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Annually, the cost of insect pest control in agriculture crosses billions of dollars around the
world. Until recently, broad-spectrum synthetic pesticides were considered as the most
effective means of pest control in agriculture. However, over the years, the overreliance on
pesticides has caused adverse effects on beneficial insects, human health and the
environment, and has led to the development of pesticide resistant insects. There is a
critical need for the development of alternative pest management strategies aiming for
minimum use of pesticides and conservation of natural enemies for maintaining the
ecological balance of the environment. Host plant resistance plays a vital role in
integrated pest management but the development of insect-resistant varieties through
conventional ways of host plant resistance takes time, and is challenging as it involves
many quantitative traits positioned at various loci. Biotechnological approaches such as
gene editing, gene transformation, marker-assisted selection etc. in this direction have
recently opened up a new era of insect control options. These could contribute towards
about exploring a much wider array of novel insecticidal genes that would otherwise be
beyond the scope of conventional breeding. Biotechnological interventions can alter the
gene expression level and pattern as well as the development of transgenic varieties with
insecticidal genes and can improve pest management by providing access to novel
molecules. This review will discuss the emerging biotechnological tools available to
develop insect-resistant engineered crop genotypes with a better ability to resist the
attack of insect pests.
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1 INTRODUCTION

Under the changing climate scenario, the world’s population is estimated to increase by 2 billion in
the next 30 years, rising from the current 7.7 billion population to 10 billion by 2050 (Zsögön et al.,
2022). In this context, there is a continuous need for an increment of food production to fulfill the
need of the rising worldwide population. Additionally, it is assessed that total global food demand
will increase from 35% in 2010 to 56% in 2050 (van Dijk et al., 2021). To meet these goals it is critical
to increase crop yield and reduce pre- and post-harvest losses. Also despite of operating control
measures, a large portion of the economically significant harvests experiences a wide range of yield
losses. Population extension, depletion of natural resources, environmental change, and developing
insect pests are the key limitations that contrarily affect overall agricultural production and
productivity (Alemu, 2020). Amongst these production constraints, biotic factors address one of
the foremost constraints to crop productivity. Amongst the biotic factors, the insect pests are assessed
to cause 25%–30% losses to agricultural production (Joshi et al., 2020; Mateos Fernandez et al., 2021).
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This suggests that insect pests pose a severe danger to food
security and sustainable development, necessitating the
development of effective plant protection technologies to
prevent and control pest-related crop losses (Oerke et al.,
2006). Chemical pesticides provide the first line of defense for
farmers against insect pests, and their widespread use has resulted
in a number of issues, including the killing of the beneficial
insects, environmental pollution (Pedigo and Rice, 2006; Stevens
et al., 2012), human and animal health problems and; imparting
resistance in pests (Nderitu et al., 2020). Tomeet these challenges,
it is necessary to move towards more sustainable and modern
agricultural practices. Moreover, these detrimental non-target
effects have motivated researchers around the world to
develop novel and environment-friendly, alternative insect pest
management strategies. Therefore, host plant resistance can form
the backbone of pest management in different agro-ecosystems
(Sharma, 2007).

Host plant resistance is the key component of pest
management and one of the most appreciated control tactics
in advanced agriculture (Horgan et al., 2020; El-Dessouki et al.,
2022). It is the consequences of heritable plant characteristics that
make a plant to be less damaged than a plant lacking these
qualities. Insect-resistant crop varieties reduce the number of

insect pests by increasing their tolerance for injury. Three types of
resistance determine the relationship between the insect and the
plant, e.g. antibiosis, antixenosis (non-preference), and tolerance
(Koch et al., 2016; Iqbal et al., 2018) (Figure 1). Antibiosis
resistance influences the biology of the pest to diminish its
population and subsequent damage, resulting in higher
mortality or reduced longevity and reproduction of the insect.
Antixenosis resistance is defined as non-preference of the pest for
a resistant plant and influences the behavioral traits of a pest
(Painter, 1951; Smith, 2005). Tolerance is a resistance where a
plant can resist or recover from damage caused by the pest
population (Smith, 2005).

The development of insect-resistant plants began in 1782
when Havens published an article on a Hessian fly-resistant
wheat cultivar. Since that time, several insect-resistant cultivars
have been developed by the international and national research
centers, the private sector using conventional or biotechnological
tools (Jaiswal et al., 2018). The major biochemical principles
underlying such resistance and the genes included have been
distinguished for their coordinated utilization through
biotechnological advancements in the course of the most
recent 30 years (Joshi et al., 2020). Furthermore, for global
food security and agricultural sustainability, contemporary

TABLE 1 | Transgenic crops carrying Bt genes for insect resistance.

S. No. Target insects Transgene Target crop References

1 Chilo suppressalis, Cnaphalocrocis medinalis cry 1a(b) Rice Fujimoto et al. (1993)
2 Scirpophaga incertulas & Chilo suppressalis cry 1 a(b) Rice Wünn et al. (1996)
3 Scirpophaga incertulas, Cnaphalocrocis medinalis cry 1 a(b) Rice Ghareyazie et al. (1997)
4 Scirpophaga incertulas cry 1a(c) Rice Nayak et al. (1997)
5 Scirpophaga incertulas cry 1a(b)/cry1a(c) Rice Tu et al. (2000)
6 Cnaphalocrocis medinalis, Scirpophaga incertulas cry 2a/cry 1a(c) Rice Maqbool et al. (2001)
7 Helicoverpa armigera cry1Ab + NptII Cotton Khan et al. (2011)
8 Heliothis sp. cry1Ab Cotton Khan et al. (2013)
9 Helicoverpa armigera cry2AX Cotton Sakthi et al. (2015)
10 Helicoverpa armigera cry1AC + cry2Aa Pigeon pea Ghosh et al. (2017)
11 Helicoverpa armigera cryIIAa Chickpea Sawardekar et al. (2017)
12 Cnephalocrosis medinalis cry2A Rice Gunasekara et al. (2017)
13 Tuta absoluta cry1Ac Tomato Selale et al. (2017)
14 Anthamous grandis cry1Aa Cotton Ribeiro et al. (2017)
15 Helicoverpa armigera cry2Aa Pigeon pea Baburao and Sumangala (2018)
16 Helicoverpa armigera cry2Aa Pigeon pea Singh et al. (2018)
17 Scirpophaga incertulas, Cnaphalocrocis medinalis cry2AX1 Rice Rajadurai et al. (2018)
18 Spodoptera litura cry1Aa Sweet Potato Zhong et al. (2019)
19 Spodoptera litura cry1AC + cry2Ab Cotton Siddiqui et al. (2019)
20 Holtrichia panallele cry 8 like Soyabean Qin et al. (2019)
21 Achaea janata, Spodoptera litura cry1AC Castor Muddanuru et al. (2019)
22 Helicoverpa armigera cry2AX1 Cotton Jadhav et al. (2020)
23 Tuta absoluta cry1Ab Tomato Soliman et al. (2021)

TABLE 2 | Expression of VIP genes for insect resistance.

S. No. Target insects Transgene Target crop References

1 Heliothis. zea and H. virescens Vip3A + cry1Ab Cotton Bommireddy et al. (2011)
2 Maruca vitrata Vip3Ba1 Cowpea Bett et al. (2017)
3 Helicoverpa armigera Vip3AcAaa (Vip3Aa1+Vip3Ac1) Cotton Chen et al. (2018a)
4 Chilo infuscatellus Vip3A Sugarcane Riaz et al. (2020)
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agriculture’s primary goal is to enhance yields using existing land
and resources. Therefore, innovative technologies have to be
exploited to control pests and ensure adequate food
availability in the future. Different plant protection
innovations have been created to control, prevent and manage
these pests with the trend of emphasizing/concentrating on the

use of newer and more advance biotechnological approaches that
are proven to be most efficient and provide results in a very short
time as compared to conventional methods. These approaches
can act as the backbone of crop protection against a broad
spectrum of insect pests. In this due consideration, modern
biotechnology put forward the best possible alternatives for

TABLE 3 | Expression of lectin genes for insect resistance.

Sr.
No.

