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Abstract: Action recognition plays an important role in various applications such as video monitoring,
automatic video indexing, crowd analysis, human-machine interaction, smart homes and personal
assistive robotics. In this paper, we propose improvements to some methods for human action
recognition from videos that work with data represented in the form of skeleton poses. These
methods are based on the most widely used techniques for this problem—Graph Convolutional
Networks (GCNs), Temporal Convolutional Networks (TCNs) and Recurrent Neural Networks
(RNNs). Initially, the paper explores and compares different ways to extract the most relevant spatial
and temporal characteristics for a sequence of frames describing an action. Based on this comparative
analysis, we show how a TCN type unit can be extended to work even on the characteristics extracted
from the spatial domain. To validate our approach, we test it against a benchmark often used for
human action recognition problems and we show that our solution obtains comparable results to the
state-of-the-art, but with a significant increase in the inference speed.

Keywords: action recognition; sequence-to-sequence; temporal convolutional networks;
recurrent networks

1. Introduction

The problem of recognizing people’s actions is very complex because it depends on
many factors. This subject became one of the most important research topics in the field of
computer vision due its wide applicability in practical applications. Recently, more and
increasingly larger datasets appeared in the field of human action recognition, which were
able to facilitate the construction of better solutions for this problem. An action can be
seen as a series of human body movements. Thus, there are several ways in which these
movements, that define a human action, can be recorded—as a video clip (a set of RGB
images), by recording a series of depth maps, or in the form of a data structure storing
the positions of many joints for each time frame, either representing a time-dependant 3D
mesh of the visible human body surface or even just a time-dependent graph of articulation
points that describes a simplified model of a human skeleton or other combinations.

An important observation that needs to be clarified, before presenting the difficulties
and challenges of the problem, is related to the difference between the different types
of human movements. There are no unanimously accepted definitions, but we consider
that the differences between these two concepts are those presented in Figure 1, extracted
from the definitions provided by Aggarwal et al. [1]. It is relevant to make this distinction
because this paper addresses the problem from the perspective of classifying human actions
using skeletal data. The NTU RGB+D dataset [2], containing samples describing actions and
interactions, was used to train the models presented in this paper. The samples that describe
interactions are viewed only from the perspective of interacting with another person
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because the Kinect sensor does not capture information that illustrates the interaction with
other objects.

Types of
human
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Only one person
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Mixture of interac-
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At least two actors

Figure 1. Characteristics of the main types of human movements.

1. Gesture—this category is based on face, hand or other parts movements, representing
elementary movements of a person’s body part. This category presents the smallest
challenge, being about a single part of the body. Thus, there are not many types of
gesture categories. Each type can be differentiated from each other depending on the
part of the body that is involved.

2. Action—actions are single-person activities that may be composed of multiple ges-
tures organized temporally. Most datasets [2–6] and most proposed solutions [7–11]
are focused on this category.

3. Interaction—interactions are human activities that involve two or more persons
and/or objects. For some ways of encoding data , it is difficult to represent the entire
information necessary to describe this category. For example, it can be difficult to
recognize interactions involving objects using skeletal data.

4. Activity—this is a complex category. An activity can be perceived as a series of several
actions. Unfortunately, there are not many datasets that provide information for this
category. Depending on the order of the actions in the sequence, we can have one
activity or another, so the temporal component has an important role.

5. Group activity—it can be a mixture of gestures, actions, or interactions. The number
of performers can be at least two or more, and they can interact with objects.

The main challenge that arises for the problem of recognising human actions is related
to the development of a module capable of running in real time. Many approaches have
been proposed to this problem, but most of the time, they have only been tested on certain
benchmarks as it is very difficult to implement a model that can generalize and function
in any conditions. For example, methods based on RGB images may become dependent
on the environment in which the training set samples were collected. Skeleton-based
approaches depend very much on the correctness of the skeletons.

The problem of recognising human actions depends on many factors, and each of
them can be decisive in determining the result. Some of these factors are actually related
to the action to be classified (e.g., duration of the action, speed with which the action is
performed, height of the person performing the action, brightness, the quality of the data
collected) and others occur when we want to integrate such a module in a system that
runs in real time (e.g., detecting the moment when the action starts, detecting the moment
when the action ends, checking whether or not an action of interest has happened, the time
required to predict the action).

From the perspective of machine learning, the problem of recognizing human actions
can be reduced to a sequence classification problem through which a model capable of
assigning a label (an action) is developed for a sequence received as input. In other words,
this problem is a many-to-one sequence modelling problem.
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Our ultimate goal is to create a proactive social robot. One of the important aspects that
should be achieved for this final purpose is the development of a high-performance human
action’s recognition module. This module must be robust and with a short inference
time. In this paper, we present an approach for such a module that deals with both
spatial and temporal dependencies. We focus on recognizing human actions based on
data extracted using the Kinect sensor because the processing operation for such data is
computationally efficient. Also, it is relevant to notice that this representation can compress
a large amount of information. In [12] , we showed that such a module can be integrated
into a robotic framework.

In our endeavour, we considered two types of architectures: Recurrent Neural Net-
works (RNNs) and Temporal Convolutional Networks (TCNs), as the most used architec-
tures for human action recognition from skeletal data.

