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ABSTRACT

The role of obesity in the pathophysiology of respiratory virus infections has become particularly apparent during the cur-
rent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, where obese patients are twice as likely to
suffer from severe coronavirus disease 2019 (COVID-19) than healthy weight individuals. Obesity results in disruption of
systemic lipid metabolism promoting a state of chronic low-grade inflammation. However, it remains unclear how these
underlying metabolic and cellular processes promote severe SARS-CoV-2 infection. Emerging data in SARS-CoV-2 and
Influenza A virus (IAV) infections show that viruses can further subvert the host’s altered lipid metabolism and exploit
obesity-induced alterations in immune cell metabolism and function to promote chronic inflammation and viral propaga-
tion. In this review, we outline the systemic metabolic and immune alterations underlying obesity and discuss how these
baseline alterations impact the immune response and disease pathophysiology. A better understanding of the immunome-
tabolic landscape of obese patients may aid better therapies and future vaccine design.

Key words: obesity; SARS-CoV-2; influenza; virus; metabolism; immune response; COVID-19; inflammation.

INTRODUCTION

Obesity has emerged as an unexpected feature of severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) causing coro-
navirus disease 2019 (COVID-19) [1]. The SARS-CoV-2 pandemic
has highlighted the global health crisis that is obesity [2]

representing a risk factor independent of other co-morbidities
[3]. Evidence of a link between obesity and infectious respiratory
disease first became apparent after the 2009 influenza A pan-
demic (H1N1pdm). Obesity accounted for 12% of total deaths
from H1N1pdm [4–7]. Early COVID-19 data emerging from China
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did not report body mass index (BMI), however, a study in
Seattle showed that for critically ill patients, 85% were obese re-
quiring mechanical ventilation and 62% of them died [8]. Two
retrospective studies in New York City at the epicentre of the
outbreak found COVID-19 patients aged <60 years with a BMI of
30–34 were 2.0 and 1.8 times more likely to suffer severe disease
requiring critical care and a BMI � 35 were 2.2 times more likely
[9]. A BMI> 40 is a strong predictor of hospitalization (OR 6.2,
95% CI 4.2–9.3) [10]. In a French centre, 47.6% of severe COVID-19
patients were obese (BMI> 30) and 28.2% were severely obese
(BMI> 35) with a total of 68.6% of patients requiring invasive
mechanical ventilation, particularly males [3]. In the UK, several
prospective studies based on UK biobank data sets revealed det-
rimental effects of obesity on COVID-19 susceptibility and dis-
ease severity, even after adjustment for other co-morbidities
such as age, lifestyle and chronic diseases [11, 12]. Interestingly,
Ho et al. demonstrated that increased inflammation which is as-
sociated with increased adiposity may increase susceptibility
for severe COVID-19 in obese individuals [12]. Data from 265
patients hospitalized with severe COVID-19 disease, revealed a
significant inverse correlation between age and BMI. Younger
individuals (<50 years) who were admitted to intensive care
units for COVID-19 were more likely to be obese compared with
older individuals [13]. These studies highlight the risk of obesity
in this generally considered low-risk age group [9, 13].

In this review, we will discuss how obesity impacts viral
shedding, propagation, host metabolism, inflammation and im-
munity. Furthermore, we highlight ongoing therapeutic
approaches to improve COVID-19 patient survival in the obese.

Viral shedding

Obesity may play a role in prolonged viral shedding of infected
individuals, potentially increasing transmission within the pop-
ulation. Viral shedding of IAV in obese adults can last 42% lon-
ger than lean individuals and in asymptomatic cases 104%
longer [14], data confirmed in diet-induced obesity (DIO) mouse
models [15]. Similarly, obese patients with SARS-CoV-2 required
longer hospitalization stays and time to test negatively by pha-
ryngeal swab compared to non-obese patients [16]. This indi-
cates that obese individuals may require longer time to
overcome viral infections and may promote viral spread in the
population.