Target insects Transgene Target crop References

1 Sap sucking pests Snowdrop lectin (Galanthus nivalis
agglutinin; GNA)

Rice Sudhakar et al. (1998)

2 Sitobion avenae Snowdrop lectin (Galanthus nivalis
agglutinin; GNA)

Wheat Stoger et al. (1999)

3 Eoreuma loftini (Dyar) and Diatraea saccharalis Snowdrop lectin (Galanthus nivalis
agglutinin; GNA)

Rice, Sugarcane Sétamou et al. (2002)

4 Lacanobia oleracea GNA-neuropeptide-allatostatin Tomato Fitches et al. (2004)
5 Lacanobia oleracea GNA-lepidopteran-specific toxin (ButalT) Tomato Trung et al. (2006)
6 Nilaparvata lugens and Myzus persicae) GNA-spider-venom toxin I (SFI1) Rice and Potato Down et al. (2006)
7 Aedes aegypti eggs and larvae WSMoL (water-soluble M. oleifera lectin) - Coelho et al. (2009); Santos et al.

(2012), Santos et al. (2020)
8 Nilaparvata lugens, Sogatella furcifera and

Nephotettix nigropictus
Allium sativum leaf agglutinin (ASAL) and
Galanthus nivalis lectin (GNA)

Rice Bharathi et al. (2011)

9 Nasutitermes corniger workers and soldiers Endoglucanase, phosphatases,
b-glucosidase, and trypsin

- de Albuquerque et al. (2012)

10 Sitophilus zeamais M. urundeuva leaf lectin (MuLL) Stored grains Napoleão et al. (2013)
11 Myzus persicae and Sitobion avenae Hv1a/GNA Potato Nakasu et al. (2014)
12 Myzus persicae Galanthus nivalis agglutinin (GNA) Potato Mi et al. (2017)
13 Lipaphis erysimi Lentil lectin (LL) and Chickpea protease

inhibitor (CPPI) genes
Transgenic
Brassica juncea

Rani et al. (2017b)

14 Sitophilus zeamais Schinus terebinthifolius leaf lectin (SteLL) Stored grains de Santana Souza et al. (2018)
15 Lipaphis erysimi Colocasia esculenta tuber agglutinin (CEA)+

Galanthus nivalis agglutinin (GNA)
Mustard Das et al. (2018)

16 Metopolophium dirhodum, Schizaphis graminum,
Rhopalosiphum padi, and Sitobion avenae

Pinellia pedatisecta agglutinin (PPA) Wheat Duan et al. (2018)

17 Aphis gossypii and Spodoptera litura Insect gut binding lectin from Sclerotium rolfsii Cotton Vanti et al. (2018)
18 Callosobruchus chinensis Arcl on APA locus from Phaeselous vulgaris Cowpea Grazziotin et al. (2020)
19 Sitophilus. zeamais Microgramma vacciniifolia rhizome lectin

(MvRL)
Stored grains de Albuquerque et al. (2020)

20 Sitophilus zeamais Water-solubleMoringa oleifera lectin (WSMoL) Stored grains de Oliveira et al. (2020)
21 Callosobruchus chinensis Arcelin Common bean Hilda et al. (2022)
22 Callosobruchus chinensis Arcelin-5, Leucoagglutinin, Erythroagglutinin common bean Caroline et al. (2022)
23 Sitophilus oryzae Polygonum persicaria L. (PPA) Lectin Stored grains Khoobdel et al (2022)

TABLE 4 | Fusion proteins for insect resistance in crop plants.

Sr.
No.

Target insects Transgene Target crop References

1 Scirpophaga incertulas, Cnaphalocrocis medinalis cry2AX1 (cry2Aa + cry2Ac) Rice Chakraborty et al.
(2016)

2 Lygus spp. cry51Aa2 Cotton Gowda et al. (2016)
3 Spodoptera exigua, Harmonia axyridis cry1Ab/cry2Aj Maize Chang et al. (2017)
4 Spodoptera litura, Ostrinia nubialis cry1Be + cry1Fa Cotton Meade et al. (2017)
5 Lipaphis erysimi Lentil lectin (LL) and chickpea protease inhibitor

(CPPI) genes
Brassica juncea-
mustard

Rani et al. (2017b)

6 Scirpophaga incertulas, Cnaphalocrocis medinalis,
Nilaparvata lugens

cry1AC + ASAL Rice Boddupally et al.
(2018)

7 Ostrinia furnacalis, Cnaphalocrocis medinalis cry1Ab + vip3A Rice Xu et al. (2018)
8 Chilo suppressalis cry2Aa + cry1Ca Rice Qiu et al. (2019)
9 Helicoverpa armigera, Spodoptera litura cry2Ab + cry1F + cry1AC Cotton Katta et al. (2020)
10 Scirphophaga excerptalis cry2Aa + cry1Ca, cry1Ab + cry1Ac Sugarcane Koerniati et al. (2020)
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diversifying agricultural production by accelerating the
development of new insect resistant varieties of cereals,
horticultural and even underutilized crops (Abah et al., 2010).
Therefore, the main objective of this review is to assess the

opportunities provided by these new biotechnological tools in
developing various crop plants that are resistant to a wide range of
insect pests.

2 BIOTECHNOLOGICAL APPROACHES IN
INSECT PEST MANAGEMENT

Biotechnology can be broadly defined as “a method of creating or
modifying a product, improving plants or animals, or developing
microorganisms for specific purposes by utilising biological
systems, living organisms, or derivatives thereof” (Persley,
2000). However, it can be described as the regulated and
deliberate manipulation of biological processes to accomplish
efficient insect pest control. From insect resistance breeding to
transgenic introgression of novel genes, biotechnological
interventions in insect pest management to protect crop yield
have been enormous. The different biotechnological approaches
include gene transformation, genome editing, RNA interference,
marker-assisted selection, anther culture, embryo culture,

TABLE 5 | Insect engineered for pest management using CRISPR/Cas9.

Sr. No. Target insects Target gene References

1 Tribolium castaneum E-cadherin gene, EGFP Gilles et al. (2015)
2 Plutella xylostella Abdominal-A homeotic gene (Pxabd-A) Huang et al. (2016)
3 Drosophila melanogaster Chitin synthase 1 Douris et al. (2016)
4 Agrotis ipsilo Yellow-Y Gene Chen et al. (2016)
5 Locusta migratoria Odorant receptor co-receptor (Orco) gene Li et al. (2016)
6 Spodoptera litura Abdominal-A (Slabd-A) gene Bi et al. (2016)
7 Spodoptera littoralis Olfactory receptor co-receptor (Orco) gene Koutroumpa et al. (2016)
8 Helicoverpa armigera HaCad Wang et al. (2016)
9 Spodoptera exigua Ryanodine receptor Zuo et al. (2017)
10 Ceratitis capitata Eye Pigmentation Gene White Eye (We) Meccariello et al. (2017)
11 Helicoverpa armigera Tetraspainin Jin et al. (2018)
12 Plutella xylostella PxABCC2, PxABCC3 Guo et al. (2019)
13 Helicoverpa armigera α-6- nicotinic acetylcholine receptor (nAchR) Zuo et al. (2020)
14 Rhopalosiphum padi ß-1-3glucanase in maize Kim et al. (2020)
15 Ostrinia furnacalis ABCC2 Wang et al. (2020a), Wang et al. (2020b)

TABLE 6 | Transgenic crops for insect resistance through RNA interference.