The approach for which we obtained the best results is the one based on TCNs. Re-
garding computational capabilities, TCNs, much like other convolutive networks, can
take advantage of asynchronous and/or parallel computational architectures, most no-
tably Single Instruction Multiple Data (SIMD) vectorial computing units and FPGAs.
Carreras et al. [13] proposed an implementation variant optimized for Field Programmable
Gate Arrays (FPGAs). This could indicate that the proposed approach could be extended
to be usable on Internet of Things (IoT) devices that have limited memory and lower
computing power.

The main contributions of our current work include the following:

• We propose two approaches that obtain results comparable to state of the art for the
human action recognition problem, but which have a shorter inference time. These
two approaches are based on a simplified machine learning architecture.

• We extend the classical version for the TCN unit by replacing 1D convolutions with
2D convolutions that use dilated factor for both temporal and spatial domains. This
aspect helped us to obtain a better performance for human action recognition because
the spatial dimension is important.

• We present two ways of rearranging the skeleton joints that help the model to extract
more relevant spatial features.

2. Related Work
2.1. Skeleton-Based Human Action Recognition

Certain patterns that are present in the moves of a skeleton model that roughly maps
the structure and motor behaviour of a real person might contain sufficient data for human
action classification. This skeleton can be represented as a graph with its nodes in the
shape of a human that change their spatial coordinates through time. Because of their
apparent simplicity and because those structures densely pack information, unlike images,
for example, many researchers tried using such graphs to solve the tricky problem of
human actions recognition.

2.1.1. TCNs-Based Approaches

Recently, researchers proposed approaches that replace the layers based on RNNs with
layers based on Temporal Convolutional Networks (TCNs) for several types of sequence
modelling problems [14–17]. The concept of TCN was first introduced by Lea et al. [10].
They developed it to analyse long-range patterns. The main properties of this type of
neural network are the following:

• the output size is equal to the input size (we can keep the length of the sequence as in
the case of a recurrent neural network);

• for the characteristics from step t, no future information is taken into account, which
can be ensured by using a causal convolution;

• in order to ensure a large receptive field, dilation factor is used for causal convolutions.
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Yan et al. [8] attempted a new method of extracting useful information from dynamic
skeletons in the search for a better predictor regarding human actions. They used a Spatial-
Temporal Graph Convolutional Networks (ST-GCN) to combine both spatial data and
temporal data into one big predictive system. Firstly, they started with a spatial graph
neural network that can look at the skeleton model in one single frame and then they
added the temporal architecture of TCNs over this structure, to let the model deal with
the full 3D+Time dimensionality of the problem. A Graph Convolutional Network (GCN)
is a multi-layered convolution that acts upon key nodes in a graph and their neighbours,
similarly to how a classic CNN acts. Problems and their corresponding solutions presented
in this article are choosing partition strategies, using learnable edge importance weighting,
choosing a dataset with good evaluation metrics and designing a trainable architecture.
Starting from this type of architecture, multiple variants have been proposed [18–21]. These
approaches have shown that much better results can be obtained using GCNs instead of
classic CNNs when working with time sequences containing skeletal data.

Jia et al. [9] introduced a new variant of feature representation for the skeleton-based
human action recognition problem. They divided the usual vector representation for a
human skeleton into five relevant joint subgroups, namely the left arm, right arm, left leg,
right leg and trunk and then those parts were linked together into a whole body with the
head. For each group or subgroup of joints, they chose a parent joint and they described
each of the other joints in relation to their parent joint, and then they took the parent joints
for each subgroup and represented them in relation to a root node, which they chose as
the head node in their implementation. Using both the classic representation and this
novel representation, they created a two-stream TCN architecture with an intra-frame
stream and an inter-frame stream. For each stream, they used 12 residual blocks containing
a batch normalisation layer followed by a parametrised leaky ReLU function followed
by a convolutional layer, followed by another four layers of the same type and in the
same order as those first four. Regarding the full architecture, before those 12 residual
blocks, they placed a convolutional layer for size conversion. After the residual blocks,
they placed a global average pooling layer, followed by a fully connected softmax layer
using cross-entropy and then the results are averaged.

Lea et al. [10] used an Encoder-Decoder TCN approach for human action segmenta-
tion throughout a video. They showed that TCN architectures can accomplish the same
functions as Long Short-Term Memory (LSTM) and can be over an order of magnitude
faster to train than LSTM. Firstly, the proposed architecture has an Encoder-Decoder TCN
which is the centrepiece of this approach and uses only convolutions, pooling and upsam-
pling to capture the long-range temporal patterns. Secondly, they used a dilated TCN with
filters inspired by WaveNet [22] to further combine activations from different layers using
skip and residual connections.

Aksan and Hilliges [23] proposed a new variant of TCN that has stochastic layers.
This type of TCN was inspired by Stochastic RNN architectures where the hidden state
updates are in accordance to a hidden Markov model. In TCNs, the hidden state is replaced
by causally independent TCN layers, thus the sense of directional order has to be given
by the way layers are linked into the convolution. To solve this impediment and allow
for TCN to have the same modelling capabilities as Stochastic RNNs while preserving
the parallelism of TCNs without needing dynamic links within the convolutive operation,
the authors proposed a Stochastic TCN architecture that uses special stochastic layers
with latent variables. The stochastic latent variables sit in a multi-layer hierarchy. These
variables are independent between time steps but are conditioned vertically, in the same
time step.