Viral receptors

Obesity may contribute to viral propagation by promoting the
expression of the SARS-CoV-2 cell entry receptor angiotensin-
converting enzyme 2 (ACE2) on a variety of cell types including
bronchial epithelial cells [17, 18]. ACE2 is also expressed on adi-
pocytes [19, 20]. Importantly, obesity may upregulate ACE2 [21],
possibly under the control of sterol regulatory element-binding
protein 1 (SREBP1), a transcription factor which has an impor-
tant role in lipogenesis, adipogenesis and cholesterol homeo-
stasis to prevent lipotoxicity. Mouse studies show that ACE2
mRNA expression remained elevated in high-fat-fed mice com-
pared with low-fat-fed mice demonstrating that adipocytes ex-
press ACE2 and is nutritionally regulated by high-fat feeding
[22]. These findings suggest that obese people should be consid-
ered an at-risk population as ACE2 expression might be higher
than in non-obese people. Indeed, ACE inhibitors (ACEi) repre-
sent good candidates for COVID-19 treatment [23–27] with tel-
misartan (NCT04355936) completing Phase IV and losartan
(NCT04311177; NCT04312009) and captopril (NCT04355429) in

Phase II Clinical Trials. All of these drug candidates are effective
therapies for high blood pressure and heart failure, which are
comorbidities more common in obese individuals. Telmisartan
and losartan are angiotensin II receptor type 1 (AT1) antagonists
and thus selectively block the binding of angiotensin II to the
AT1 receptor [28]. This competitive replacement of endogenous
angiotensin II will lower the pro-inflammatory and vascular
effects by receptor activation and therefore may prevent hyper-
inflammation in COVID-19 patients. In contrast, captopril di-
rectly inhibits the enzymatic function of ACE preventing the
conversion of angiotensin I to angiotensin II thus also increas-
ing activation of the renin–angiotensin–aldosterone system
(RAAS) [28]. The usage of ACEi has sparked debate about its
safety since blocking RAAS can increase expression of ACE2 on
the cell surface and thus could enhance viral uptake. On the
contrary, the receptor is associated with tissue-protective, anti-
inflammatory pathways and vasodilation [29] and could there-
fore reduce inflammation and cardiovascular insults caused by
COVID-19. Early prospective cohort studies from more than 8
million participants in the UK suggest a reduced risk of COVID-
19, when individuals were taking ACEi [30]. However, only com-
pletion of clinical trials will reveal whether ACEi can reduce
COVID-19 risk and mortality associated with cardiovascular
events.

Viral impact on cellular lipid metabolism

Upon viral infection, SARS-CoV-2 hijacks cellular metabolism
for replication and production of new virions. SARS-CoV-2 in-
fection in monocytes leads to an accumulation of intracellular
lipids and an increase of proteins involved in lipid metabolism
such as the fatty acid transporter CD36 and lipogenic transcrip-
tion factors such as the peroxisome proliferator-activated re-
ceptor c (PPARc) and SREBP-1 [31]. Furthermore, SARS-CoV-2
may use lipid droplets as replication sites. Pharmacological in-
hibition of diacylglycerol O-acyltransferase 1 (DGAT1), a key en-
zyme for triacylglyceride synthesis and lipid droplet formation,
prevents viral replication [31]. Similarly, IAV infection increases
the extracellular uptake of palmitic acid promoting viral replica-
tion, whereas blocking CD36-dependent palmitate uptake using
sulfo-N-succinimidyl oleate prevents enhanced viral replication
[32]. Circulating levels of palmitic acid are increased in obese
individuals and can promote inflammation through binding to
the pattern recognition receptors Toll-like receptor 2 and 4 [33].
In cells, palmitoylation of viral membrane proteins facilitate
membrane fusion by SARS-CoV and some IAV strains [34, 35].
Although the mechanism has not been elucidated, an increase
of palmitoylation of some proteins in obese mice suggests an al-
teration in this pathway [36, 37].

Besides palmitoylation, enveloped viruses up-regulate cho-
lesterol metabolism [38]. Cholesterol is required for the forma-
tion of lipid rafts and is thought to assist viral spreading by
serving as an assembly point at the plasma membrane and to
promote efficient viral cell entry [39]. Due to the central role of
cholesterol metabolism in viral replication, the lipid-lowering
therapy statins (HMG-CoA reductase inhibitors), have been in-
vestigated as a potential antiviral therapy. Two recent retro-
spective studies on the use of statins in SARS-CoV-2 survival
revealed variable outcomes with one showing a 50% improved
overall survival [40] whereas the other could not identify any
survival advantage among the statin cohort [41].

Drugs targeting lipid metabolism present novel therapeutic
tools for combating obesity-related viral infection through their
central role in the viral infection cycle. Thus, statins and other
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lipid-lowering drugs represent a promising candidate for
COVID-19 treatment in obese patients [42].