Sr. No. Target insects Silenced gene Target crop References

1 Diabrotica virgifera virgifera LeConte Suppression of target mRNA Maize Baum et al. (2007)
2 Diabrotica v. virgifera hunchback (hb) and brahma (brm) gene Maize Khajuria et al. (2015)
3 Leptinotarsa decemlineata β-actin gene Potato Zhang et al. (2015)
4 Lepidopteran dsRNA-Spray Maize Li et al. (2015)
5 H. armigera Chitinase gene-HaCHI Tomato, Tobacco Mamta et al. (2016)
6 C. suppressalis Aminopeptidase N genes APN1+APN2 Rice Qiu et al. (2017)
7 Leguminivora glycinivorella SpbP0-dsRNA Soyabean Meng et al. (2017)
8 Helicoverpa armigera Juvenile hormone methyl transferase (JHMT) Cotton Ni et al. (2017)
9 Diabrotica virgifera virgifera LeConte Dvvgr, dvbol Maize Niu et al. (2017)
10 Leptinotarsa decemlineata ECR gene Potato Hussain et al. (2019)
11 Scirpophaga incertulas AchE-Acetylcholine esterase Rice Kola et al. (2019)
12 Manduca sexta v-ATPaseA gene Tobacco Burke et al. (2019)
13 Bemisia tabaci BtACTB gene Tobacco Dong et al. (2020)
14 Aphis glycines TREH, ATPD, ATPE, CHSI Soyabean Yan et al. (2020)
15 Bemisia tabaci Phenolic glucoside malonyltransferase Tobacco Xia et al. (2021)
16 Spodoptera littoralis Sl 102 immune gene Tobacco Di Lelio et al. (2022)

FIGURE 1 | Mechanism of host plant resistance in insects.
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protoplast fusion, somaclonal variations etc. (Talakayala et al.,
2020). These approaches are described in detail below.

2.1 Gene Transformation
Gene transformation or genetic engineering of crops for insect
resistance involves incorporation of specific DNA segment or
gene into crop plants to provide resistance against insect pests.
The DNA segment which get introduced usually encode a protein
with insecticidal activity. Resistance is plant is conferred against
specific insect pest through the expression of an insecticidal
protein present in the introduced DNA segment (Gatehouse,
2013). This technology has been tested against a wide range of
insect pests belonging to orders; Lepidoptera, Coleoptera, and
Diptera (Birkett and Pickett, 2014). Genetically modified crops
producing insecticidal proteins from Bacillus thuringiensis, a soil
bacterium, have been widely used in agriculture globally since
their introduction in 1996 (Abbas, 2018). The cry gene
transformation technology involves the transfer of specified
DNA sequences or genes into crop plants via Agrobacterium-
mediated transformation or particle bombardment (Juturu et al.,
2015). Apart from this, other strategies to protect plant from
insects attack have also been investigated. Lectins, usually found
in a number of plants, bind to carbohydrates in the midguts of
phytophagous insects disrupting the digestive system
(Vandenborre et al., 2011). Transgenic techniques have also
been used to deploy protease inhibitors, which are designed to
prevent insects from digesting their food (Singh et al., 2020).
Similarly, transgenic plants expressing alpha-amylase inhibitors
have been produced which are resistant to Lepidopterans,
Coleoptrans, Dipterans and Hemipterans insects. Also, insect
chitinase and chitinase-like proteins play a significant role in
degrading chitin in the exoskeletal and gut linings of insects.

These have been successfully cloned into plants and show
insecticidal properties. Each of these strategies along with their
role in insect pest management is discussed in detail below:

2.1.1 Cry Genes
Bacillus thuringiensis (Bt) is a Gram-positive soil bacterium
expressing insecticidal crystalline proteins (ICPs) that are
exceptionally toxic to specific classes of pests (Panwar et al.,
2018). Insecticidal activity in insect-resistant Bt crops is expressed
by the genes coding for parasporal crystal protoxins (Palma et al.,
2014). ICPs produced by transgenic plants have had a significant
impact on the successful evolution of insect resistance. The crystal
involves a protoxin protein which get solubilized in the larval
midgut due to alkaline pH and subsequently cleaved
enzymatically to an active toxin. The toxin diffuses through
the peritrophic membrane covering the gut and binds to
receptors present in the midgut epithelium (Paul and Das,
2020) making pores in the midgut epithelium. The gut gets
paralyzed and then the pest stops feeding and dies within
2–3 days (Figure 2).

The first-generation Bt cotton, Bollgard I (BG I)
expressingcry1Ac was commercialized and released in 2002 to
control the dominant bollworms including Pectinophora
gossypiella, Earias vittella, and Helicoverpa armigera in cotton-
cultivating areas of India. After thatBollgard II (BG II) was
launched in 2006 as a second-generation Bt cotton with
pyramided traits expressing cry1Ac and cry2Ab (MON15985
event), which is now cultivated in 95% of the total India’s
cotton sowing area. In comparison to BG I containing cry 1Ac
alone, BG II having multiple toxins, cry1Ac and cry2Ab have
greater ability for pest management (Carrière et al., 2015).
Another transgenic cotton i.e., wide strike cotton expressing

FIGURE 2 | Mechanism of action of Bt cry toxin in insects.
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cry1Ac + cry1F was approved in the USA in the year 2004 by Dow
Agro Sciences which improved both the crop yield as well as
farmer’s income. It is observed that both BG II and wide-strike
cotton expressing pyramided traits have a higher potential to
suppress a wide range of Lepidopteran, Coleopteran andDipteran
insects than BG I. Another transgenic cotton containing cry10Aa
exhibited strong resistance to cotton boll weevil (Anthonomous
grandis) with 100% mortality observed through bioassay testing
when the larvae of T1 generation consumed the leaves of
transgenic cotton (Ribeiro et al., 2017). Agrobacterium-
mediated transformation was employed to produce transgenic
cotton expressing pyramided traits, cry1Ac and cry2Ab cloned in
the T-DNA, and the resulting plant demonstrated resistance to S.
litura with 93 percent larval mortality (Siddiqui et al., 2019).
Transgenic rice lines constructed through the expression of the
cry2AX1 gene showed resistance to rice leaf folder (C. medinalis)
and rice yellow stem borer (S. incertulas) (Rajadurai et al., 2018).

Transgenic cotton and brinjal cultivars having resistance to
borers were permitted for commercial usage in Bangladesh and in
Latin America, insect-resistant Bt soybean expressing cry1Ac +
cry1Ab were allowed for production during 2014 (Koch et al.,
2015). Another study found that a synthetic cry1Ab gene
introduced into tomato conferred resistance to the tomato leaf
miner, T. absoluta, with 100 percent insect mortality at T0

generation within 4–5 days (Soliman et al., 2021). Rice lines
(var. Bg94–1) produced by transferring the insecticidal protein
cry2A cause mortality in rice leaf folders in 80% of cases
(Gunasekara et al., 2017). Similarly, transgenic pigeon pea
lines constructed using a combination of cry1Ac and cry2Aa
exhibited resistance to H. armigera, resulting in 80%–100% larval
mortality (Ghosh et al., 2017). Cry1Aa gene expression in sweet
potatoes conferred resistance to Lepidopteran insect i. e,
Spodoptera litura (Zhong et al., 2019). Expression of cry2AX
gene in transgenic cotton event CH12 showed 88% mortality in
H. armigera at T0 generation (Sakthi et al., 2015). et alAn
industrially important non-edible castor developed by
transferring the cry1Aa gene using Agrobacterium
transformation technique, exhibited strong resistance against
two lepidopteran pests, i.e., Achaea janata (semi-looper) and
S. litura (Muddanuru et al., 2019). Transgenic soybean,
expressing cry8-like gene from B. thuringenesis conferred
resistance to Holotrichia parallela, a Coleopteran pest (Qin
et al., 2019). The transgenic cotton event MNH93 carrying
cry1Ab demonstrated 40–60 percent larval mortality against H.
armigera with displaying 0.26 percent transformation frequency
(Khan et al., 2011). In H. armigera, expression of the cry2AXI
gene in the T3 generation of the cotton event CH12 resulted in
90% death (Jadhav et al., 2020). Other toxins or proteins, such as
cyt2Aa, which provides aphid resistance (Chougule et al., 2013)
and cry51Aa2, increased Lygus species mortality in cotton
(Gowda et al., 2016). The expression of cry gene has been
studied in different crop species and is depicted in Table 1.
Despite the successful deployment of cry gene technologies in
crops to achieve resistance against several insect pests, some of the
agricultural pests often develop resistance to insecticidal toxins
and devastate the crop production. Other problems that limit the
usefulness of transgenic crops for insect control include

secondary pest outbreak, evolution of new biotypes, effects on
non-target organisms, environmental influences on gene
expression, biosafety of food from transgenic crops, and socio-
economic and ethical issues. Also the research groups should take
up the challenges of understanding plant insect interactions to
understand the mechanism of resistance development in insects
against cry genes.

