ≤ 0.625
were later found to exhibit full synergism by time kill assay
(Supplementary Table S1). In fact, the inclusion of isolates
that met the criteria of ≤ 0.625 as cut-off value increased the
percentage of synergism to 32% for both A. pleuropneumoniae
and for P. multocida. Further analysis of susceptible and resistant
strains (categorized by FF MIC breakpoint) revealed that the

percentage of isolates displaying synergism or FICI ≤ 0.625
increased to 40% for resistant A. pleuropneumoniae isolates and
65% for susceptible P. multocida. It is interesting to note that
the synergy against A. pleuropneumoniae was only observed in
serovar 1, the predominant serovar of A. pleuropneumoniae in
Taiwan (Yang et al., 2011; Liao et al., 2019), and 80% of which
were FF-resistant strains (Table 2). However, the synergy against
P. multocida did not show differences between serovars. Based
on the above observations, it seems the presence of synergistic
effects were strain-specific, as synergy was linked to species and
resistance traits. Variability during synergy evaluation has already
been reported by various authors (Tascini et al., 2013; Soren et al.,
2015; Pollini et al., 2017), suggesting that the testing of individual
different strains is required.

In order to ascertain whether isolates showing FICI ≤ 0.625
by the checkerboard assay could actually be synergistic by
other common measures, the time-kill assay was performed
as it has been demonstrated to reveal synergy more often
than the checkerboard assay and it is reported to be more
reliable in the prediction of in vivo synergism (Bayer and
Morrison, 1984; Chadwick et al., 1986; White et al., 1996;
Dong et al., 2017). Of all 9 A. pleuropneumoniae strains
that show FICI ≤ 0.625, more than 78% (7/9) exhibits more
than two log10 reduction in bacterial growth. For the 6
P. multocida isolates in which FICI ≤ 0.625, more than 83%
(5/6) showed synergism (>2 log10 reduction) (Supplementary
Table S1). These results clearly showed the importance of
utilizing both methods in the evaluation of antimicrobial
synergism. Accordingly, it is evidenced that isolates classified as
FICI≤ 0.625 in this study may actually be synergistic (FICI≤ 0.5)
such that the percentage synergism of A. pleropneumoniae and
P. multocida isolates were actually higher than the current
data indicates.
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FIGURE 2 | Time-kill assay showing the killing kinetic of FF, TAP alone and in combination against 4 isolates of intermediate (B) or resistant (A,C,D)
A. pleuropneumoniae to FF (A) No.30 (FICI = 0.1875), (B) No. 25 (FICI = 0.625), (C) No. 42 (FICI = 0.75), and (D) No. 50 (FICI = 1) which served as the negative
control. Refer to Table 2 for strain details. Results show the mean ± the standard error of the mean (SEM) from three independent experiments.

The mechanism by which the FF + TAP combination
produces synergism, in particular the preferable activity against
resistant A. pleropneumoniae, is not fully understood but may
be related in part to the FF efflux pumps encoded by the floR
gene detected in the FF resistant A. pleropneumoniae isolates
(Kucerova et al., 2011; Yoo et al., 2014). Further investigations
are required to address this possible relationship. Alteration
of bacterial cell membrane permeability by FF to facilitate the
bacterial uptake of TAP (or other antimicrobial agents) has
been demonstrated as another possible mechanism (Wei et al.,
2016b). Based on this theory, synergism between FF and other
antibiotics (in addition to TAP) is also likely. In fact, the in vitro
synergism between FF and other classes of antimicrobial agents
against various bacteria including FF + amoxicillin against
Staphylococcus aureus, Escherichia coli, Proteus mirabilis (Choi
et al., 2011) and pathogenic bacteria of fish (Lee et al., 2010)
and FF + OTC against P. aeruginosa (Wei et al., 2016b)
have been reported. With respect to the same three antibiotic
combinations evaluated in this study, Abu-Basha et al. (2012)

demonstrated that 90.4% of the FF + OTC, 81% of the
FF + ERY and 47.7% of the FF + DOX were synergistic or
showing FICI ≤ 0.75 against 18 resistant E. coli isolates. In
contrast, the combinations of FF with tulathromycin, ceftiofur,
tilmicosin and enrofloxacin showed no evidence of synergism
in all susceptible and intermediate strains (10 isolates) of
bovine P. multocida (Sweeney et al., 2008). In the current
study, more than 50% synergistic activity or FICI ≤ 0.75 of
FF with OTC, DOX, and ERY (but not FF + TYL) were
evident against P. multocida isolates that showed synergy to
FF + TAP. The reasons why FF was synergistic with OTC,
DOX, and ERY remain to be elucidated but it seems to be
related to not only drug classes but also specific drugs, as FF
is synergistic to ERY but not TYL. It is also apparent that the
combination works better at specific combination ratios (see
more discussion below on working ratio of TYL). Further study
is warranted to investigate whether FF has the ability to act as
a central modulator that facilitates synergistic effects with other
antimicrobials (Wei et al., 2016b).
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FIGURE 3 | Time-kill assay showing the killing kinetics of FF, TAP alone and in combination against 4 isolates of susceptible P. multocida (A) No. 1 (FICI = 0.38),
(B) No. 21 (FICI = 0.53), (C) No. 25 (FICI = 0.75), and (D) No.36 (FICI = 1) which serves as the negative control. Refer to Table 3 for strain details. Results show the
mean ± the standard error of the mean (SEM) from three independent experiments.