Plizzari et al. [24] proposed a novel Spatial-Temporal Transformer network (ST-TR)
which models dependencies between joints using the Transformer self-attention operator.
They use a two-stream architecture where a spatial self-attention module is used to model
intra-frame relations and a temporal self-attention module is used to model inter-frame
correlations. At the basis of this approach lays a graph convolutional network that can be
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applied over non-grid data structures. But GCNs cannot solve everything by themselves.
To deal with the ordering and causality problems, Plizzari et al. shaped the GCN structure
into a transformer topology which follows a general encoder-decoder pattern but relies
solely on multi-head self-attention and it is able to replicate the behaviour of classic RNNs.
This architecture topology is used by the two previously mentioned modules (the Spatial
Self-Attention and the Temporal Self-Attention).

Song et al. [7] presented an approach that uses “bottleneck” blocks to build a ResGCN/
PA-ResGCN architecture. They also use multiple-input branches and a newly proposed
Part-wise Attention block that they demonstrate to enhance the performance of the module
and its explainability as well. A bottleneck is a nifty block structure that has 1× 1 con-
volutional layers before and after the main convolutive layer, thus significantly reducing
the number of feature channels. The Part-wise Attention (PartAtt) block is inspired by
other part-based models like Split Attention (SplitAtt) used in the ResNeSt [25] model,
which usually aims towards extracting features from individual body parts. The main
differences between PartAtt and other similar part attention methods are that PartAtt is
based upon global contextual feature maps obtained through average pooling over the
entire temporal sequence , while other approaches work with each temporal frame inde-
pendently and PartAtt works on whole body parts, not just joints. SplitAtt, for example,
splits feature channels into cardinal groups but PartAtt associates instead the body parts
with cardinal groups.

2.1.2. RNNs-Based Approaches

The first approaches [26–31] based on deep learning consisted of a model composed of
a feature extraction module, which contained linear or convolutional layers, a component
that analysed sequential data using one or more recurrent neural networks and in the
end the data was passed through the classification module. These approaches obtained
satisfactory results, but in general they were architectures with a very large number of
parameters, being difficult to apply in real-time running scenarios.

Li et al. [32] proposed an approach for the recognition of human actions, starting from
skeletal data, which combined spatio-temporal graph convolution (ST-GCN) and graph-
temporal LSTM (GT-LSTM). The first component does not contain a large number of layers
to ensure a large receptive field because this component is not specialized in identifying
long-term dependencies. The second component consists of two modules—Graph-LSTM
and Temporal-LSTM. The first module performs a fusion between the features determined
by the first component of the pipeline, and the second module is the equivalent of the
classic LSTM applied on the merged data into temporal feature sequences. The proposed
approach was validated on the RGB+D NTU dataset (the first 60-class variant [6]), and the
best results were obtained for a temporal kernel size equal to 5.

Huang et al. [33] introduced a new recurrent network model—long-short graph
memory network (LSGM). This type of neural network tries to combine the properties
of GCN type layers with LSTM type layers. Thus, they obtained a neural model capable
of capturing even spatial information that can be used for sequential data that can be
represented as a graph. The method proposed by them also contained a module called
Graph Temporal-Spatial Calibration (GTSC) consisting of a component based on a temporal
attention mechanism and a spatial calibration component.

Introduction of attention mechanisms was an intuitive choice because there may be
joints that are relevant for specific actions or there may be actions for which a certain
sequence of frames is specific. Si et al. [34] proposed a hierarchical model based on a
specific attention mechanism: Attention Enhanced Graph Convolutional LSTM Network.
This mechanism is capable of capturing the relationships that exist between the spatial
and temporal domains. The proposed method uses a recurrent LSTM network to map the
features, determined by a linear layer for each joint, in a larger dimensional space.

The approaches proposed by us differ from the existing ones by using a simpler
architectural model that can obtain satisfactory performances and a high inference speed.
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Modules based on TCN have been previously proposed in the literature, which specialised
in the analysis of both spatial and temporal areas of interest. As previously presented, these
modules are obtained by combining TCNs with GCNs [35–37]. In contrast, we propose an
architectural model that is able to achieve similar results using only extended TCN units.

Bai et al. [38] made a comparison between the performance obtained for representing
sequences based on TCN-based models and on RNN-based models. This evaluation was
an empirical one and revealed that a simpler model (with a smaller number of parameters)
based on convolutional layers can exceed the performance of a more complex model based
on recurring networks. In this paper, we compare these two types of networks from the
perspective of the human action recognition, showing that in this case the problem is one
for which the spatial dimension is important.

3. Proposed Methods

We started from the performances obtained by the architectures we proposed in a
previous paper [11] verified on a more varied dataset, namely NTU RGB+D v2 [2]—which
contains 60 additional classes. Thus, we found that the features we had considered for
these models (the 3D coordinates of the joint or the coordinates together with the velocity
and acceleration) become insufficient when it comes to a dataset with such a wide variety.
In contrast, the methods presented in this paper use the features proposed by Song et al.
in [7]: joint positions (relative and absolute), bone features (lengths and angles) and motion
velocities (one or two temporal steps). Starting from these features, we will present in
what follows a series of architectural models capable of solving the problem of recognising
human action based on skeletal data.