2.1.2 Vegetative Insecticidal Proteins Genes
The Bacillus thuringiensis (Bt) bacteria found in a variety of
ecological habitats, has natural entomo-pesticidal properties
against a variety of economically important crop pests due to
the secretion of various proteins during different growth phases.
One of the best known families of Bt proteins is Vip, which are
produced during the vegetative growth phase of the plant and are
recognized as an excellent toxic candidate due to the sequence
homology and receptor sites differences from cry proteins. There
are three subfamilies of Vip proteins. Vip1 and Vip2 heterodimer
toxins, effective against pests belonging to Hemiptera and
Coleoptera orders, whereas Vip3, the most extensively studied
family of Vip toxins have toxicity toward Lepidopterans et al. Vip
proteins are also known as second-generation insecticidal
proteins, that can be used either alone or in combination with
cry proteins to control a number of insect-pests (Gupta et al.,
2021). In terms of toxicity potential against susceptible insects,
these Vip3 proteins are comparable to cry proteins. They are
reported to be toxic toward pests, which can’t be controlled with
cry proteins. They reduce the insect pest’s population by osmotic
lysis which causes swelling and interruption of the midgut
epithelial cells. The Vip3 proteins have been successfully
pyramided along with cry proteins in transgenic crops such as
maize and cotton, to overcome resistant pest populations and
delay the evolution of resistance (Syed et al., 2020).

Vip genes exhibiting greater resistance against cotton bollworm
(H. armigera) and tobacco budworm (Heliothis virescens) showing
that these genes are an excellent option for these insect control. The
transgenic cotton containing Vip3A alone and another multitoxin
line expressing Vip3A and cry1Ab (VipCot) had greater resistance to
both the insects, H. zea and H. virescens (Bommireddy et al., 2011).
Transgenic cotton lines expressingVip3AcAaa demonstrated greater
insect resistance, showing that the Vip3AcAaa protein is highly
effective in insect control (Chen et al., 2018a). The cowpea lines
containing Vip3Ba1 exhibited greater suppression of larval growth
and showed further resistance against the pod borer (Bett et al.,
2017). A toxin Vip3A transferred in sugarcane showed superior
resistance against sugarcane stem borer (Chilo infuscatellus) with
100% mortality (Riaz et al., 2020). The effect of the Vip gene in
different crop species is depicted in Table 2. These proteins are
promising candidates for further development of insect resistant
plants and show extended ranges of toxicity particularly toward
lepidopteran pests. Efforts are underway to use these proteins to
induce insect pest resistance.

2.1.3 Lectins
Carbohydrate-binding proteins known as lectins, are
entomotoxic proteins with insecticidal properties and are
found in many plant species. They prevent predation by being
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detrimental to a variety of insects and animals that eat plants.
They are mostly found in plants belonging to the families
Solanaceae, Fabaceae and Poaceae; especially some of
leguminous seeds contain a high concentration of lectins.
Plant lectins act as storage proteins and are involved in
defense mechanisms against phytophagus insects. Various
plants lectins from different sources have already been
reported to be toxic towards important members of insects
belonging to Lepidoptera (Czapla and Lang, 1990), Coleoptera
(Gatehouse et al., 1984; Czapla and Lang, 1990) and Homoptera
orders (Powell et al., 1993; Sauvion et al., 1996). The first lectin
discovered and commercially available was Concanavalin A;
which is now the most extensively studied lectin for insect
pest control. The adverse impact of lectins on biological
parameters of insects includes, feeding inhibition, reduction in
larval weight delays in adult emergence, retardation in total
developmental period and increased mortality and reduced
fecundity in the first and second generation (Powell et al., 1993).

Insect-resistant plants have emerged in recent years, paving
the way for the use of plant lectins in pest management strategies.
The use of lectins in transgenic plants has yielded promising
results, particularly for crops expressing Bacillus thuringiensis
(Bt) Cry toxins, which show resistance to sap-sucking insects.
Furthermore, lectins in artificial diets and their expression in
transgenic plants have been shown to reduce performance in
insects of various orders, including Lepidoptera, Coleoptera, and
Hemiptera.

Plant lectins are carbohydrate-binding proteins that have
greater affinity for certain sugar components found in
glycoproteins and glycolipids in the cell membrane (Camaroti
et al., 2017). Transgenic rice carrying Allium sativum leaf
agglutinin (ASAL) and Galanthus nivalis lectin (GNA)
conferred resistance to major sap-sucking insects like brown
planthoppers (BPH), white-backed planthoppers (WBPH), and
green leafhoppers (GLH) (Bharathi et al., 2011). Transgenic rice
(Oryza sativa L.) plants expressing an insecticidal protein (the
snowdrop lectin, GNA) produced through particle bombardment
exhibited the significant levels of resistance against sap-sucking
pests (Sudhakar et al., 1998). Enhanced toxicity of GNA-spider-
venom toxin I (SFI1) fusion protein to larvae of the tomato moth
(L. oleracea), rice brown planthopper (N. lugens), and the peach
potato aphid (M. persicae) reported by Fitches et al. (2004) and
Down et al. (2006). In an another study, the harmful effects of
snowdrop lectin (GNA) expressed in transgenic sugarcane on the
life cycle of Mexican rice borer Eoreuma loftini (Dyar) and
sugarcane borer Diatraea saccharalis (F.) was reported by
Sétamou et al. (2002). Expression of Galanthus nivalis lectin
(GNA) gene showed resistance to aphids in potato (Mi et al.,
2017). Transgenic Arabidopsis expressing recombinant fusion
protein (Hv1a/GNA) exhibited resistance to peach potato
aphids and grain aphids (Nakasu et al., 2014). A GNA-
neuropeptide-allatostatin fusion protein was found to inhibit
the feeding and growth of the tomato moth (L. oleracea).
(Fitches et al., 2004). The larvae of the tomato moth were
found to be more toxic to a fusion protein containing a GNA-
lepidopteran-specific toxin (ButalT) from the South Indian red
scorpion (Mesobuthus tamulus). (Trung et al., 2006). The

transgenic cotton lines containing insect gut binding lectin
demonstrated significant level of resistance to sucking and
chewing insects at T1 generation (Vanti et al., 2018). The lentil
lectin (LL) and chickpea protease inhibitor (CPPI) genes
transferred to Brassica juncea lines and the resulting
transgenic plants showed resistance to sap-sucking pests such
as aphids (Rani et al., 2017b). Mannose-binding lectin expressed
through Agrobacterium-mediated transformation, exhibited
resistance to wheat aphid in BE104 (Duan et al., 2018). In a
bioassay study it was found that the transgenic wheat plants
produced through the particle bombardment method expressing
the gene encoding snowdrop lectin (Galanthus nivalis agglutinin;
GNA) showed reduced fecundity of grain aphids Sitobion avenae
(Stoger et al., 1999). At T1 and T2 generations, transgenic B.
juncea expressed a new lectin gene, Colocasia esculenta tuber
agglutinin (CEA), as well as a GNA, exhibited enhanced
resistance against mustard aphid (Lipaphis erysimi) (Das et al.,
2018). Transgenic cowpea expressing arcelin 1 gene from
Phaseolus vulgaris L. conferred greater resistance to bruchids
like Zabrotes subfasciatus and Callosobruchus maculatus. In
addition, against both bruchid insects, the percentage of eggs
laid, hatching, adult emergence, and grain mass loss was much
lower in transgenic cowpea than in control (Grazziotin et al.,
2020). Hilda et al. (2022) demonstrated that arcelin found in the
wild accession of common bean is an insecticidal protein that can
prevent the bruchid beetle (Bruchidae: Coleoptera) from
digesting it. Aside from focusing on coleopteran insects,
arcelin was reported to be highly effective against specific
insects that belong to Lepidoptera and Hemiptera insect order
(Oriani and Lara, 2000; Malaikozhundan et al., 2003). The
binding of lectin molecules to glycosylated proteins in the
midgut of larvae reduces the efficiency of nutrient uptake and
diet utilisation, resulting in a drop in total larval mass and decline
in the average survival rate. (Paiva et al., 2012). Caroline et al.
(2022) reported that Erythroagglutinin, Arcelin-5,
Leucoagglutinin, and a hypothetical seed storage protein are
responsible for bruchid resistance which is among the most
devastating insect pest of the common bean. Findings of
Khoobdel et al. (2022) indicated that a lectin derived from
Polygonum persicaria L. (PPA), causes oxidative stress in
Sitophilus oryzae in addition to causing digestive disorders,.
The leaf lectin (SteLL) from Schinus terebinthifolius did not
cause death in S. zeamais adults, according to Camaroti et al.
(2018) and de Santana Souza et al. (2018), but it did inhibit
protease activity and promote amylase activity in the digestive
system. MvRL was found to affect the activity of gut
endoglucanase, phosphatases, b-glucosidase, and trypsin-like
enzymes in Nasutitermes corniger workers and soldiers,
reported by de Albuquerque et al. (2012).