In the following section, we discuss how obesity changes the
host’s metabolic and immunological state during viral infec-
tions and how this may provide a potent environment for respi-
ratory viral infections such as SARS-CoV-2.

THE OBESOGENIC HOST
Systemic chronic inflammation

Enhanced adipose tissue deposition in the obese (particularly in
the abdomen) not only creates alterations in abdominal pres-
sure with inadequate lung function and reduced oxygen satura-
tion [43], but also represents the ‘soil’ for chronic low-grade
systemic inflammation by activated immune cells in response
to over-nutrition [44–46]. Activation of the innate immune re-
sponse in adipose tissues creates altered cytokine and adipo-
kine profiles. Dysfunctional hypertrophic adipocytes promote a
chronic inflammatory state by producing pro-inflammatory
cytokines and accumulating pro-inflammatory ‘M1-like’ macro-
phages [47–49] thereby outnumbering anti-inflammatory ‘M2-
type’ macrophages that maintain normal tissue homeostasis
[50]. This underlying chronic inflammation impairs innate and
adaptive immune responses to pathogens [51] therefore leaving
the obesogenic host vulnerable to viral persistence, secondary
infection and vaccine failure [52].

Obese individuals infected for example with IAV show
delayed and attenuated innate and adaptive immune response
with reduced numbers of activated and functional memory
CD4þ and CD8þ T cells, leading to increased viral spread with
prolonged infection, lung damage and susceptibility to second-
ary bacterial infections [53]. Titers of influenza virus-specific
antibodies increasingly decline at 1-year post-vaccination in
obese vaccinees, increasing their 2-fold risk of severe/critical in-
fluenza infection and increased hospital admissions compared
to their healthy weight counterparts [4].

Impaired B and T cell responses are a hallmark feature of se-
vere COVID-19 disease [54]. Low naı̈ve CD4þ and CD8þ T cells
(lymphopenia) and CD4þ T cells with Th17 and Th22 pheno-
types represent impaired adaptive immunity and a pro-
inflammatory phenotype [55, 56]. Other studies show increased
numbers of CD4þ T cells, reduced cytotoxic CD8þ T cells [57]
combined with reduced regulatory T cells [58]. Activated T cells
infiltrate adipose tissue possibly in response to antigens devel-
oped through high-fat feeding [59], thus contributing to local tis-
sue inflammation. Coupled with T helper cells producing
inflammatory cytokines, including IL-6, IL-10 and TNF-a in both
obesity and COVID-19 patients, these factors influence disease
progression [3]. Obesity promotes increased effector and mem-
ory T cell populations but reduced T cell receptor diversity com-
pared with lean normal chow-fed mice [60]. Thus, obesity may
impact the ability of circulating T cells to respond to a disparate
pool of antigens, leaving the obese individual susceptible to in-
fection. Adipose tissues represent an important site for many
adaptive immune cells, in particular, to provide a metabolic
niche for memory T cell development and maintenance sup-
porting a protective response to infection [61]. During reinfec-
tion, antigen-specific memory T cells from adipose tissue show
stronger activation and increased lipid uptake compared to
memory T cells from lymphoid organs. Interestingly, obesity
increases memory T cell numbers in white adipose tissue in a
DIO mouse model. While able to clear lymphocytic choriomen-
ingitis virus (LCMV) during primary infection, restimulation of

cross-reactive memory T cells during a heterologous challenge
promotes a pathological, lethal effect in obese mice. Thus, path-
ogenesis occurs when increased numbers of memory T cells kill
virus-infected white adipose tissue and release IFNc and TNF
cytokines [62].

In contrast, little is known about the effects of obesity on B
cell function during infection. Adipose tissue-derived B cells
from lean animals protect against peritoneal antigens via T cell-
dependent class switching and hypermutation [63]. Obesity
increases the number of B cells in visceral adipose tissue and
produces autoreactive immunoglobulins [64]. Two subpopula-
tions of B cells (BRegs and B-1a cells) regulate glucose metabo-
lism through secretion of the anti-inflammatory cytokine IL-10.
The protective effects of B-1a cells through IL-10 secretion sup-
port normal insulin regulation. In diabetic patients and obese
mice, the function of B-1a cells is impaired, promoting chronic,
low-grade inflammation and insulin resistance [65].
Furthermore, B-1 cells have been shown to promote protection
to influenza infections by producing cross-reactive natural IgM
[66]. However, it remains unclear if antibody-secreting cells ac-
cumulate in adipose tissues upon primary infection or vaccina-
tion and whether they contribute to the secondary response
during reinfection. The formation of an adaptive immune mem-
ory to SARS-CoV-2 may be crucial to identify the best vaccina-
tion strategy for the obese population that is so much more at
risk of severe disease course.