An action is represented in the form of a sequence of frames. For each frame, the
skeletal data for one or two people are known (depending on the type of action). Each
skeleton is composed of 25 articulation points (referred to as joints). Figure 2 shows how
these joints make up the human body.
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Figure 2. The human skeleton in the format generated by the Kinect sensor.

3.1. Data Processing

Processing is a very important step because extracting relevant information can help
the network correctly differentiate actions. Starting from the coordinates that are pro-
vided in the dataset for each joint and applying the pre-processing methods proposed by
Song et al. [7], we were able to obtain information corresponding to the three important
channels: joint positions, velocities and bone features. The pre-processing step implies
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taking the raw skeleton data represented by all node coordinates and converting it into
smoothed and normalized coordinates, approximate inter-frame velocities and approxi-
mate angles between segments at each adjacent joint.

An X vector is read from the dataset for each sample, where X ∈ RC×T×V×M (C = 3
—number of coordinates, T—number of frames, V = 25—number of joints, M ∈ {1, 2}
—number of people). For the joint-branch, for each joint, 3 values are added, determined
based on the difference between the coordinates of the joint ji and those of the joint
considered center of gravity jc:

joint_ f eaturesji = (xji , yji , zji , xji − xjc , yji − yjc , zji − zjc)

(the center of gravity was considered the joint with the index 1 in Figure 2 – base of the spine).
For the velocity-branch, the differences between the coordinates of the joint at frame t + 2
and those at frame t were determined, as well as the differences between the coordinates of
the joint at frame t + 1 and those at frame t:

velocity_ f eaturest
ji = (xt+2

ji
− xt

ji , yt+2
ji
− yt

ji , zt+2
ji
− zt

ji , xt+1
ji
− xt

ji , yt+1
ji
− yt

ji , zt+1
ji
− zt

ji )

For the bone-branch, we also have 6 features that include the 3 lengths and the 3
values of the angles for the X, Y, Z axes:

bone_ f eatures(ju ,jv) = (xju − xjv , yju − yjv , zju − zjv , a(ju ,jv),x, a(ju ,jv),y, a(ju ,jv),z)

where joints ju and jv are adjacent, l(ju ,jv),x = xju − xjv , l(ju ,jv),y = yju − yjv , l(ju ,jv),z
= zju − zjv and

a(ju ,jv),x = arccos

 l(ju ,jv),x√
l2
(ju ,jv),x

+ l2
(ju ,jv),y

+ l2
(ju ,jv),z



a(ju ,jv),y = arccos

 l(ju ,jv),y√
l2
(ju ,jv),x

+ l2
(ju ,jv),y

+ l2
(ju ,jv),z



a(ju ,jv),z = arccos

 l(ju ,jv),z√
l2
(ju ,jv),x

+ l2
(ju ,jv),y

+ l2
(ju ,jv),z


3.1.1. Methods for Rearranging Joints

To extract spatial dependencies, we proposed two variants of reorganizing the joints:
one 2D (shown in Figure 3) and one 1D (shown in Figure 4).

The 2D variant was proposed earlier in our paper [11] and is based on a 5× 5 matrix.
The 2D variant presented in the Figure 3 allows the application of a TCN type layer based
on 3D convolutions. This variant of representation considers the 5 essential parts of the
body—left hand, torso, right hand, left foot and right foot.

The second proposed reorganization is a linear one and is inspired by Yang et al. [31]. We
chose as the root for the proposed tree the central joint (the one with index 1), considering
that it has a special importance, reason for which it was also used for the normalization
step. The proposed tree is shown in Figure 4 and contains all 25 joints. We also considered
the order in which the sub-trees for the root were added. Starting from this tree, we made
a linear rearrangement of the joints starting from the DFS (Depth-first search) traversal
of the tree. In this way, we made sure that any two nodes that appear side by side in the
arrangement are also adjacent in the skeleton graph.
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Figure 3. A proposal to rearrange the joints in a 2D format.
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Figure 4. Transformation of the skeleton into a tree having the root of joint 1 (considered the centre of gravity). This tree is
used for linearizing the skeleton (made based on a depth traversal applied to the tree).

In this paper, we use extensive variations of existing methods for rearranging joints.
The main purpose of using this spatial rearrangement technique is to help the classification
module work with relevant spatial features. In this proposed variant, the adjacent joints
in the graph describing the skeleton appear adjacent in the feature vector. The novelty
of our approach consists in the correlation of this method with TCN type layers. These
layers apply dilated convolutions to the space domain. Figure 5 shows the entire flow
that is applied to extract the features from the coordinates of the 25 joints. The features
calculated using the formulas presented in Section 3.1 were extended by using Residual
Graph Convolutional Network (ResGCN) layers. The described pipeline shows how the
application of linear rearrangement influences the spatial arrangement of features. The
features highlighted in red in the figure are those related to the joints, those presented in
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blue are those related to the bones, and those coloured in green are those related to the
velocity. This feature extraction pipeline is inspired by the one proposed by Song et al. [7].
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Figure 5. The pipeline that describes how to extract the features in the approach proposed by us.