Plant lectins have been found to be biologically active against a
variety of insects. Chitin-binding lectins derived from
Microgramma vacciniifolia rhizome lectin (MvRL) showed
anti-nutritional effects on survival, feeding, and nutrition of
Sitophilus zeamais adults (de Albuquerque et al., 2020).
Moringa oleifera seeds containing a water-soluble lectin
(WSMoL) negatively impacted the physiology of the pest
Sitophilus zeamais, which could have long-term consequences
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(de Oliveira et al., 2020). According to Napoleão et al. (2013), the
leaf lectin (MuLL) derived fromM. urundeuva adversely affected
the activity of digestive enzymes in the stomachs of S. zeamais
adults, inhibiting digestive processes. Seeds containing the lectin
WSMoL (water-solubleM. oleifera lectin) have been shown to be
insecticidal against Aedes aegypti eggs and larvae. (Coelho et al.,
2009; Santos et al., 2012, Santos et al., 2020). The survival and
nutritional parameters of S. zeamais adults are negatively affected
by the ingestion of an artificial diet containing a saline
concentrate from Schinus terebinthifolius Raddi leaves (LE) or
its lectin (SteLL, S. terebinthifolius leaf lectin). (Camaroti et al.,
2018). However, progress in lectin research has been hampered
due to concerns about the effects of ingesting snowdrop lectin on
higher animals,, although no adverse effect was seen in rats fed for
90 days on transgenic rice containing GNA was seen (Poulsen
et al., 2007). Insect resistance was demonstrated by the expression
of lectin genes in various crop plants (Table 3). Although, lectins
have been found to have negative effects on insect pests of various
orders and stages of development, preventing growth, survival,
nutrition, development, and reproduction (Napoleão et al., 2019).
However, because of their known toxicity to mammals and
humans, caution should be exercised in their use in transgenic
plants.

2.1.4. Fusion Proteins
Bt insecticides are widely used, with Bt toxins accounting for up to
90% of microbiological insect control products. As a result,
there’s a possibility that insects will become resistant to Bt
toxins. (Tabashnik, 1994; Ferré et al., 1995). The diamondback
moth (Plutella xylostella) has evolved resistance in some open
field populations in response to repeated exposure to foliar sprays
containing Bt proteins. (Perez and Shelton, 1997), whereas
recessive mutant alleles can confer resistance to multiple Bt
toxins in laboratory selection experiments with other insect
pests (Tabashnik et al., 1996). The stacking or pyramiding of
multiple transgenes in the same transgenic plant and the use of
hybrid toxins against insect pests are two recent strategies to
address potential limitations in conventional transgenic insect
pest control. et alThus fusion proteins are formed by joining
together different insecticidal proteins. In the host plant system
after transcription and translation these proteins form a single
polypeptide units which are more effective against phytophagous
insects. Dow Agro Sciences’ transgenic cotton lines carrying a
hybrid fusion protein, cry1Be + cry1Fa, demonstrated increased
resistance to S. litura and O. nubilalis insects (Meade et al., 2017).
Transgenic rice containing the cry2AX1 (derivative of cry2Aa and
cry2Ac) gene was viewed as resistant to lepidopteran insects, as
indicated by Chakraborty et al. (2016). Koerniati et al. (2020)
reported that the synthetic sugarcane expressing cry1Ab + cry1Ac
fusion protein showed resistance against shoot borer.
Agrobacterium-mediated transformation of transgenic B.
juncea expressing a fusion protein derived from lectin and a
protease inhibitor resulted in resistance to phytophagous aphids.
(Rani et al., 2017a). In another case study, Chang et al. (2017)
demonstrated that transgenic maize containing cry1Ab/cry2Aj
fusion protein in kernel conferred higher mortality in S. exigua, a
lepidopteran pest and Harmonia axyridis, a coleopteran pest.

Transgenic rice line expressing cry1Ac + ASAL conferred durable
and enhanced resistance to major insects such as yellow stem
borer, leaf folder,, and brown plant hopper (Boddupally et al.,
2018). Pyramiding of cry1Ab + vip3A showed resistance against
the rice leaf folder and Asiatic rice borer (Xu et al., 2018). A
significant level of protein expression was observed in transgenic
rice lines carrying cry2Aa + cry1Ca protein lethal to Asiatic rice
borer, Chilo suppressalis (Qiu et al., 2019). Katta et al. (2020)
investigated that the transgenic plant developed by transferring a
triple gene construct containing cry2Ab + cry1F + cry1Ac genes
into an elite cotton variety (Narasimha) conferred a significant
level of mortality toH. armigera and S. litura at T2 generation. An
account of studies utilization of the fusion proteins used for insect
resistance in crop plants for pest management is depicted in
Table 4. Pyramiding of two or more genes is a sustainable strategy
for achieving good management of lepidopteran, coleopteran and
hemipteran insects pests. Furthermore, these innovations could
pave the way for development of insect resistant crops by delaying
the phenonmenon of resistance development in insects.

2.1.5 Protease Inhibitors
Protease inhibitors (PIs) are plant-derived inhibitors that prevent
insect pests from digesting their food by inhibiting the activity of
digestive proteases (Haq et al., 2004; Macedo and Freire, 2011;
Zhu-Salzman and Zeng, 2015). Insect digestive proteases are
known to be inhibited by PIs, through preventing proteolysis
and results in decreased fecundity, increased mortality and longer
developmental period due to the deficiencies of essential amino
acids. The most investigated plant PIs against pests are serpins
and cystatins. Serpins, with a molecular mass of approximately
39–43 kDa, are irreversible serious inhibitors of serine proteases.
Serine proteases have been discovered in insect orders like,
Diptera (flies), Lepidoptera (moths and butterflies), Orthoptera
(grasshoppers, locusts), Coleoptera (beetles) and Hymenoptera
(bees and wasps) (Irving et al., 2002). Cystatins, a PIs protein with
a molecular mass of 12–16 kDa, inhibit the activity of cysteine
proteases, which are the primary digesting proteases in
Coleopterans and Hemipterans. Several studies have also
reported that volatile compounds such as methyl jasmonate,
one of the key regulators of plants’ defensive response to
insect herbivores, inhibit gut protease after wounding. (Singh
et al., 2016), cause neighboring unwounded plants to produce
proteinase inhibitors, effectively prearming the local population
against insect attack (Stevens et al., 2012). Legume trypsin
inhibitors inhibit a wide spectrum of proteases and have an
insecticidal activity against a variety of key insects (Macedo
et al., 2004; Sharma, 2015). Protease inhibitor genes were
incorporated in rice cultivars (Duan et al., 1996; Xu et al.,
1996) to improve protection against stem borers, and wheat
(Altpeter et al., 1999) to protect them against foliage-feeding
and storage pests. Protease inhibitors when fed to insect pests
either through artificial diet or transgenic plants resulted into
increased insect mortality (de Pg Gomes et al., 2005; Gatehouse,
2011) and adversely affected the growth and development of
insect larvae from different insect orders (de Pg Gomes et al.,
2005; A,; Gatehouse, 2011) (Burgess et al., 1994; De Leo et al.,
2001; Outchkourov et al., 2004; Ribeiro et al., 2006; Tamhane
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et al., 2007; Dunse et al., 2010; Schneider et al., 2017). Figure 3
depicts the success and failure of protease inhibitors in a variety of
insect pests. Protease inhibitors may enlighten a new dimension
in insect pest management. However, due to lack of
understanding of insect physiology and biochemistry, it
suffered great failure in recent past. Also PIs turned worthless
due to immense adaptive potential of insect pests and its long
coevolutionary relationship with host plant. Solving these issues
could pave the way for future research.