Exposure to antimicrobial concentrations that are sub-
MIC play a vital role in the development of antimicrobial
resistance (Andersson and Hughes, 2014; Ge et al., 2017). At
reduced concentrations, any synergistic combination should
be evaluated and shown to not increase the possibility of
resistance development. Previous studies have indicated that
increases in MIC ≥ 4 fold compared to the starting MIC value
after five serial passages (Drago et al., 2005a,b) is evidence
of resistance acquisition. In the current study, the MIC of
FF + TAP increased by only one-fold in one susceptible and
one resistant A. pleuropneumoniea strain over 12 passages,
indicating it did not induce bacterial resistance after 12 passages.
This is consistent with previously published data that the
resistant mutation frequency is very low when P. multocida
is grown with FF + TAP combinations (Wei et al., 2016b).
Despite that phenotypic adaptation may be the probable cause
of some of the observed MIC changes, as opposed to the
development of true resistance (Hammer et al., 2012), these
results provided evidence for the effectiveness and safety of the

combinational therapy of FF+ TAP compared to the use of FF or
TAP in isolation.

The in vivo efficacy of FF + TAP was also tested in
this study. Since A. pleuropneumoniea infections normally
produce a clinical manifestation with high mortality rate, intra-
tracheal inoculation of P. multocida was used as a clinical
pneumonia model (Dowling et al., 2002; Oliveira Filho et al.,
2018). While all parameters in the two treatment groups and
the two positive control groups showed little or no clinical,
histological or biochemical abnormalities after the bacterial
challenge, the negative control group showed evidence of severe
inflammation/infection. Bacterial re-isolation did not find any
P. multodica in the treatment and positive control groups.
Therefore, based on the overall assessment, it was concluded
that FF + TAP combinations, whether in a single-dose daily
or every other day regimen, were equally effective as the
recommended doses of FF in eliminating the pathogens and
preventing infection, which correlated well with the in vitro
results. A larger scale field study is warranted in the future.
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FIGURE 4 | MIC change after serial exposure of A. pleuropneumoniae (A) strain No. 4, (B) strain No. 30, to sub-MIC level of FF, TAP, and FF + TAP in combination.
Refer to Table 2 for strain information

FIGURE 5 | Gross lesions and histopathology of the pig lungs (A) Gross lesions of the pig lungs (dorsal and ventral side) in groups 1–5: Group 1 showed firm and
dark red of the apical, cardiac parts of left cranial lobe and right cranial lobes (arrows) and 4 × 4 cm hematoma on dorsal surface of left diaphragmatic lobe
(asterisks); Groups 2–5 showed few gross pathological signs. (B) Histopathology of the lung tissues (the right cranial lobe): Group 1 showed signs of interstitial
pneumonia; The lung tissues from pigs in groups 2–5 showed only minor pathological changes (HE stain, 40×).

It is worth noting that the optimal ratios for drug combination
dosages in vivo exhibited good proportionality to the optimal
ratios with respect to in vitro MIC results. The MIC of FF could
be reduced by up to 87.5% (1/8 MIC) for P. multocida when

combined with 1/4 MIC of TAP, a 1:2 ratio. This ratio has been
reported previously to be effective in both mice and chickens
(Wei et al., 2016a,b). In contrast, FF+TYL combination at a ratio
of 2:1 (FF 50 mg + tylosin tartrate 25 mg per mL; intramuscular
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administration) is available as a commercial product in Korea
for pigs and dogs (Kim et al., 2008, 2011) based on broader
antimicrobial spectrum. While the underlying rationale for each
combination may differ, it seems plausible that an optimal
ratio may exist for maximizing the synergistic efficacy of
different drug combinations. The potential benefits of significant
reductions in individual dosage of FF and TAP is evident
in that synergistic FF + TAP could feasibly reduce the drug
residues and thereby the withdrawal time. In particular, because
FF at therapeutic doses is eliminated from the pig’s body by
first-order kinetics with a terminal half-life of 11–17 h (Liu
et al., 2002, 2003; Jiang et al., 2006; Dorey et al., 2017a), a
dosage reduction would reduce both residue levels and the
residual time. For instance, due to the greater reduction of
FF in the combination treatment, a shorter withdrawal time
is possible (18 days for FF in swine according to Veterinary
Medicines Directorate [VMD], 2013). This is also supported by
a previous investigation that reveals significantly lower tissue
drug residues within periods as short as 1 day in most tissues
of broiler chicken following FF + TAP administration (Rairat
et al., 2019). It is further supported by Assane et al. (2019)
recently who found that an FF + TAP combination with
FICI ≤ 0.75 in vitro is also effective in vivo against A. hydrophila
in Nile tilapia when 63% less antibiotic was used, resulting
in a survival rate of 86%. If these results can be extended to
pigs, there would be reduced risk of toxicity and an increase in
human food safety.

CONCLUSION

The present study demonstrated the potential benefits
of using synergistic FF + TAP combination to combat
A. pleuropneuminiae and P. multocida associated respiratory
infections in pigs both in vitro and in vivo. These results were
generally in agreement with two previous studies that were
conducted against different bacterial species/isolates in vitro and
in different animal species (Wei et al., 2016a,b; Assane et al.,
2019). Different degrees of in vitro synergism between FF plus
OTC or ERY against P. multocida were also evident. Finally,
the potential of FF + TAP or FF in combination with other
antibiotics as new drugs for the treatment of swine diseases
warrant further investigation.
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