Our contribution consists in integrating the joint rearrangement module in this
pipeline. This module will allow the first TCN type layers to extract dependencies starting
from joints at distance 1, then the following ones analyse joints at distance 2 and so on,
depending on the dilated factor used.

3.2. TCN-Based Architectures

The general scheme of the proposed TCN-based architectures is presented in Figure 6. For
each branch, M layers of ResGCN type are applied to extract spatial features. This part of
extracting spatial features is inspired by the architectures proposed by Song et al. [7]. After
spatial features have been extracted for each branch, we concatenate all features. Because
we propose to use a module based on TCN type layers that will be able to extract both
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temporal and spatial features simultaneously, it is necessary to perform a rearrangement of
the joints/bones. The proposed rearrangements are detailed in Section 3.1.1.
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based
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Connected
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Figure 6. The proposed general architecture for Temporal Convolutional Network (TCN)-based approaches.

The TCN layers are modified so that they can be applied using 2D or 3D convolutions.
This change is made in order to ensure the capture of spatial dependencies, in addition
to temporal ones. Moreover, the dilated convolution is also applied to the axes related to
the spatial dimension. Therefore, the order in which the elements related to the spatial
dimension appear is important. After capturing these two types of dependencies that are
synthesized by reducing their dimensionality based on dilated convolution, a pooling layer
is used to achieve an average on the temporal axis and an average on the spatial axis.

As Figure 6 shows, there is a Mean block that signifies the reduction operation applied
to the extracted features for the 2 skeletons. All actions were treated as some containing
two skeletons, regardless of their type. It is important to note that we tried to consider the
type of action (single-person action or two-person action), but the results were significantly
weaker. This could be influenced by the errors that exist in the dataset, coming from the
predictions of the Kinect sensor. In some samples in the NTU RGB+D dataset, the skeletons
order changes from one frame to another. Another error of this type occurs when for
single-person actions there are frames in which two skeletons are predicted. For example,
the chair can be misinterpreted as a person and predicted as a skeleton. Thus, the operation
applied to the features from each skeleton must be a commutative one.

3.2.1. TCN-Based Modules

To analyse the sequence and extract features from a temporal perspective, we decided
to use TCN layers. Thus, we started by testing several types of blocks based on TCN
layers. Initially, we used a module based on TCN blocks inspired by the models previously
proposed in [11]. Their major disadvantage was that they did not preserve the spatial
size, because the TCN unit was based on 1D convolution. Therefore, we performed the
concatenation of the extracted features for each joint. Then, we used the resulting 2D tensor
as input for the TCN units. Figure 7 shows the architecture of such a TCN unit.

If the matrix representation method, previously presented in Section 3.1.1, is cho-
sen then the convolutional layers used in the TCN unit will be 3D. For the additional
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convolutional layer, highlighted in Figure 7 by a blue block, we used value 1 for the
kernel size.

The blocks named TCN-based modules are highlighted in grey in Figure 6 and were
made by composing several TCN unit layers. Figure 8 shows the structure of this module.
TCN units for which no stride was applied are coloured in blue, and those for which stride
was applied are coloured in green. For each block, the following information is specified:
the number of input channels, the number of output channels, the kernel dimensions
(temporal window and spatial window) and the probability with which the dropout was
applied. Each block in this architecture follows the structure shown in Figure 7. After
applying these TCN type units, a reduction operation will be applied to the temporal and
spatial dimensions.

X = (x1, x2, . . . , xn) ∈ Rin×n×m

BatchNorm(in channel)

ReLU

Conv(in channel,out channel)

Dropout(prob)

Conv(in channel,out channel,T,S, stride)

+

Y = (y1, y2, . . . , yn1) ∈ Rout×n1×m1

Figure 7. Architecture of a TCN type unit. The convolutional layer of the blue block is used only if
in_channel 6= out_channel. T represents the size of the temporal window, and S represents the size of
the spatial window. If stride 6= 1 then n1 < n and m1 < m, where n represents the number of frames
and m represents the number of joints.

X = (x1, x2, . . . , x300) ∈ R48×300×49

TCN Unit(48,48,T,S,dropout = 0.2) TCN Unit(96,128,T,S,dropout = 0.2)

TCN Unit(48,48,T,S,dropout = 0.2) TCN Unit(128,128,T,S,dropout = 0.2)

TCN Unit(48,96,T,S,dropout = 0.2) TCN Unit(128,128,T,S,dropout = 0.2)

TCN Unit(96,96,T,S,dropout = 0.2) TCN Unit(128,256,T,S,dropout = 0.2)

TCN Unit(96,96,T,S,dropout = 0.2) Y = (y1, y2, . . . , yt) ∈ R256×t×s

Figure 8. T represents the size of the temporal window, and S represents the size of the spatial
window. For the blue blocks, the stride has the value 1, and for the green ones, the stride has the
value 2. 300 represents the maximum number of frames, and 49 represents the number of analysed
joints (results after the linear rearrangement described in Section 3.1.1). For each TCN type unit, the
padding is determined based on the T and S values.
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3.3. RNN-Based Architectures