2.1.6 α-Amylase Inhibitors
α-amylase is a digestive enzyme present in insects for digestion
of carbohydrates. An α-amylase inhibitor, affect digestion in
insects by inhibiting the activity of α-Amylase enzyme in
insects. Various types of α-amylase inhibitors, present in
seeds and vegetative organs of plants, was found to control
a numbers of phytophagous insects (Chrispeels et al., 1998).
Seeds of Phaseolus vulgaris expressing an α-amylase inhibitor
negatively affected the growth and development of cowpea
weevil Callosobruchus maculatus and Azuki bean weevil
Callosobruchus chinensis (Ishimoto and Kitamura, 1989;
Shade et al., 1994). Morton et al. (2000) reported that
transgenic pea and azuki bean seeds expressing the
inhibitor, aAI-1, exhibited enhanced resistance against
bruchids, the pea weevil (Bruchus pisorum), the cowpea
weevil (Callosobruchus maculatus) and the azuki bean
weevil (Callosobruchus chinensis). Kaur et al. (2022)
investigated that higher activity of α-amylase inhibitors in
the central whorl leaves and stems of maize genotypes might be
responsible for inducing resistance against Chilo partellus
infestation. The multiplication and damage of Rhyzopertha
dominica, a major pests of stored wheat grains can be
effectively controlled by inhibiting the α-amylase enzyme
through wheat α-amylase inhibitors (Priya et al., 2010). A
gene named aAI-Pc1, encoding an α-amylase inhibitor was
isolated from cotyledons of Phaseolus coccineus and
introduced into coffee plants, confers resistance to coffee

berry borer, Hypothenemus hampei (de Azevedo Pereira
et al., 2006). Recently, a wheat gene encoding an α-amylase
inhibitor was expressed in tobacco, resulting in increased
resistance to Spodaptera spp. and Agrotis spp (Jaiswal et al.,
2018). Isolation of a novel alpha-amylase inhibitor from
papaya seeds (Carica papaya) showed increased larval
mortality, decreased insect fecundity and adult longevity of
cowpea weevil (Callosobruchus maculates) (Farias et al., 2007).
Therefore these studies indicates the successful utilization of
α-amylase inhibitors in insect pests management.

2.1.6.1 Insect Chitinase
Insect chitinases are the hydrolytic enzymes having potential to
inhibit or degrade the chitin. In insects, chitin is the main
component of the exoskeleton and peritrophic membrane. It
provide protection from harsh environmental conditions,
external mechanical disruption and natural enemies (Chen
et al., 2018b). The hydrolysis of chitin is essential for ecdysis
(periodic shedding of the old cuticle). Chitinases are expressed in
various organisms including those that lack chitin such as plants
to recognize and degrade the chitin in chitin containing insects
((Oyeleye and Normi, 2018). Transgenic expression of chitinase
enzyme has been proposed as a crop protection strategy. Role of
chitinase enzyme in insect pests management has been studied in
several insects such as silkworm B. mori, rice brown planthopper
N. lugens, cotton mealybug P. solenopsis and rice striped stem
borer C. suppressalis (Pan et al., 2012; Xi et al., 2015; Su et al.,
2016; Omar et al., 2019). Transgenic maize plants expressing a
chitinase gene showed enhanced resistance against corn borer
(Sesamia cretica) (Osman et al., 2016). Insect chitinases have been
established as biopesticides and transgenes in crop protection due
to the inhibitory effects on the growth and development of
insects. Not much research on insect chitinase has been done
and lack of structural information on some insect chitinase has
hampered the development of potential agrochemicals targeting
insect chitinase. Better understanding of their structure and
biochemistry will accelerate their usage in biotechnological
processes.

2.2 Genome Editing
Insects acquiring resistance to the Bt traits has posed a threat
to agricultural productivity, prompting researchers to seek
out novel, cost-effective, and environment friendly
techniques to insect pest management, as well as ways to
combat insect resistance. Nowadays, insect pest management
tactic has shifted to gene editing, which is a newer and more
advanced method (Anastacia Books, 2019). Gene editing, also
called genome editing, is a technique that involves inserting,
deleting, or replacing DNA bases in a specific target DNA
sequence of the genome for effectively altering the function of
a gene by using the cell’s natural mechanisms (Bortesi and
Fischer 2015). It is one of the most widely used technologies in
present-day science that empowers researchers to change/
alter a living being’s DNA (Belfort and Bonocora, 2014). It is
an emerging opportunity increasingly being used in insect
pest management through expanding its possibilities and
opportunities to enhance plant resistance to insect pests.

FIGURE 3 | Impact of protease inhibitors (PIs) on insect pest growth.
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Nucleases are used in these technologies to cut certain
genomic target sequences. Two types of genome editing
tools, comprising transcriptional activator-like effector
nucleases (TALENs) and clustered regularly interspaced
short palindromic repeats (CRISPR)/Cas9, are accessible
and are frequently applied. Cas9 protein and single-guide
RNAs (sgRNAs) which can be easily designed are the two
main parts of the CRISPR/Cas9 system, while TALEN
requires to be redesigned to target different loci each time.
Cas9-mediated genome editing is achieved by a process: DNA
cleavage followed by DNA repair (Figure 4). Furthermore, the
CRISPR-Cas9 technology allows researchers to add, remove,
replace, or regulate genes in a variety of animals, resulting in
heritable, targeted modifications that were previously difficult
to create (Ricroch et al., 2017). One of the most important
practical advantages of CRISPR-Cas9 technology is
multiplexing, or the introduction of double-stranded breaks
(DSBs) at many locations in the genome that can be used to
edit multiple genes simultaneously (Li et al., 2013). Thus, in
recent times, CRISPR/Cas9 has emerged as a technically
simple, newest, most effective, and an effective tool for
developing insect pest resistance. It has been successfully
used to prevent the accumulation of specific gene products
in a variety of crops by either deleting the gene or inducing
missense mutations in the target gene (Gao, 2021). Most
polyphagous insects use the plant’s own volatiles, gustatory
signs, visual appearance, oviposition sites, and collaborations
to recognise host plants. (Larsson et al., 2004). Genome
editing can be utilized to change plant volatile mixtures,

which could be an alternative pest management strategy.
However, caution should be taken to ensure that the
alteration has no negative consequences for the beneficial
insect population. In a study, the overproduction of
anthocyanin pigmentation caused the transgenic tobacco
plant’s leaves to turn red which deterred both the
herbivores Spodoptera litura and Helicoverpa armigera due
to change in leaf color (Malone et al., 2009). In an
anotherstudy, CRISPR/Cas9 was usedto target six loci
associated with tomato yield and efficiency in wild tomato
S. pimpinellifolium (Zsögön et al., 2018). Although this wild
tomato shows resistance to a numberof arthropod insects,
including spider mites, and produces modest yields (Rakha
et al., 2017). Ming et al. (2021) demonstrated that the
CRISPR/Cas9 genome editing system is an effective tool for
studying the function of SfABCC2, a Cry1F gene receptor that
confers resistance to S. frugiperda. Insect-resistant rice plants
with mutations in the cytochrome P450 gene CYP71A, which
catalyses the conversion of tryptamine to serotonin,
accumulated high levels of salicylic acid but lacked
serotonin. (Lu et al., 2018). This could make genome
editing more appealing than transgene stacking for the
production of next-generation insect-resistant crops.
Although CRISPR gene editing is an effective tool to
combat insect pest problems as it has the capacity to alter
the specific gene of interest. However, commercial use of
CRISPR/Cas9 in insect pest management is still in its early
stages. It has been extensively reformed for various
applications in model animals, which may reveal potential

FIGURE 4 | Schematic representation of CRISPR/Cas9 system.
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insect applications. The list of insect pests engineered for pest
management using CRISPR/Cas9 are given in Table 5.