Dyslipidaemia

Lipid homeostasis is predominantly regulated by adipose tis-
sues and the liver in order to provide cells with essential lipids
for biosynthesis and energy metabolism. Many lipids, including
cholesterol, are transported in lipoprotein complexes in blood
to avoid lipotoxicity. These are crucial for immune and stromal
cell function. For instance, macrophages rely on high-density
lipoproteins (HDLs) to control cholesterol efflux [67]. Obese indi-
viduals have lower levels of high-density lipoprotein cholesterol
(HDL-C) that leads to an accumulation of cholesterol in cells
which can promote inflammation and viral replication while
decreased total circulating cholesterol levels limit T cell expan-
sion [68]. A common feature of viral infections is an imbalance
in systemic lipid metabolism often leading to a significant re-
duction in circulating HDL-C levels. In line with this, severe to
critical SARS-CoV-2 patients exhibit reduced HDL-C levels
which are inversely correlating with inflammation markers
such as C-reactive protein [69, 70]. Knowing that dysregulation
of HDL-C levels occurs frequently in critical viral infections,
treatment of this imbalance by administration of an Apo-A1 mi-
metic, the main lipoprotein in HDL-C complexes, significantly
reduced influenza-induced lung damage in a murine model
[71]. Taken together, this would suggest that decreased circulat-
ing HDL-C due to obesity may raise the risk of increased disease
severity in viral infections.

Besides cholesterol, other lipid species can directly impact
on immune function such as derivates of arachidonic acid. This
poly-unsaturated fatty acid is transformed in innate immune
cells to lipid mediators known to promote inflammation such
as prostaglandins. COVID-19 patients show a gradual decrease
in the precursor arachidonate with increasing disease severity
[72]. This may indicate that SARS-CoV-2 can propagate more ef-
ficiently. In line with this, arachidonic acid supplementation
can limit Middle East Respiratory Syndrome (MERS) virus pro-
duction [73]. Other lipid mediators derived from eicosanoid acid
and docosanoic acid are also dysregulated in SARS-CoV-2
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patients and show an overall increase with disease severity,
with some pro-resolving lipid mediators showing decreased
presence in severe patients [74]. This is in line with observations
of highest cyclooxygenase activity in moderate compared to se-
vere patient groups. Furthermore, the activity of the arachido-
nate 5-lipoxygenase (ALOX5), a key enzyme in the production of
arachidonic-derived mediators exhibits increased expression in
obese individuals and severe COVID-19 patients. ALOX5 is pre-
dominantly expressed in monocytes and macrophages of SARS-
CoV-2-infected patients and may contribute to inflammation
through increased leukotrienes which can promote pro-
inflammatory adipokine production [75–77]. Similar changes
have been observed in influenza patients [78]. Based on these
studies, it is likely that the underlying obesity-associated lipid
imbalance is further worsened by SARS-CoV-2 promoting devel-
opment of severe disease pathology, impairing resolution and
hence prolonged inflammation.

Oxidative stress and mitochondrial dysfunction

Mitochondria play a key role in cellular metabolism including
tricarboxylic acid cycle, decarboxylation of fatty acids or b-oxi-
dation to generate and sustain adenosine triphosphate (ATP)
levels for cellular energy demands, while also being the main
producer of reactive oxygen species (ROS). Accumulating evi-
dence links the accelerated progression of COVID-19 to in-
creased levels of inflammation leading to increased ROS
production and cellular oxidative stress which in turns can trig-
ger mitochondrial dysfunction [79]. Indeed, oxidative stress was
described as a main player in COVID-19 pathogenesis [80] and
oxidative stress-associated genes were enriched in bronchoal-
veolar lavage fluid of severe COVID-19 patients [81]. This was
demonstrated in SARS-CoV-2-infected monocytes, which play a
key role in SARS-CoV-2-driven inflammation [81], displaying
higher mitochondrial ROS production and reduced mitochon-
drial oxidative metabolism including a reduction in the spare
respiratory capacity, a critical complement of mitochondrial
bioenergetics that can be utilized during increased energy
demands [82]. In agreement with these findings, mitochondrial
antioxidant treatment leads to inhibition of SARS-CoV-2 repli-
cation and prevents upregulation of inflammatory cytokines
[83]. This suggests dysregulated mitochondrial function of
monocytes could contribute to SARS-CoV-2 pathogenesis.