The architecture used for the RNN-based approach is shown in Figure 9. This ar-
chitecture is similar to the one previously presented in Section 3.2.1. To extract temporal
dependencies, in this approach we used a module based on a multi-layer long short-term
memory. Since we cannot keep the spatial dimension when working with an LSTM layer,
we needed to apply a reshape operation on the tensor with features. Thus, the features
used for each frame resulted from the concatenation of the features from each joint/bone.
Because training and testing were performed using batches in which there were sam-
ples with a different number of frames, we used the two optimization operations that
allow data rearrangement, considering the number of frames from each sample. These
two optimization operations are represented in the Figure 9 by blocks Pack Padded and
Unpack Padded.

j11 j12 j13 j14 . . . j125

j21 j22 j23 j24 . . . j225

. . . . . . . . . . . . . . . . . .

jN1 jN2 jN3 jN4 . . . jN25

Joint-Branch

b1
1 b1

2 b1
3 b1

4 . . . b1
25

b2
1 b2

2 b2
3 b2

4 . . . b2
25

. . . . . . . . . . . . . . . . . .

bN
1 bN

2 bN
3 bN

4 . . . bN
25

Bone-Branch

v1
1 v1

2 v1
3 v1

4 . . . v1
25

v2
1 v2

2 v2
3 v2

4 . . . v2
25

. . . . . . . . . . . . . . . . . .

vN
1 vN

2 vN
3 vN

4 . . . vN
25

Velocity-Branch

ResGCN × M

ResGCN × M

ResGCN × M

Concat Reshape Pack Padded

LSTM Unpack
Padded

Mean

Extract final

Fully
Connected

Prediction

Figure 9. The proposed architecture for RNN-based approach.

In this architecture, the initial layers were applied independently for each skeleton.
In the end, a mean of the extracted features was computed. Finally, only the features
corresponding to the final hidden state for each sample are kept, and they are passed
through a Fully Connected layer to achieve classification.

4. Experimental Results
4.1. NTU RGB+D Benchmark Dataset

NTU RGB+D [2,6] is a dataset that contains two versions—the first version contains
60 classes [6], and the second version added another 60 classes to those in the first ver-
sion [2]. The actions in this dataset are actions that are performed by one or two people.
All 120 types of actions are performed indoor, and 106 different subjects (aged between 10
and 57) contributed to the creation of this dataset. The actions included in this dataset can
be divided into 3 main categories: daily actions, mutual actions, and health-related actions.

This dataset was recorded using 3 cameras positioned at the same height but placed at
different horizontal angles: −45◦, 0◦, +45◦. Each subject who participated performed each
action twice: once towards the left camera, and once towards the right camera. Thus, a total
of 114,480 samples were collected. Using a Microsoft Kinect v2, RGB images, depth maps,
skeleton data (3D locations of 25 major body joints) and infrared images were collected for
each sample.

For the first version of the dataset [6], the one containing 60 classes, two test protocols
have been proposed—cross-subject and cross-view. The first protocol tests the ability of
the model to generalize from the perspective of the person acting. The second protocol
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tests the ability of the model to generalize from the perspective of the camera position.
For the second version of the dataset [2], the authors extended the cross-subject protocol
but replaced the cross-view protocol with the cross-setup protocol. For the cross-subject
protocol, some of the subjects were chosen for the training set, and the others for the test set.
The first part of the dataset was collected using cameras that recorded from 3 perspectives.
Two of them were used for training, and the third for testing. The entire dataset was
recorded in 36 setups. For the cross-setup protocol, half of them were used for training and
the rest for testing.

4.2. Implementation Details

A maximum of 50 epochs were used for each experiment. In our experiments, we tried
to use an Adam or SGD type optimizer. We got the best results for the SGD optimizer with
the Nesterov momentum and the following values for parameters: 0.1 for learning rate, 0.9
for momentum, 0.0002 for weight decay. For the learning rate, we tested several variants:
different values without a scheduler (0.1, 0.01, 0.001 and 0.0001), decreasing the learning
rate for each group of parameters based on a gamma value at each epoch or adapting the
learning rate based on a Cosine type scheduler. The best performance was obtained for a
Cosine scheduler for the learning rate with a warmup strategy [39]. For the Dropout type
layers, we tested several values (0.1, 0.2, 0.3 and 0.5) and the best performance was obtained
for a probability of 0.2. For the training, we used batches of 32 samples for all experiments.
For all proposed models, the weights of the convolutional layers and the weights of the
LSTM layers are initialized according to the Kaiming normal distribution [40], the batch
normalization weights are initialized with 1s and bias with 0s. We performed all the
experiments using two Tesla P100 PCIe GPUs.

4.3. Results

The results of the existing methods considered relevant together with the results
obtained by the methods proposed by us are presented in Table 1. In this section, we
explain the proposed and tested approaches using the NTU dataset, specifying for each
one what are the particularities.

The values in Table 1 for the speed and the number of parameters presented for the
models proposed by us are those determined for the Cross-Subject test protocol for the
extended version of the NTU RGB+D dataset.

ResGCN-TCN (v1)—For this model, we used the linear rearrangement for the joints,
the size of the temporal window was 9 and the size of the spatial window was 3 for all
TCN blocks.

ResGCN-TCN (v2)—The difference between this model and the one presented above
consists of the size of the spatial window. For this model, we used a spatial window of size
5 and this lead to a larger number of parameters. Due to the higher number of parameters,
the speed decreased for this variant. From the perspective of the performances obtained
for the test protocols, we did not discover notable differences.