2.3 RNA Interference for Plant Resistance to
Insect
RNAi is a method of suppressing gene expression by suppressing
specific sequences and is known by various names, including co-
concealment, post-transcriptional gene silencing (PTGS), and
suppressing. It is an advancement of novel gene silencing
mechanisms triggered by double-stranded RNA at the cellular
level. (Figure 5). When a double-stranded RNA (dsRNA) is
injected into a cell, it makes undesirable genes to be repressed
(Kamthan et al., 2015). The RNAi strategy for pest control is
based on ingestion of double-stranded RNA (dsRNA) into the
target pest system. After ingestion, dsRNA expresses either
through hairpin or by other different means and spread
throughout the insect system (Katoch et al., 2013). Transgenic
Bt toxins are mostly effective against Lepidoptera and Coleoptera
larvae, by acting in the mid-gut of susceptible target insects,
leaving other insect orders unmanaged. The RNAi technique was
expected to be able to control a wider range of insects, especially
sap-sucking insects, which transgenic crops had failed to control.
It also opens up new possibilities for eco-friendly insect pest
control in agricultural crop plants (Mamta and Rajam 2017).
dsRNAs are often utilized in plants to interfere with specific gene
silence in order to develop disease resistance through genetic
changes. Resistance to C. suppressalis was provided by rice
knockdown lines TT51 (cryAb and cry1Ac) and T1C-19
(cry1Ac) with two aminopeptidase N genes (APN1 and
APN2) (Qiu et al., 2017). Western corn rootworm (D.

virgifera) fertility and larval feeding were reduced when the
dvvgr and dvbol genes were silenced in maize (Niu et al.,
2017). The use of a dsRNA/nano carrier formulation to target
the TREH, ATPD, ATPE, and CHSI genes resulted in a greater
proportion of soybean aphid (Aphis glycines) mortality (Yan et al.,
2020). Transgenic cotton lines generated by combining Bt toxin
with RNAi caused inhibition of juvenile hormone methyl
transferase (JHMT) in H. armigera. (Ni et al., 2017).
Knockdown of acetylcholine esterase gene (AChE) in rice lines
resulted in reduced larval length and weight of yellow stem borer
within 15 days (Kola et al., 2019). Ingestion of double-stranded
(ds) RNAs in an artificial diet causes RNA interference in several
coleopteran species, including the western corn rootworm
(WCR) Diabrotica virgifera virgifera, which results in larval
stunting and mortality. (Baum et al., 2007). The RNAi
mechanism was tested by the spraying of dsRNAs in maize,
resulting in gene knockdown and increased insect mortality rates
in piercing, sucking, and stem borer insects (Li et al., 2015).
Mamta et al. (2016) found that HI-RNAi produced induced death
and developmental abnormalities in H. armigera larval, pupal,
and adult stages when the chitinase gene (HaCHI) was silenced to
establish resistance in tobacco and tomato. Tomato plants with a
dsRNA targeting a gene encoding a phenolic glucoside
malonyltransferase, which detoxifies phenolic glycosides, were
recently found to be completely resistant to the tobacco whitefly,
Bemisia tabaci (Xia et al., 2021). The Colorado potato beetle
(Zhang et al., 2015), tobacco whitefly and tobacco hornworm,
Manduca sexta (Burke et al., 2019), were all killed by chloroplast-
expressed dsRNAs (Dong et al., 2020). Di Lelio et al. (2022)
reported that when Spodoptera littoralis larvae eat tobacco plants
expressing a dsRNA targeting the Sl 102 immune gene, the gene

FIGURE 5 | RNA interference (RNAi).
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get silenced (et al.). RNAi technology is effective in knocking
down target genes in a variety of insect orders, including
Diabrotica v. virgifera, maize rootworm larvae (Khajuria et al.,
2015). These findings suggest that to generate insect-resistant
plants, RNAi is one of the most effective methods. However, the
technology is currently being investigated, and its existing
limitations make it less viable as an insect pest management
strategy (Anastacia Books, 2019).

The most challenging task of this technology is allowing for
efficient dsRNA uptake by the insect. The generation and
transport of dsRNAs have been proven in two ways. The first
is HIGS (host induced gene silencing), which involves the
transgenic expression of dsRNAs derived from the crop
genome. In this method, insects supposed to feed on the crop
will eat the dsRNA. In the second strategy, dsRNAs are
synthesized in high concentrations and applied to insect-
infested crops as a foliar spray. Spray-induced gene silencing is
the name for this method (SIGS). The target genes will be silenced
in both approaches in the target species (Christiaens et al., 2020a).
Many challenges are still there. The inherent ability of RNA, while
ensuring that dsRNAs don’t persist in the environment, is
destructive in unfavorable environmental conditions and
restricts opportunities for SIGS approaches (Bramlett et al.,
2020). Similarly, while some insects quickly take up dsRNA,
resulting in high death rates, other species have low dsRNA
take-up and nuclease degradation, resulting in inefficient
outcomes. (Christiaens et al., 2020b; Shaffer, 2020). Success is
also dependent on whether sufficient amount of dsRNA
accumulate in the tissues on which the insects feed. The
development of novel spray formulations, many of which use
nanomaterials, is being used to address dsRNA stability and
uptake in ongoing research. (Christiaens et al., 2020b). Several

studies on insect pest management using the RNAi tool are
shown in Table 6.

2.4 Marker-Assisted Selection
The use of molecular markers to assist phenotypic selections in
crop improvement is known as marker-assisted selection (MAS).
It involves selecting individuals based on their marker pattern
(genotype) rather than their observable traits (phenotype) as
shown in Figure 6. There are various types of molecular
markers, such as single nucleotide polymorphism (SNP), have
been recognised and have shown great promise in enhancing the
efficiency and accuracy of conventional plant breeding. Molecular
marker techniques are the most advanced method for
transferring desired genes into desired crop plants in the
required combination. It is the most widely used molecular
techniques, and their application is a novel opportunity for
increasing the yield of crop (Das et al., 2017). MAS studies
showed introgression of Bph14 and Bph15 through molecular
marker-assisted selection (MAS) to enhance the resistance in
Minghui 63 and its derived hybrids against BPH (Hu et al., 2012).
Resistance to bacterial blight (BB) and brown planthopper (BPH)
was achieved in Yuehui9113 and F1 hybrids by pyramiding one
BB resistance gene (Xa21) and two BPH resistance genes (Bph14
and Bph15) in Yuehui9113 using a marker-assisted backcrossing
(MABC) strategy combined with phenotypic selection (He et al.,
2019). Rice line, ASD7 expressing a BPH resistance gene bph2
when crossed to a susceptible cultivar C418, a japonica restorer
line and evaluated through marker-assisted selection (MAS)
exhibited significantly higher resistance against brown plant
hopper Nilaparvata lugens, one of the most destructive pests
of rice crop (Li-Hong et al., 2006). Liu et al. (2016) investigated
that the pyramiding of two brown plant hopper resistance genes

FIGURE 6 | Marker assisted selection and its application in insect pest management.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 91402912

Kumari et al. Biotechnological Tools in Host Plant Resistance

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Bph3 and Bph27 (t), into elite rice cultivars through marker-
assisted pyramiding showed significantly enhanced resistance
against BPH and reduction in the yield loss caused by BPH.
Shabanimofred et al. (2015) developed rice cultivars through
marker-assisted selection (MAS) that provided resistance in
rice against biotypes 2 and 3 of brown planthopper (BPH).
Sharma et al. (2004) used marker-assisted pyramiding to
successfully construct the Bph1 and Bph2 resistance genes on
rice chromosome 12 to provide resistance against rice BPH. et al.
As a result, using MAS to improve pest resistance would be very
beneficial. There are various advantages of using MAS to enhance
selection efficiency of insect resistant plants 1) It can be
performed on seedling material, 2) less affected by
environmental conditions, 3) MAS may be cost effective and
faster than conventional phenotypic assays, 4) multiple markers
can be evaluated using the same DNA sample etc. But the
potential drawbacks of MAS are 1) Recombination between
the marker and the gene of interest may occur, leading to
inaccurate results 2) Incorrect estimates of QTL locations and
effects may result in slower progress than expected, 3) Markers
developed for MAS in one population may not be transferrable to
other populations.