Obesity causes profound metabolic alterations leading to mi-
tochondrial dysfunction [84–86] which can contribute to
obesity-related COVID-19 pathogenesis. Imbalance of nutrient
intake, high free fatty acids concentration and hyperglycaemia
result in increased ROS production and adipocyte mitochondrial
dysfunction [87]. Consistent with these findings, adipocytes in
obese hosts display a reduced mitochondrial oxidative capacity
and biogenesis [85, 86] and a downregulation of fatty acid

oxidation (FAO) and the tricarboxylic acid cycle pathways which
inversely correlate with low-grade inflammation [85, 88]. These
obesity-associated host factors could serve as dual roles in the
metabolism of virus-infected cells. First, these factors may ‘fuel
the fire’ of viral-induced metabolic reprogramming and mito-
chondrial alterations. Second, obesity-associated mitochondrial
defects can contribute to modulating antiviral immune
responses [53, 79]. For example, lipid accumulation in natural
killer (NK) cells leads to impaired NK cellular metabolism, in-
cluding mitochondria respiration, and trafficking of the cyto-
toxic machinery, causing a complete ‘paralysis’ of their
cytotoxicity [89]. In addition to NK cells, accumulation of lipids
in dendritic cells (DCs) results in reduced capacity in processing
antigens, leading to a defect in stimulating allogeneic T cells
[90]. Type-17 mucosal-associated invariant T (MAIT) cells which
have been reported to increase in obese hosts [91] and linked to
the pathogenesis of chronic infections [92], displayed altered
mitochondrial metabolism in obesity [92]. Interestingly, these
subsets have been described as the prominent IL-17-producing
cells in the airways of COVID-19 patients [93].

T cell metabolism

In the context of acute viral infection, increased energy demand
for effector T cell function is derived from a variety of fuel sour-
ces. Shifting from oxidative phosphorylation to glycolysis and
production of ATP provides the fuel for increased metabolic
demands. The conversion of effector T cells to long-lived mem-
ory T cells requires a switch back to oxidative metabolism with
fatty acids as the fuel source [94, 95]. Additionally, the mainte-
nance of tissue-resident memory CD8þ T cells depends on the
uptake of exogenous free fatty acids [96]. Although T cells re-
spond to antigens by altering their metabolic state in this way,
it is not clear how systemic metabolic conditions affect T cell
function. Saturated fatty acid-induced metabolic alteration
leads to a preferential migration of effector T cells to inflamma-
tory sites, contributing to low-grade systemic inflammation ob-
served in obese individuals [97]. Treatment with palmitic acid
results in increased oxidative phosphorylation in naı̈ve T cells
promoting their differentiation into pro-inflammatory effector
memory phenotype, suggesting a preferential usage of FAO dur-
ing T cell activation in fat-rich environment promotes pro-
inflammatory effector T cell differentiation [97]. Consistent with
these findings, T cells isolated from the spleen of mice with DIO
display altered mitochondrial phosphorylation and a preferen-
tial utilization of fatty acids as mitochondrial fuel. In COVID-19,
T cells from patients with severe disease show an increased oxi-
dative phosphorylation compared with mild or recovered
groups, suggesting altered T cell metabolism in severe infection
[98]. Furthermore, T cells from patients with progressed COVID-
19 displayed an altered mitochondria morphology, increased

Box 1: Why does obesity matter during COVID-19?