ResGCN-TCN (v3)—This architectural model is similar to the previous one, the
difference being the size of the temporal window. For this variant, a temporal window of
size 3 was used for TCN units that do not use dilated convolution and a temporal window
of size 9 for those TCN units that use dilated convolution. Thus, we obtained a smaller
neural network, but with a performance comparable to the previous ones.

ResGCN-LSTM—As Table 1 shows, this model manages to get the best speed of all
the proposed ones. The applied optimization is the one that allowed to obtain such a
speed. From the perspective of the number of parameters, this is the model with the lowest
number. However, because the spatial context is not preserved, this model obtains weaker
results than the others for all analysed test protocols.
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Table 1. Table showing comparative results from the perspective of accuracy for the four test protocols, but also performance
related to computability (processing speed and number of parameters).

Method Name
Inference

Speed
( sequences

seconds·GPU )

Model
Size
(M)

Cross-Subject
(NTU v1)

Accuracy (%)

Cross-View
(NTU v1)

Accuracy (%)

Cross-Subject
(NTU v2)

Accuracy (%)

Cross-Setups
(NTU v2)

Accuracy (%)

HBRNN [41] – – 59.1 64.0 – –

ST-LSTM [42] – – 69.2 77.7 55.0 57.9

TSRJI [43] – – 73.3 80.3 67.9 62.8

TSA [44] – – 76.5 84.7 67.7 66.9

VA-fusion [45] – 24.6 89.4 95.0 – –

ST-GCN [8] 42.9 3.1 81.5 88.3 70.7 73.2

SR-TSL [46] 14.0 19.07 84.8 92.4 – –

PB-GCN [47] – – 87.5 93.2 – –

RA-GCN [48] 18.7 6.21 85.9 93.5 74.6 75.3

GR-GCN [49] – – 87.5 94.3 – –

AS-GCN [20] – 6.99 86.8 94.2 77.9 78.5

2s-AGCN [19] 22.3 6.94 88.5 95.1 82.5 84.2

AGC-LSTM [34] – 22.89 89.2 95.0 – –

DGNN [50] – 26.24 89.9 96.1 – –

AS-GCN+DH-
TCN [51] – – 85.3 92.8 78.3 79.8

SGN [52] 188.0 1.8 89.0 94.5 79.2 81.5

PL-GCN [53] – 20.7 89.2 95.0 – –

NAS-GCN [54] – 6.57 89.4 95.7 – –

ResGCN-N51
(Bottleneck) [7] 67.4 0.77 89.1 93.5 84.0 84.2

ResGCN-B19
(Basic) [7] 44.0 3.26 90.0 94.8 85.2 85.7

VPN [55] – – – – 86.3 87.8

DSTA-Net [56] – – 91.5 96.4 86.6 89

PA-ResGCN-
N51 [7] 54.8 1.14 90.3 95.6 86.6 87.1

MS-G3D Net [57] 35.46 3.2 91.5 96.2 86.9 88.4

PA-ResGCN-
B19 [7] 38.3 3.64 90.9 96.0 87.3 88.3

ResGCN-TCN
(v1)—ours 94.29 3.14 89.06 93.81 84.1 84.58

ResGCN-TCN
(v2)—ours 91.31 5.13 88.68 94.04 84.4 84.6

ResGCN-TCN
(v3)—ours 97.03 2.13 88.05 93.29 84.0 84.15

ResGCN-
LSTM—ours 121.85 2.15 85.01 92.3 79.93 81.28

The values for the speed and the number of parameters are taken from [7]; The inference speed is represented as the number of sequences
processed per (second · GPU).



Sensors 2021, 21, 2051 15 of 19

4.4. Ablation Study

Table 2 shows the impact that the joint rearrangement module has on the performance
of the TCN-based model. We obtained the best results for the variant that uses the linear
rearrangement of the joints. The model with the largest number of parameters is the one
that uses the 2D rearrangement of the joints because for that model we transformed the
2D convolutions into 3D convolutions. For the first two variants, the reported results are
obtained after a training process with 50 epochs, and for the last model, we increased the
number of epochs to 70 due to the higher number of parameters.

Table 2. Results that show how the rearrangement of the joints influences the performance of the
proposed architectural model.

Method Name Cross Subject (NTU v2) Accuracy (%)

ResGCN-TCN—without rearrangement 83.49%
ResGCN-TCN—with linear rearrangement 84.4%

ResGCN-TCN—with 2D rearrangement 83.14%

4.5. Discussion

Among the previously existing methods, there is only one for which the number of
parameters is lower and the inference speed is higher. This approach uses the Semantics-
Guided Neural Network (SGN). This architecture contains two modules—a module that
extracts features at the joint level and a module that extracts features at the frame level.
The time required to train this approach was longer than the one used in the approach
proposed by us—for the SGN-based version, 120 epochs were used, and for our proposed
method only 50 epochs were used. The advantage of our approach is that it generalizes
better. In other words, our method can discover features relevant to each action even when
the number of classes is higher. This aspect allows us to obtain a better performance in the
case of a dataset with a larger number of classes. Another advantage of our approach is
that it does not consider the order of the skeletons. The Kinect sensor cannot keep the order
of the predicted skeletons from one frame to another. In our architecture, the mean for the
features obtained for each skeleton is applied at the end. This operation is commutative
and allows the proposed approach to be invariant to the order of the skeletons. In the
approach proposed by Zhang et al. [52], frames containing two skeletons are divided into
two frames each containing a single skeleton. Because the Kinect sensor does not guarantee
that skeletal order is maintained from one frame to another, this option may confuse the
neural network.