2.5 Anther Culture
Anther culture is a technique by which immature pollen is
allowed to divide and grow into tissue (either callus or
embryonic tissue) with the intention of generating haploids
(plants with a N chromosome number). In this process,
pollen-containing anthers are separated from a flower and
placed in a suitable growing medium. An artificial medium
could be used to culture anther or pollen grain in vitro.
Anther can produce a callus, shoot, root, and eventually the
entire plant in an artificial medium. All of the plants that are
grown are haploid. It is the most viable and effective way for
rapidly producing homozygous haploid plants. This method can
hasten the development of a homozygous population of insect-
resistant plants. Rice anther culture lines, 952836, 953508,
953509, 953510, 953511, 953527 and 953541 showed moderate
level of tolerance to the rice water weevil, Lissorhoptrus
oryzophilus Kuschel (N’guessan et al., 1994). Park et al. (2014)
develop multi-resistant rice lines using anther culture for
providing resistance against bacterial blight, rice stripe virus
and brown planthopper.

2.6 Embryo Culture
Embryo culture is a technique in which immature or mature
zygotic embryo is recovered without injury which normally
aborts. These embroys are further cultured on the artificial
nutrient media under an aseptic environment to get a vigor
and viable plant through a successful ontogeny process. The
standardization of the nutrient medium is required for
induction of embryogenesis and seedling development.
Generally wild species are often more resistant to insect pests.
Wide hybridization has been used to transfer genes conferring
insect-resistant from wild species to cultivated plants. It has been
observed that such hybridization leads to the production of
abnormal inter-specific hybrid embryos, which can be rescued

using embryo culture technique. Jaiswal et al. (2018) has reported
studies of insect resistant genes transfer from wild to cultivated
species in wheat, rice, peanut, lettuce and cotton using embryo
culture technique.

2.7 Protoplast Fusion
Protoplasts are plant cells of which cell walls are taken out and the
cytoplasmic membrane is the peripheral layer. Protoplast can be
isolated by digesting the cell wall with specific lytic enzymes.
Protoplast fusion is a physical phenomenon, wherein at least two
protoplasts come together and stick with each other either
spontaneously or in presence of fusion-inducing agents. By
protoplast fusion, it is feasible to transfer a few desirable genes
from one species to another. For example, pest resistance
characteristics may be present in one of two species that
cannot be sexually hybridized. In this situation, protoplast
fusion may result in the formation of a hybrid between two
species. Protoplasts can be cultivated in an artificial medium, and
some of them will grow into full-fledged plants. Thus the plants
produced may be carrying the resistant traits. Also, it is the only
means of combining two cytoplasmically inherited characteristics
in a single genotype. Protoplast derived clones produced by
Mexican wild species and cultivated potato species using
protoplast fusion system expresses a significant level of
resistance to both Colorado potato beetle and potato late
blight (Chen et al., 2008).

2.8 Somaclonal Variation
Insect-resistant varieties can be selected through somaclonal
variation. These can be chosen using the procedures below. 1)
High-yielding varieties’ calli or cell suspensions were cultured for
numerous or long-term cycles, 2) long-term cell lines were
regenerated into plants, and 3) the regenerated plants were tested
against target insects. In field plots, about 2000 sugarcane seedlings
were tested for resistance to the sugarcane borer under artificial and
natural infestations and it was found that some somaclones were
reported to be resistant to sugarcane borer. The same process was
utilized to develop sorghum somaclones, resistant to the autumn
armyworm. Diawara et al. (1996) reported that somaclonal lines K-
26 [1], K-180 [3]2 and K-128 exhibited improved resistant to celery
major insect, Spodoptera exigua.

Although the above-mentioned plant tissue culture techniques
like anther culture, embryo culture, protoplast fusion, and
somaclonal variations proved to be more efficient in the
development of plants resistant to various insect pests. However,
these techniques are not widely used due to some potential
drawbacks, such as high costs, the production of harmful
secondary metabolites that kill the desired insect-resistant plants,
the medium required for growth is not known, and so on. Also, due
to advancements in technology, which are more efficient, quick, and
reliable, these methods are no longer used.

3 CONCLUSION AND FUTURE OUTLOOKS

Insects are the major concern for declining the agricultural
production. To cope with the problem of insect pests, farmers
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are more inclined to the use of chemical insecticides as these
provide a quick solution to the problem. The rapidly increasing
awareness of the human and animal health issues as well as
environmental impacts, of indiscriminate use of pesticide has
offered new incentive to the potential alternative pest-control
methods. In this perspective, host plant resistance is an
environmentally friendly control method that is an
important part of IPM (Integrated pest management)
programmes. The development of insect-resistant varieties
offers a stable and cumulative effect on the pests’
population and has no harmful effect on the environment.
The identification of insect pest resistant sources in various
crops has made significant progress. However, development of
insect resistant crop varieties through conventional methods is
slow and difficult to attain due to the entanglement of
quantitative traits at multiple loci. New opportunities in the
form of newer biotechnological tools have opened new ways of
pest control and offers great opportunities to develop a
sustainable, multi-mechanistic resistance to insect pests.
Biotechnological approaches are now being used to develop
novel plant resistance characteristics that provided excellent
protection against invasive and destructive crop pests in a
variety of crops by utilization of novel molecules, exploiting
insecticidal genes and changing the level and pattern of
expression of genes. Many insect-resistant plants have been
developed as a result of biotechnology like corn, rice, cotton,
canola, soybean, tobacco, apple, potato etc. With the advent of
several tools of biotechnology such as genome editing, genetic
transformation, anther culture, embryo culture, protoplast
fusion, somaclonal variation, and marker-assisted selection
will accelerate the development of insect-resistant crops
now and in the future. By expressing bacterial delta-
endotoxins, vegetative insecticidal proteins, and other plant
qualities like lectins, protease inhibitors, etc., hereditary
designing will guide towards the development of insect-
resistant crops at much faster rate. Furthermore, RNA
interference and genome editing by CRISPR/Cas9 offer
novel approach to the production of insect-resistant crops.
Therefore, biotechnology have come as a boon in tackling
global pest problem, contributing to the development of noval
insect resistant crop plants that have proven to be cost
effective, pesticide-resistant, and environmentally safe.
Despite the utilization of modern technology in crops to
achieve resistance to a variety of insect pests, some
agricultural pests frequently develop resistance to
insecticidal toxins, wreaking havoc on crop productivity.
The obstacles of understanding plant-insect interactions

should be addressed by the research groups. To develop
plants resistant to insects advances like RNAi and CRISPR
techniques can be used to silence/edit sensitive or negative
regulatory alleles of plant immune genes. New advancements
that give more viable solutions for arising pests can improve
and supplement the perseverance of plant-resistant elements.
However, before the commercialization of an insect pest
resistant transgenic crop variety, it is pertinent to study the
potential impacts on environment specifically on non-target
organisms. Also, the benefits and hazards associated with the
adoption of insect-resistant crops, particularly for developing
nations and resource-poor smallholder farmers, should be
considered prior to carry out such initiatives. No doubt,
biotechnology has opened the door to a plethora of novel
ways for controlling insect pests, many of these products will
necessitate regulatory frameworks that may not currently exist
for certain products or in some places. They will also require
the support of producers and consumers, which will
necessitate open conversations, including the potential for
new technology to make a significant contribution to
societal change. In short it can be concluded that
biotechnology exhibits unique applications of science that
can be used for the welfare of society through the
development of crops with improved nutritional quality,
resistance to pests and diseases, and low cost of production.
Biotechnology, in this context, is an aspect of science that, if
used with caution and ethics, has the potential to offer
substantial benefits.
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