Several studies underline the significant changes in lipid metabolism observed during viral infections, some of which are
reminiscent of changes observed in obese uninfected individuals. It is clear that obese individuals are 2 times more likely to
experience severe COVID-19 progression. This shows striking parallels to heightened risk of influenza-related hospitalization
and disease severity. Obesity fundamentally alters the host’s metabolism and promotes obesity-associated inflammation,
which has been linked in the context of influenza infections to increased viral replication and disease severity. Thus, obese
individuals represent a more susceptible population group that requires particular attention in disease prevention and treat-
ment during this pandemic.
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mitochondrial mass and accumulation of ROS production.
Interestingly, COVID-19 patients with pre-existing metabolic
disorders such as obesity showed different capacities for nutri-
ent uptake compared to uninfected controls [99]. In addition,
obesity dysregulates glucose usage and FAO and storage [100,
101] and changes in T cell metabolism are associated with im-
paired T cell response to influenza. Even prior to influenza in-
fection, obese mice had altered cellular metabolism
characterized by T cells with increased oxidative phosphoryla-
tion and glycolysis [102]. After influenza infection, CD4þ and
CD8þ T cells from obese mice significantly increased the oxida-
tive phosphorylation to glycolysis ratio in comparison to lean
mice [102]. Weight loss in obese mice reversed systemic hyper-
insulinaemia and hyperglycaemia but failed to prevent infiltra-
tion of T cells into adipose tissue and did not reverse memory T
cell dysfunction. These findings suggest that obesity and meta-
bolic disturbance creates epigenetic reprogramming on T cell
function. This has not been studied in SARS-CoV-2 patients but
is likely to contribute as T cell responses from critically ill
patients are significantly impaired.

CONCLUSION

Obesity causes severe impairment of systemic lipid homeostasis
due to calorie excess. Hypertrophic adipocytes create a state of
systemic lipid imbalance and low-grade inflammation. This
change in the host’s metabolic and inflammatory status renders
immune cells dysfunctional by substantially altering

mitochondrial structure and function. Consequently, immune
cell metabolism shifts away from oxidative phosphorylation to-
wards more pro-inflammatory glycolytic pathways, exacerbating
SARS-CoV-2-induced inflammatory processes. It remains to be
seen if obese patients can mount an effective memory B and T
cell response to SARS-CoV-2 infection since dysfunctional adi-
pose tissues in obese individuals may impair the necessary
immunometabolic switch of memory cells towards FAO and con-
sequently alter their reactivation potential. Previous studies ex-
amining influenza infections show that obesity impairs memory
responses leaving the host more susceptible to reinfection. It
remains to be seen whether obese patients are more likely to ex-
perience reinfection with SARS-CoV-2 over the coming years.
Dyslipidemia may further promote viral replication through in-
creasing ACE2 expression on adipocytes and epithelial cells.

Although global health measures to reduce obesity may rep-
resent a long-term solution to reduce obesity-driven impair-
ments in immune response to viral infections [103], patients are
in desperate need of new and effective treatments and vaccines
to reduce disease severity and mortality. Drugs targeting host
and or viral lipid metabolism are currently under investigation
and statins have shown early promising results in promoting
overall patient survival in retrospective studies [40]. However, it
remains unclear whether the effects are mediated through their
impact on the host’s lipid metabolism or through direct anti-
inflammatory effects or both.

Future studies elucidating the metabolic and immunologic
mechanisms of obesity and risk of SARS-CoV-2 infection and

Box 2: What is the consensus on obesity and COVID-19?

Obesity in the UK has been increasing over the past decades. Today, �30% of the UK population is classified as obese. Obesity
increases the risk of other chronic diseases and makes individuals more susceptible to viral infections like influenza and as
observed now during the SARS-CoV-2 outbreak. The UK government has recently acknowledged the necessity of tackling this
issue and started promoting long-term public health measures (see https://www.gov.uk/government/news/new-obesity-strat
egy-unveiled-as-country-urged-to-lose-weight-to-beat-coronavirus-covid-19-and-protect-the-nhs) [103] to decrease obesity in
its population. However, it will take time until these measures show effects. It remains crucial to further continue broadening
our understanding of the metabolic and immunological changes in obese individuals. Improving our understanding of how
obesity promotes viral infections such as SARS-CoV-2 may lead to better therapies and vaccine designs in this patient group.

Figure 1: Obesity alters host metabolism and immune response to promote viral infections. Obesity is linked with increased systemic inflammation [104] and metabolic

abnormalities which can contribute to severe lung manifestation, exacerbation of the inflammatory process and dysregulation of innate and adaptive antiviral immu-

nity, contributing to COVID-19 pathogenesis. The figure was created with BioRender.
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severe disease are warranted. Understanding these pathways at
the molecular level may enable development of targeted thera-
peutic approaches and aid future vaccine design for the obeso-
genic host.
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