The variants proposed by Song et al. [7] obtain better performances than our ap-
proaches for the NTU RGB+D dataset. An advantage that the solution proposed by
Song et al. [7] has and that we will have to explore for the proposed approaches in the
future is related to the explainability part. Even if the solution proposed by us achieves
performance with a few per cent lower than PA-ResGCN-B19 [7], it has a higher inference
speed which makes it suitable for use in a robotic framework that runs in a real-time scenario.

Another approach that achieves a better performance for the analysed dataset is the
one proposed by Liu et al. [57]. The number of parameters for the MS-G3D model is
comparable to those obtained in our approaches. It is relevant to notice that the inference
speed obtained for this model is much lower. Unlike our approach, in the model proposed
by Liu et al. [57], only the 3 coordinates of each joint are used as features. Even if the
approach proposed by us uses a much larger number of features than the one used in the
case of the MS-G3D architecture, it manages to obtain a lower inference speed due to the
simple architectural model based on extended TCNs.

We tested a similar architectural model based on LSTM to highlight the importance of
our methods based on an extended TCN type unit. Even if the inference rate is lower for
the TCN-based approach, this aspect could be improved if the parallelization property of
this type of neural network were used. Unlike RNNs, where the computations for later



Sensors 2021, 21, 2051 16 of 19

timestamps must wait for their predecessors to complete, convolutions can be computed
in parallel even on simple and powerful SIMD architectures like those found in graphic
cards because the same kernel or very similar kernels are independently used in each
layer repeatedly. In contrast, in terms of performance, the best results were obtained for
TCN-based approaches.

In the case of TCN-based methods, for samples that contained less than 300 frames,
the padding operation is applied. In contrast, for LSTM-based approaches, this aspect is
avoided by using specific optimization operations (e.g., Pack padded sequence in Pytorch).
This may be one of the reasons why the inference speed obtained for TCN-based approaches
is lower than that obtained when using LSTM.

An important advantage of TCN-based architectures is the ability to change their
receptive field size in many ways. For instance, stacking more dilated (causal) convolutional
layers, using larger dilation factors, or increasing the kernel size are all possible options,
each with its specific advantages and disadvantages depending on the finer details of each
implementation. This allowed us to use different values for the receptive field depending
on the domain. The best performances were obtained when we used a kernel size equal to
5 for the spatial domain and a kernel size equal to 9 for the temporal domain.

5. Conclusions

In this paper, we presented two types of approaches that can solve the problem of
recognizing human actions. These approaches are based on the two types of networks
that are currently mostly used to determine temporal dependencies in sequence modelling
problems—recurrent neural networks and temporal convolutional networks. In this paper,
we first made a comparison between these two types of approaches from the perspective of
the problem of recognizing human actions—a problem of modelling temporal sequences in
which the spatial dimension is also very important. Based on the results obtained, we were
able to highlight the fact that a model based on temporal convolutional networks is more
suitable for this problem. One of the reasons why these approaches get better performance
is related to the fact that they consider the spatial dependencies between the data. Thus,
we have demonstrated that it is important to apply a rearrangement of the joints to allow
the extraction of more relevant features in order to obtain a model with a greater ability to
generalize. Being a problem that is often encountered in real-time running systems, we
analysed the proposed methods from the perspective of the number of parameters and
the inference time. The methods proposed by us have a smaller number of parameters
and a better inference time than the methods with similar performances on the analysed
benchmark. This fact makes them suitable for use in real-time scenarios. Moreover, the
proposed TCN-based architectures are structurally simpler than others with comparable
performance. This gives them a greater degree of generalization in terms of reuse for other
types of problems. For this reason, they could be adapted and used for other types of
time sequence modelling problems. Also, starting from the disadvantages of using the
TCNs (e.g., the architecture may be dependent on the size of the sequence, difficult to work
with sequences of different lengths), we demonstrated through the proposed methods how
some of them can be diminished.

For future work, we have two directions of research. The first one relates to the
proposal of an architecture that combines the properties of the two types of networks—
LSTMs and TCNs. Such an approach could be useful for the situation in which one
proceeds to analyse a sequence that describes an activity (e.g., a mixture of actions). It
can be very difficult to detect when one action ends and another begins for a TCN-based
approach. This would be necessary to achieve our final goal—to create a proactive social
robot capable of understanding complex activities. The second direction is related to
the extension of the recurrent neural network of LSTM type to take into account the
spatial dimension. In this case, the format of the input received by the LSTM cell should
be changed. For the problem of recognising human actions, the format used should be
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batch_size× time_steps× f eatures× joints. Such an architectural modification would be
useful for activities with a variable number of people.

Moreover, another further development consists of the integration of the proposed
module within the Amiro robotic platform presented in [12]. In this way, we will be able to
test the performance of the proposed methods in real-time running scenarios.
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